WO2022061578A1 - Method and apparatus for multiplexing uplink resources - Google Patents

Method and apparatus for multiplexing uplink resources Download PDF

Info

Publication number
WO2022061578A1
WO2022061578A1 PCT/CN2020/117103 CN2020117103W WO2022061578A1 WO 2022061578 A1 WO2022061578 A1 WO 2022061578A1 CN 2020117103 W CN2020117103 W CN 2020117103W WO 2022061578 A1 WO2022061578 A1 WO 2022061578A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
pucch resource
uplink
pucch
uplink resource
Prior art date
Application number
PCT/CN2020/117103
Other languages
French (fr)
Inventor
Wei Ling
Chenxi Zhu
Bingchao LIU
Yi Zhang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2020/117103 priority Critical patent/WO2022061578A1/en
Publication of WO2022061578A1 publication Critical patent/WO2022061578A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • Embodiments of the present application relate to wireless communication technology, especially to a method and an apparatus for multiplexing uplink resources, e.g., multiplexing a physical uplink control channel (PUCCH) resource with other uplink resource (s) .
  • PUCCH physical uplink control channel
  • NR new radio
  • PDSCH physical downlink shared channel
  • TRP transmission reception points
  • PUCCH physical uplink shared channel
  • PUCCH enhancement to improve reliability and robustness using multi-TRP and/or multi-panel would be discussed and specified in R17.
  • One objective of the embodiments of the present application is to multiplex uplink resources, e.g., multiplexing a PUCCH resources with intra-slot repetition with other uplink resource (s) .
  • An embodiment of the present application provides a method, which includes: receiving configuration information on a set of uplink resources, wherein the set of uplink resource includes a first uplink resource, being a first PUCCH resource configured with a number of intra-slot repetitions; for each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, determining a third uplink resource to be transmitted from the first uplink resource and the at least one second uplink resource; and transmitting only the third uplink resource.
  • Another embodiment of the present application provides a method, which includes: transmitting configuration information on a set of uplink resources, wherein the set of uplink resource includes a first uplink resource, being a first PUCCH resource configured with a number of intra-slot repetitions; for each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, determining a third uplink resource to be received from the first uplink resource and the at least one second uplink resource; and receiving only the third uplink resource.
  • Yet another embodiment of the present application provides an apparatus, including: at least one non-transitory computer-readable medium having stored thereon computer-executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry.
  • the computer-executable instructions cause the at least one processor to implement any method according to an embodiment of the present application with the at least one receiving circuitry and the at least one transmitting circuitry.
  • Embodiments of the present application can improve reliability and robustness for uplink resources, especially PUCCH resources with intra-slot repetitions, and will facilitate the deployment and implementation of the NR.
  • FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system according to some embodiments of the present application
  • FIG. 2 illustrates a flow chart of a method for multiplexing uplink resources in accordance with some embodiments of the present application
  • FIG. 3 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 1 according to some embodiments of the present application;
  • FIG. 4 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 2 according to some embodiments of the present application
  • FIG. 5 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 3 according to some embodiments of the present application
  • FIG. 6 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with at least one PUSCH resource according to some embodiments of the present application.
  • FIG. 7 illustrates a simplified block diagram of an apparatus for multiplexing uplink resources according to some embodiments of the present application.
  • FIG. 1 illustrates a schematic diagram of a wireless communication system 100 in accordance with some embodiments of the present application.
  • the wireless communication system 100 includes a UE 102 and a BS 101. Although merely one BS is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present application. Similarly, although merely one UE is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present application.
  • the BS 101 may also be referred to as an access point, an access terminal, a base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art.
  • the BS 101 is generally part of a radio access network that may include a controller communicably coupled to the BS 101.
  • the UE 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like.
  • the UE 102 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • the UE 102 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 102 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • the wireless communication system 100 is compatible with any type of network that is capable of sending and receiving wireless communication signals.
  • the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • inter-slot PUCCH repetition scheme is already supported in R15, wherein only one beam can be used to transmit all repetitions.
  • PUCCH repetition with one or more beams or multiple TRPs may be supported both in FR1 (a low carrier frequency range) and FR2 (a high carrier frequency range, e.g., from 24.25GHz to 52.6GHz) .
  • FR1 a low carrier frequency range
  • FR2 a high carrier frequency range, e.g., from 24.25GHz to 52.6GHz
  • inter-slot PUCCH repetition with multiple beams can be a very straightforward way based on R15 to enhance the reliability and robustness of PUCCH according to some embodiments of the present application.
  • intra-slot PUCCH repetition can achieve a lower latency compared with inter-slot PUCCH repetition
  • no intra-slot PUCCH repetition solution has been proposed yet, especially in the case of using multi-TRP and/or multi-panel, which will be solved in embodiments of the present application.
  • FIG. 2 illustrates a flow chart of a method for multiplexing uplink resources in accordance with some embodiments of the present application.
  • the method is illustrated in a system level by a UE in the remote side and a BS in network side (e.g., the UE 102 and BS 101 as illustrated and shown in FIG. 1)
  • a BS in network side e.g., the UE 102 and BS 101 as illustrated and shown in FIG. 1
  • persons skilled in the art can understand that the method implemented in the remote side and that implemented in the network side can be separately implemented and incorporated by other apparatus with the like functions.
  • the network side e.g., a BS 101 as shown in FIG. 1 may transmit configuration information to the remote side, e.g., a UE 102, e.g., by at least one radio resource control (RRC) signaling and/or downlink control information (DCI) .
  • the remote side may receive the configuration information from the network side.
  • the configuration information may indicate a set of uplink resources.
  • the set of uplink resource includes a first uplink resource, which is a first PUCCH resource (also referred to "PUCCH" in the art) configured with a number of intra-slot repetitions.
  • the set of uplink resource may only include the first uplink resource in some embodiments of the present application.
  • the set of uplink resource may include other uplink resource (s) besides the first PUCCH resource, and each of the other uplink resource (s) may be a PUCCH resource or a PUSCH resource. More specifically, when an uplink resource is a PUCCH resource, it may be an intra-slot repetition PUCCH resource, inter-slot repetition PUCCH resource, or non-repetition PUCCH resource.
  • an uplink resource is a PUSCH resource, it may be a PUSCH resource with or without repetition, e.g., being PUSCH repetition type A or PUSCH repetition type B. Different from PUSCH repetition type A, in PUSCH repetition type B, concepts "nominal repetition” and "actual repetition” are introduced so that multiple repetitions within one slot will be identified, which can refer to TS 38.214.
  • At least one second uplink resource is a set of second PUCCH resource.
  • the remote side e.g., the UE does not expect the first PUCCH and any of the set of second uplink resource to start at a same position e.g., a same symbol in the time domain and include a uplink control information (UCI) type with a same priority.
  • UCI uplink control information
  • the network side when determining the configuration information on the set of the uplink resource, the network side will ensure that when any of the set of second PUCCH resources includes a same UCI type priority as the first uplink resource, the first uplink resource and the second PUCCH resource (s) with the same UCI type priority are configured to have different starting positions in the time domain.
  • a third uplink resource to be transmitted will be determined from the first uplink resource and the at least one second uplink resource in step 214 in the remote side, e.g. by a UE. Only the third uplink resource will be transmitted to the network side in step 216. That is, the remaining uplink resource (s) of at least one second uplink resource overlapped with the first uplink resource and the first uplink resource except the third uplink resource will not be transmitted (or will be dropped) .
  • the uplink resource (s) (including corresponding repetition) that does not overlap with the first PUCCH resource or other uplink resource (s) in the set of uplink resource will be transmitted as legacy, which will not be repeated herein.
  • determining a third uplink resource to be transmitted may include determining whether the first PUCCH resource and any of the set of second PUCCH resource have the same UCI type priority. In the case that the first PUCCH resource and any of the set of second PUCCH resource have different UCI type priorities, an uplink resource with the highest priority within the first PUCCH resource and the set of second PUCCH resource will be determined as the third uplink resource to be transmitted.
  • a UCI type priority rule is that the UCI type priority of hybrid automatic repeat request-Acknowledgement (HARQ-ACK) is larger than that of scheduling request (SR) , and the UCI type priority of SR is larger than that of channel state information (CSI) .
  • the UCI type priority of each CSI can be high or low. That is, the UCI type priority rule is UCI type priority of HARQ-ACK > SR > CSI with higher priority > CSI with lower priority.
  • an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource will be determined as the third uplink resource to be transmitted.
  • the first PUCCH resource in the case that all the set of second PUCCH resource is inter-slot repetition PUCCH resource (s) , the first PUCCH resource will be determined as the third uplink resource to be transmitted.
  • the first PUCCH resource in the case that all the set of second PUCCH resource is either inter-slot repetition PUCCH resource or non-repetition PUCCH resource, the first PUCCH resource will be determined as the third uplink resource to be transmitted.
  • the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority will determined. That is, other uplink resource (s) not being intra-slot repetition PUCCH resource in the set of second PUCCH resource even will not be considered to be transmitted.
  • the first PUCCH resource and any of the part of the set of second PUCCH resource have different UCI type priorities, an uplink resource with the highest priority within the first PUCCH resource and the part of the set of second PUCCH resource will be determined as the third uplink resource to be transmitted.
  • an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and the part of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource will be determined as the third uplink resource to be transmitted.
  • the first PUCCH resource when the at least one uplink resource overlapped with the first PUCCH resource is at least one PUSCH resource (also referred to as PUSCH or PUSCH transmission) , the first PUCCH resource will be determined as the third uplink resource to be transmitted. That is, the overlapped at least one PUSCH resource will not be transmitted.
  • the at least one second uplink resource (s) overlapped with the first PUCCH resource may include PUCCH resource (s) and PUSCH resource (s) simultaneously.
  • the step for determining the third uplink resource to be transmitted or received will be firstly performed among the first PUCCH resource and the PUCCH resource (s) overlapped with the first PUCCH resource to obtain an intermediate PUCCH resource (referred to as the first determining step) , and then performed between the intermediate PUCCH resource and the PUSCH resource (s) to finally determine the third uplink resource (referred to as the second determining step) .
  • the first determining step can be performed in the same way as that for determining the third uplink resource from a set of second PUCCH resource overlapped with the first PUCCH resource and the first PUCCH resource according to an embodiment of the present application.
  • the second determining step can be performed in the same way as that for determining the third uplink resource from the first PUCCH resource and at least one PUSCH resource overlapped with the first PUCCH resource according to an embodiment of the present application.
  • step 206 only the third uplink resource is received.
  • first uplink resource e.g. PUCCH resource etc.
  • second uplink resource and third uplink resource are only for illustrating the solutions of the present application, and should not be limited to specific uplink resource (s) .
  • the first PUCCH resource with intra-slot repetition there may be two or more PUCCH resources with intra-slot repetition indicated in the configuration information, any PUCCH resource with intra-slot repetition can be regarded as the first PUCCH resource.
  • the uplink resource (s) overlapped with the first PUCCH resource with intra-slot repetition may be at least one of PUCCH resource without repetition, PUCCH resource with intra-slot repetition, PUCCH resource with inter-slot repetition, and PUSCH resource.
  • PUCCH resource without repetition PUCCH resource with intra-slot repetition
  • PUCCH resource with inter-slot repetition PUCCH resource with inter-slot repetition
  • PUSCH resource PUCCH resource with intra-slot repetition
  • Various multiplexing schemes (or solutions) in all these overlapped cases would be discussed in the following.
  • the network side will ensure that when any second PUCCH resource overlapped with the first PUCCH resource includes a same UCI type priority as the first uplink resource, the first uplink resource and the second PUCCH resource are configured to have different starting positions in the time domain.
  • Case 1 a first PUCCH resource with intra-slot repetition overlaps with a set of second PUCCH resource in a slot
  • the uplink resource with the highest priority within the first PUCCH resource and the set of second PUCCH resource will be transmitted.
  • the remaining uplink resource (s) including a UCI with lower priority (s) will be dropped, i.e., not to be transmitted.
  • the uplink resource starting at an earlier position e.g., the earlier starting symbol in the time domain within the first PUCCH resource and any of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource will be transmitted.
  • the remaining uplink resource (s) starting at later position (s) will be dropped, i.e., not to be transmitted.
  • FIG. 3 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 1 according to some embodiments of the present application.
  • PUCCH resource 1 there are two PUCCH resources, e.g., PUCCH resource 1 and PUCCH resource 2 configured with intra-slot repetition in slot n.
  • PUCCH resource 3 there is another PUCCH resource, e.g., PUCCH resource 3 not configured with repetition in slot n.
  • UCI 1-3 with priority 1-3 are carried in PUCCH resource 1-3 respectively, wherein the order of the three UCI type priorities is priority 1>priority 2 >priority 3.
  • PUCCH resource 1 the first repetition of PUCCH resource 1 is overlapped with the first repetition of PUCCH resource 2 and PUCCH resource 3; and the second repetition of PUCCH resource 1 is overlapped with PUCCH resource 3.
  • PUCCH resource 2 the first repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 1 and PUCCH resource 3, and the second repetition of PUCCH resource 2 is overlapped with PUCCH resource 3.
  • the type of the second PUCCH resource overlapped with the first PUCCH resource configured with intra-slot repetition may also be considered in some exemplary schemes of the present application e.g., Scheme 2 and Scheme 3 illustrated in the following.
  • the method in the case that all the set of second PUCCH resource is inter-slot repetition PUCCH resource, the method includes determining the first PUCCH resource as the third uplink resource to be transmitted.
  • the method in the case that all the set of second PUCCH resource is either inter-slot repetition PUCCH resource or non-repetition PUCCH resource, the method includes determining the first PUCCH resource as the third uplink resource to be transmitted.
  • the method when only a part of the set of second PUCCH resource is intra-slot repetition PUCCH resource, the method includes determining whether the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority. Accordingly, in the case that the first PUCCH resource and any of the part of the set of second PUCCH resource have different UCI type priorities, the method includes determining an uplink resource with the highest priority within the first PUCCH resource and the part of the set of second PUCCH resource as the third uplink resource to be transmitted.
  • the method includes determining an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and the part of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource as the third uplink resource to be transmitted.
  • Scheme 2 Firstly, all the PUCCH resources with inter-slot repetition in the set of second PUCCH resource will not be transmitted. When all the PUCCH resources in the set of second PUCCH resource are PUCCH resources with inter-slot repetition, the first PUCCH resource will be transmitted. When the set of second PUCCH resource still includes other PUCCH resource (s) excluding the PUCCH resource (s) with inter-slot repetition, a further determining scheme similar to Scheme 1 will be performed on the first PUCCH resource and the remaining second PUCCH resources in the set of second PUCCH resource excluding all the PUCCH resource (s) with inter-slot repetition.
  • the uplink resource with the highest priority within the first PUCCH resource and the remaining second PUCCH resource will be transmitted.
  • the uplink resource starting at an earlier position e.g., the earliest starting symbol in the time domain within the first PUCCH resource and any of the set of second PUCCH resource with the same UCI type priority will be transmitted.
  • FIG. 4 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 2 according to some embodiments of the present application.
  • PUCCH resource 1 there are two PUCCH resources, e.g., PUCCH resource 1 and PUCCH resource 2 configured with intra-slot repetition in slot n.
  • PUCCH resource 3 there is another PUCCH resource, e.g., PUCCH resource 3 configured with inter-slot repetition, wherein the first repetition of PUCCH resource 3 is in slot n and the second repetition of PUCCH resource 3 is in slot n+1.
  • UCI 1-3 with priority 3-1 are carried in PUCCH resource 1-3 respectively, wherein the order of the three UCI type priority is priority 1>priority 2 > priority 3. As shown in FIG.
  • the first repetition of PUCCH resource 1 is overlapped with the first repetition of PUCCH resource 2 and PUCCH resource 3, and the second repetition of PUCCH resource 1 is overlapped with the first repetition of PUCCH resource 3.
  • the first repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 1 and PUCCH resource 3, and the second repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 3.
  • the first repetition of PUCCH resource 3 will be dropped due to being a PUCCH resource with inter-slot repetition. Then, a further determining scheme similar to Scheme 1 will be applied to PUCCH resource 1 and PUCCH resource 2. Since UCI 2 in PUCCH resource 2 has a higher priority than UCI 1 in PUCCH resource 1, the first repetition of PUCCH resource 2 will be transmitted while PUCCH resource 1 will be dropped. For the second repetition of PUCCH resource 1, since the first repetition of PUCCH resource 3 has been excluded and there is no other overlapped PUCCH resource, the second repetition of PUCCH resource 1 will be transmitted. Similarly, for the second repetition of PUCCH resource 2, since the first repetition of PUCCH resource 3 has been excluded and there is no other overlapped PUCCH resource, the second repetition of PUCCH resource 2 will be transmitted.
  • Scheme 3 Firstly, all the PUCCH resources with inter-slot repetition or without repetition in the set of second PUCCH resource will not be transmitted.
  • the first PUCCH resource will be transmitted.
  • the set of second PUCCH resource still includes other PUCCH resource (s) excluding the PUCCH resource (s) with inter-slot repetition or without repetition
  • a further determining scheme similar to Scheme 1 will be performed on the first PUCCH resource and the remaining second PUCCH resources in the set of second PUCCH resource excluding all the PUCCH resource (s) with inter-slot repetition or without repetition.
  • the uplink resource with the highest priority within the first PUCCH resource and the remaining second PUCCH resource will be transmitted.
  • the uplink resource starting at an earlier position e.g., the earlier starting symbol in the time domain within the first PUCCH resource and the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource will be transmitted.
  • FIG. 5 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 3 according to some embodiments of the present application.
  • PUCCH resource 1 is configured without repetition in slot n
  • PUCCH resource 2 is configured with intra-slot repetition in slot n
  • PUCCH resource 3 is configured with inter-slot repetition, wherein the first repetition of PUCCH resource 3 is in slot n and the second repetition of PUCCH resource 3 is in slot n+1.
  • UCI 1-3 with priority 3-1 are carried in PUCCH resource 1-3 respectively, wherein the order of the three UCI type priority is that priority 1 > priority 2 > priority 3. As shown in FIG.
  • the first repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 3 and PUCCH resource 1
  • the second repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 3.
  • Case 2 a first PUCCH resource with intra-slot repetition overlaps with at least one PUSCH resource in a slot.
  • the first PUCCH resource when a first PUCCH resource with intra-slot repetition overlaps with at least one PUSCH resource in a slot, the first PUCCH resource will be transmitted while the overlapped PUSCH resource will not be transmitted in the slot.
  • a PUSCH resource overlapped with the first PUCCH resource in a slot may be a PUSCH repetition Type A with repetition number not smaller than 1 (when the PUSCH repetition number is 1, the PUSCH transmission is actually not repeated) .
  • the PUCCH resource will be transmitted, while the overlapped repetition of the PUSCH resource will not be transmitted.
  • a PUSCH resource overlapped with the first PUCCH resource in a slot be a PUSCH repetition Type B with actual repetition number not smaller than 1 (when the PUSCH repetition number is 1, the PUSCH transmission is actually not repeated) .
  • all the overlapped intra-slot repetitions of the first PUCCH resource are transmitted and all overlapped actual repetitions of the PUSCH are not transmitted in the slot.
  • FIG. 6 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with at least one PUSCH according to some embodiments of the present application.
  • a PUSCH resource configured with repetition Type B e.g., PUSCH 1, which has two nominal repetitions, e.g., nominal repetition 0 and nominal repetition 1 and three actual repetitions in slot n and slot n+1.
  • a PUCCH resource e.g., PUCCH resource 1 configured with 2 intra-slot repetitions in slot n.
  • the first repetition of PUCCH resource 1 is overlapped with the first actual repetition of PUSCH resource 1
  • the second repetition of PUCCH resource 1 is overlapped with the second actual repetition of PUSCH 1. Accordingly, the first and second actual repetitions of PUSCH resource 1 overlapped with PUCCH resource 1 will be dropped, and the first and second repetition of PUCCH resource 1 will be transmitted as shown in FIG. 6.
  • Embodiments of the present application also propose an apparatus for multiplexing uplink resources.
  • FIG. 7 illustrates a block diagram of an apparatus 700 for multiplexing uplink resources according to some embodiments of the present application.
  • the apparatus 700 may include at least one non-transitory computer-readable medium 701, at least one receiving circuitry 702, at least one transmitting circuitry 704, and at least one processor 706 coupled to the non-transitory computer-readable medium 701, the receiving circuitry 702 and the transmitting circuitry 704.
  • the apparatus 700 may be a network side apparatus (e.g., a BS) configured to perform a method illustrated in FIG. 2 and the like, or a remote unit (e.g., a UE) configured to perform a method illustrated in FIG. 2 or the like.
  • the at least one processor 706, transmitting circuitry 704, and receiving circuitry 702 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated.
  • the receiving circuitry 702 and the transmitting circuitry 704 can be combined into a single device, such as a transceiver.
  • the apparatus 700 may further include an input device, a memory, and/or other components.
  • the non-transitory computer-readable medium 701 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the UE as described above.
  • the computer-executable instructions when executed, cause the processor 706 interacting with receiving circuitry 702 and transmitting circuitry 704, so as to perform the steps with respect to the UE depicted in FIG. 2.
  • the non-transitory computer-readable medium 701 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the BS as described above.
  • the computer-executable instructions when executed, cause the processor 706 interacting with receiving circuitry 702 and transmitting circuitry 704, so as to perform the steps with respect to the BS depicted in FIG. 2.
  • the method according to embodiments of the present application can also be implemented on a programmed processor.
  • the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like.
  • any device on which resides a finite state machine capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application.
  • an embodiment of the present application provides an apparatus for multiplexing uplink resources, including a processor and a memory.
  • Computer programmable instructions for implementing a method are stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method.
  • the method may be a method as stated above or other method according to an embodiment of the present application.
  • An alternative embodiment preferably implements the methods according to embodiments of the present application in a non-transitory, computer-readable storage medium storing computer programmable instructions.
  • the instructions are preferably executed by computer-executable components preferably integrated with a network security system.
  • the non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical storage devices (CD or DVD) , hard drives, floppy drives, or any suitable device.
  • the computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device.
  • an embodiment of the present application provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein.
  • the computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present application are related to a method and apparatus for multiplexing uplink resources. According an embodiment of the present application, an exemplary method includes: receiving configuration information on a set of uplink resources, wherein the set of uplink resource includes a first uplink resource, being a first PUCCH resource configured with a number of intra-slot repetitions; for each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, determining a third uplink resource to be transmitted from the first uplink resource and the at least one second uplink resource; and transmitting only the third uplink resource.

Description

[Corrected under Rule 26, 10.11.2020] METHOD AND APPARATUS FOR MULTIPLEXING UPLINK RESOURCES TECHNICAL FIELD
Embodiments of the present application relate to wireless communication technology, especially to a method and an apparatus for multiplexing uplink resources, e.g., multiplexing a physical uplink control channel (PUCCH) resource with other uplink resource (s) .
BACKGROUND OF THE INVENTION
In new radio (NR) R17, it is proposed to identify and specify features to improve reliability and robustness for channels other than physical downlink shared channel (PDSCH) using multiple transmission reception points (TRP) and/or multi-panel, with R16 reliability features. The concerned channels other than PDSCH are: physical downlink control channel (PDCCH) , physical uplink shared channel (PUSCH) , and PUCCH. Apparently, PUCCH enhancement to improve reliability and robustness using multi-TRP and/or multi-panel would be discussed and specified in R17.
Therefore, it is desirable to provide a technical solution to improve multiplexing uplink resources, especially multiplexing a PUCCH resource with other uplink resource (s) to adapt the industry trend.
SUMMARY
One objective of the embodiments of the present application is to multiplex uplink resources, e.g., multiplexing a PUCCH resources with intra-slot repetition with other uplink resource (s) .
An embodiment of the present application provides a method, which includes: receiving configuration information on a set of uplink resources, wherein the set of  uplink resource includes a first uplink resource, being a first PUCCH resource configured with a number of intra-slot repetitions; for each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, determining a third uplink resource to be transmitted from the first uplink resource and the at least one second uplink resource; and transmitting only the third uplink resource.
Another embodiment of the present application provides a method, which includes: transmitting configuration information on a set of uplink resources, wherein the set of uplink resource includes a first uplink resource, being a first PUCCH resource configured with a number of intra-slot repetitions; for each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, determining a third uplink resource to be received from the first uplink resource and the at least one second uplink resource; and receiving only the third uplink resource.
Yet another embodiment of the present application provides an apparatus, including: at least one non-transitory computer-readable medium having stored thereon computer-executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry. The computer-executable instructions cause the at least one processor to implement any method according to an embodiment of the present application with the at least one receiving circuitry and the at least one transmitting circuitry.
Embodiments of the present application can improve reliability and robustness for uplink resources, especially PUCCH resources with intra-slot repetitions, and will facilitate the deployment and implementation of the NR.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which advantages and features of the  present disclosure can be obtained, a description of the present disclosure is rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. These drawings depict only exemplary embodiments of the present disclosure and are not therefore intended to limit the scope of the present disclosure.
FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system according to some embodiments of the present application;
FIG. 2 illustrates a flow chart of a method for multiplexing uplink resources in accordance with some embodiments of the present application;
FIG. 3 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 1 according to some embodiments of the present application;
FIG. 4 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 2 according to some embodiments of the present application;
FIG. 5 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 3 according to some embodiments of the present application;
FIG. 6 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with at least one PUSCH resource according to some embodiments of the present application; and
FIG. 7 illustrates a simplified block diagram of an apparatus for multiplexing uplink resources according to some embodiments of the present application.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of the currently preferred embodiments of the present disclosure and is not intended to represent the only form in which the present disclosure may be practiced.  It is to be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present disclosure.
Reference will now be made in detail to some embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. To facilitate understanding, embodiments are provided under specific network architecture and new service scenarios, such as 3rd generation partnership project (3GPP) 5G, 3GPP long term evolution (LTE) Release 8 and so on. Persons skilled in the art know very well that, with the development of network architecture and new service scenarios, the embodiments in the present disclosure are also applicable to similar technical problems.
FIG. 1 illustrates a schematic diagram of a wireless communication system 100 in accordance with some embodiments of the present application.
As shown in FIG. 1, the wireless communication system 100 includes a UE 102 and a BS 101. Although merely one BS is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present application. Similarly, although merely one UE is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present application.
The BS 101 may also be referred to as an access point, an access terminal, a base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art. The BS 101 is generally part of a radio access network that may include a controller communicably coupled to the BS 101.
The UE 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like. According to an  embodiment of the present application, the UE 102 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network. In some embodiments, the UE 102 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 102 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
The wireless communication system 100 is compatible with any type of network that is capable of sending and receiving wireless communication signals. For example, the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
To improve reliability and robustness of PUCCH, a PUCCH repetition mechanism has been introduced. For example, the inter-slot PUCCH repetition scheme is already supported in R15, wherein only one beam can be used to transmit all repetitions. Meanwhile, PUCCH repetition with one or more beams or multiple TRPs may be supported both in FR1 (a low carrier frequency range) and FR2 (a high carrier frequency range, e.g., from 24.25GHz to 52.6GHz) . In the case of using multi-TRP and/or multi-panel, inter-slot PUCCH repetition with multiple beams can be a very straightforward way based on R15 to enhance the reliability and robustness of PUCCH according to some embodiments of the present application. On the other hand, although intra-slot PUCCH repetition can achieve a lower latency compared with inter-slot PUCCH repetition, no intra-slot PUCCH repetition solution has been proposed yet, especially in the case of using multi-TRP and/or multi-panel, which will be solved in embodiments of the present application.
FIG. 2 illustrates a flow chart of a method for multiplexing uplink resources in accordance with some embodiments of the present application. Although the method is illustrated in a system level by a UE in the remote side and a BS in network side (e.g., the UE 102 and BS 101 as illustrated and shown in FIG. 1) , persons skilled in the art can understand that the method implemented in the remote side and that implemented in the network side can be separately implemented and incorporated by other apparatus with the like functions.
In the exemplary method shown in FIG. 2, in step 202, the network side, e.g., a BS 101 as shown in FIG. 1 may transmit configuration information to the remote side, e.g., a UE 102, e.g., by at least one radio resource control (RRC) signaling and/or downlink control information (DCI) . Correspondingly, in step 212, the remote side may receive the configuration information from the network side. The configuration information may indicate a set of uplink resources. The set of uplink resource includes a first uplink resource, which is a first PUCCH resource (also referred to "PUCCH" in the art) configured with a number of intra-slot repetitions.
The set of uplink resource may only include the first uplink resource in some embodiments of the present application. In some other embodiments of the present application, the set of uplink resource may include other uplink resource (s) besides the first PUCCH resource, and each of the other uplink resource (s) may be a PUCCH resource or a PUSCH resource. More specifically, when an uplink resource is a PUCCH resource, it may be an intra-slot repetition PUCCH resource, inter-slot repetition PUCCH resource, or non-repetition PUCCH resource. When an uplink resource is a PUSCH resource, it may be a PUSCH resource with or without repetition, e.g., being PUSCH repetition type A or PUSCH repetition type B. Different from PUSCH repetition type A, in PUSCH repetition type B, concepts "nominal repetition" and "actual repetition" are introduced so that multiple repetitions within one slot will be identified, which can refer to TS 38.214.
For each intra-slot repetition of the first PUCCH resource, there may be at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain. In some embodiments of the present application, at least one second uplink resource is a set of second PUCCH resource. The remote  side, e.g., the UE does not expect the first PUCCH and any of the set of second uplink resource to start at a same position e.g., a same symbol in the time domain and include a uplink control information (UCI) type with a same priority. Thus, when determining the configuration information on the set of the uplink resource, the network side will ensure that when any of the set of second PUCCH resources includes a same UCI type priority as the first uplink resource, the first uplink resource and the second PUCCH resource (s) with the same UCI type priority are configured to have different starting positions in the time domain.
For each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, a third uplink resource to be transmitted will be determined from the first uplink resource and the at least one second uplink resource in step 214 in the remote side, e.g. by a UE. Only the third uplink resource will be transmitted to the network side in step 216. That is, the remaining uplink resource (s) of at least one second uplink resource overlapped with the first uplink resource and the first uplink resource except the third uplink resource will not be transmitted (or will be dropped) . Please note, herein, for an uplink resource configured with repetition, only the corresponding repetition of the uplink resource overlapped with the corresponding repetition of the intra-slot repetition PUCCH resource is considered whether to be transmitted or dropped. The uplink resource (s) (including corresponding repetition) that does not overlap with the first PUCCH resource or other uplink resource (s) in the set of uplink resource will be transmitted as legacy, which will not be repeated herein.
For example, according to some embodiments of the present application, for each intra-slot repetition of the first uplink resource, when there is a set of second PUCCH resource overlapped with the first PUCCH resource, determining a third uplink resource to be transmitted may include determining whether the first PUCCH resource and any of the set of second PUCCH resource have the same UCI type priority. In the case that the first PUCCH resource and any of the set of second PUCCH resource have different UCI type priorities, an uplink resource with the highest priority within the first PUCCH resource and the set of second PUCCH resource will be determined as the third uplink resource to be transmitted.  According to some embodiments of the present application, a UCI type priority rule is that the UCI type priority of hybrid automatic repeat request-Acknowledgement (HARQ-ACK) is larger than that of scheduling request (SR) , and the UCI type priority of SR is larger than that of channel state information (CSI) . Moreover, the UCI type priority of each CSI can be high or low. That is, the UCI type priority rule is UCI type priority of HARQ-ACK > SR > CSI with higher priority > CSI with lower priority. In the case that the first PUCCH resource and any of the set of second PUCCH resource have the same UCI type priority, an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource will be determined as the third uplink resource to be transmitted.
According to some other embodiments of the present application, in the case that all the set of second PUCCH resource is inter-slot repetition PUCCH resource (s) , the first PUCCH resource will be determined as the third uplink resource to be transmitted.
According to some yet other embodiments of the present application, in the case that all the set of second PUCCH resource is either inter-slot repetition PUCCH resource or non-repetition PUCCH resource, the first PUCCH resource will be determined as the third uplink resource to be transmitted.
According to some yet other embodiments of the present application, in the case that only a part of the set of second PUCCH resource is intra-slot repetition PUCCH resource, whether the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority will determined. That is, other uplink resource (s) not being intra-slot repetition PUCCH resource in the set of second PUCCH resource even will not be considered to be transmitted. When the first PUCCH resource and any of the part of the set of second PUCCH resource have different UCI type priorities, an uplink resource with the highest priority within the first PUCCH resource and the part of the set of second PUCCH resource will be determined as the third uplink resource to be transmitted. When the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority, an uplink resource starting at an earlier position in the time domain  within the first PUCCH resource and the part of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource will be determined as the third uplink resource to be transmitted.
In some embodiments of the present application, when the at least one uplink resource overlapped with the first PUCCH resource is at least one PUSCH resource (also referred to as PUSCH or PUSCH transmission) , the first PUCCH resource will be determined as the third uplink resource to be transmitted. That is, the overlapped at least one PUSCH resource will not be transmitted.
In some embodiments of the present application, the at least one second uplink resource (s) overlapped with the first PUCCH resource may include PUCCH resource (s) and PUSCH resource (s) simultaneously. In this situation, according to some embodiments of the present application, the step for determining the third uplink resource to be transmitted or received will be firstly performed among the first PUCCH resource and the PUCCH resource (s) overlapped with the first PUCCH resource to obtain an intermediate PUCCH resource (referred to as the first determining step) , and then performed between the intermediate PUCCH resource and the PUSCH resource (s) to finally determine the third uplink resource (referred to as the second determining step) . The first determining step can be performed in the same way as that for determining the third uplink resource from a set of second PUCCH resource overlapped with the first PUCCH resource and the first PUCCH resource according to an embodiment of the present application. The second determining step can be performed in the same way as that for determining the third uplink resource from the first PUCCH resource and at least one PUSCH resource overlapped with the first PUCCH resource according to an embodiment of the present application.
Similarly, in the network side, for each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, determining a third uplink resource to be received from the first uplink resource and the at least one second uplink resource in step 204, which is consistent with the remote side and will not be repeated. In step 206, only the third uplink resource is received.
Based on the above basic solutions, more details will be illustrated in various embodiments hereafter. Persons skilled in the art should understand that the first uplink resource (e.g. PUCCH resource etc. ) , second uplink resource and third uplink resource are only for illustrating the solutions of the present application, and should not be limited to specific uplink resource (s) . For example, regarding the first PUCCH resource with intra-slot repetition, there may be two or more PUCCH resources with intra-slot repetition indicated in the configuration information, any PUCCH resource with intra-slot repetition can be regarded as the first PUCCH resource.
As stated above, the uplink resource (s) overlapped with the first PUCCH resource with intra-slot repetition may be at least one of PUCCH resource without repetition, PUCCH resource with intra-slot repetition, PUCCH resource with inter-slot repetition, and PUSCH resource. Various multiplexing schemes (or solutions) in all these overlapped cases would be discussed in the following.
Generally, in any scheme as stated above, the network side will ensure that when any second PUCCH resource overlapped with the first PUCCH resource includes a same UCI type priority as the first uplink resource, the first uplink resource and the second PUCCH resource are configured to have different starting positions in the time domain.
Case 1: a first PUCCH resource with intra-slot repetition overlaps with a set of second PUCCH resource in a slot
Scheme 1 in Case 1: Determining the uplink resource to be transmitted is based on the UCI type priority first and then starting position in the time domain, while not considering the type of the second PUCCH resource.
According to some embodiments of the present application, for each overlapped repetition of the first PUCCH resource, when the first PUCCH resource and any of the set of second PUCCH resources do not include a UCI with the same priority, the uplink resource with the highest priority within the first PUCCH resource and the set of second PUCCH resource will be transmitted. The remaining uplink resource (s) including a UCI with lower priority (s) will be dropped, i.e., not to be  transmitted. On the other hand, for each overlapped repetition of the first PUCCH resource, when the first PUCCH resource and any of the set of second PUCCH resources include a UCI with the same priority, the uplink resource starting at an earlier position, e.g., the earlier starting symbol in the time domain within the first PUCCH resource and any of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource will be transmitted. The remaining uplink resource (s) starting at later position (s) will be dropped, i.e., not to be transmitted.
FIG. 3 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 1 according to some embodiments of the present application.
Referring to FIG. 3, there are two PUCCH resources, e.g., PUCCH resource 1 and PUCCH resource 2 configured with intra-slot repetition in slot n. Besides, there is another PUCCH resource, e.g., PUCCH resource 3 not configured with repetition in slot n. UCI 1-3 with priority 1-3 are carried in PUCCH resource 1-3 respectively, wherein the order of the three UCI type priorities is priority 1>priority 2 >priority 3. As shown in FIG. 3, regarding PUCCH resource 1, the first repetition of PUCCH resource 1 is overlapped with the first repetition of PUCCH resource 2 and PUCCH resource 3; and the second repetition of PUCCH resource 1 is overlapped with PUCCH resource 3. Regarding PUCCH resource 2, the first repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 1 and PUCCH resource 3, and the second repetition of PUCCH resource 2 is overlapped with PUCCH resource 3.
According to Scheme 1, for each repetition of PUCCH resource 1, since UCI 1 in PUCCH resource 1 has the highest priority compared with PUCCH resource 2 and PUCCH resource 3, the two repetitions of PUCCH resource 1 will be transmitted while the first repetition of PUCCH resource 2 and PUCCH resource 3 will be dropped. For the second repetition of PUCCH resource 2, since UCI 2 in PUCCH resource 2 has a higher priority than PUCCH resource 3, the second prepetition of PUCCH resource 2 will be transmitted while PUCCH resource 3 will be dropped (only for illustrating the principle of Scheme 1, which actually has been determined not to be transmitted due to overlapping with PUCCH resource 1) .
Based on Scheme 1, the type of the second PUCCH resource overlapped with the first PUCCH resource configured with intra-slot repetition may also be considered in some exemplary schemes of the present application e.g., Scheme 2 and Scheme 3 illustrated in the following.
For example, according to some embodiments of the present application, in the case that all the set of second PUCCH resource is inter-slot repetition PUCCH resource, the method includes determining the first PUCCH resource as the third uplink resource to be transmitted. According to some other embodiments of the present application, in the case that all the set of second PUCCH resource is either inter-slot repetition PUCCH resource or non-repetition PUCCH resource, the method includes determining the first PUCCH resource as the third uplink resource to be transmitted. According to some yet other embodiments of the present application, when only a part of the set of second PUCCH resource is intra-slot repetition PUCCH resource, the method includes determining whether the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority. Accordingly, in the case that the first PUCCH resource and any of the part of the set of second PUCCH resource have different UCI type priorities, the method includes determining an uplink resource with the highest priority within the first PUCCH resource and the part of the set of second PUCCH resource as the third uplink resource to be transmitted. In the case that the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority, the method includes determining an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and the part of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource as the third uplink resource to be transmitted.
Scheme 2: Firstly, all the PUCCH resources with inter-slot repetition in the set of second PUCCH resource will not be transmitted. When all the PUCCH resources in the set of second PUCCH resource are PUCCH resources with inter-slot repetition, the first PUCCH resource will be transmitted. When the set of second PUCCH resource still includes other PUCCH resource (s) excluding the PUCCH resource (s) with inter-slot repetition, a further determining scheme similar to Scheme 1 will be performed on the first PUCCH resource and the remaining second PUCCH  resources in the set of second PUCCH resource excluding all the PUCCH resource (s) with inter-slot repetition.
For example, according to some embodiments of the present application, for each overlapped repetition of the first PUCCH resource, when the first PUCCH resource and any of the remaining second PUCCH resources do not include a UCI with the same priority, the uplink resource with the highest priority within the first PUCCH resource and the remaining second PUCCH resource will be transmitted. On the other hand, for each overlapped repetition of the first PUCCH resource, when the first PUCCH resource and any of the remaining second PUCCH resources include a UCI with the same priority, the uplink resource starting at an earlier position, e.g., the earliest starting symbol in the time domain within the first PUCCH resource and any of the set of second PUCCH resource with the same UCI type priority will be transmitted.
FIG. 4 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 2 according to some embodiments of the present application.
Referring to FIG. 4, there are two PUCCH resources, e.g., PUCCH resource 1 and PUCCH resource 2 configured with intra-slot repetition in slot n. Besides, there is another PUCCH resource, e.g., PUCCH resource 3 configured with inter-slot repetition, wherein the first repetition of PUCCH resource 3 is in slot n and the second repetition of PUCCH resource 3 is in slot n+1. UCI 1-3 with priority 3-1 are carried in PUCCH resource 1-3 respectively, wherein the order of the three UCI type priority is priority 1>priority 2 > priority 3. As shown in FIG. 4, regarding PUCCH resource 1, the first repetition of PUCCH resource 1 is overlapped with the first repetition of PUCCH resource 2 and PUCCH resource 3, and the second repetition of PUCCH resource 1 is overlapped with the first repetition of PUCCH resource 3. Regarding PUCCH resource 2, the first repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 1 and PUCCH resource 3, and the second repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 3.
According to Scheme 2, for the first repetition of PUCCH resource 1, the  first repetition of PUCCH resource 3 will be dropped due to being a PUCCH resource with inter-slot repetition. Then, a further determining scheme similar to Scheme 1 will be applied to PUCCH resource 1 and PUCCH resource 2. Since UCI 2 in PUCCH resource 2 has a higher priority than UCI 1 in PUCCH resource 1, the first repetition of PUCCH resource 2 will be transmitted while PUCCH resource 1 will be dropped. For the second repetition of PUCCH resource 1, since the first repetition of PUCCH resource 3 has been excluded and there is no other overlapped PUCCH resource, the second repetition of PUCCH resource 1 will be transmitted. Similarly, for the second repetition of PUCCH resource 2, since the first repetition of PUCCH resource 3 has been excluded and there is no other overlapped PUCCH resource, the second repetition of PUCCH resource 2 will be transmitted.
Scheme 3: Firstly, all the PUCCH resources with inter-slot repetition or without repetition in the set of second PUCCH resource will not be transmitted. When all the PUCCH resources in the second PUCCH resource are PUCCH resources with inter-slot repetition or without repetition, the first PUCCH resource will be transmitted. When the set of second PUCCH resource still includes other PUCCH resource (s) excluding the PUCCH resource (s) with inter-slot repetition or without repetition, a further determining scheme similar to Scheme 1 will be performed on the first PUCCH resource and the remaining second PUCCH resources in the set of second PUCCH resource excluding all the PUCCH resource (s) with inter-slot repetition or without repetition.
For example, according to some embodiments of the present application, for each overlapped repetition of the first PUCCH resource, when the first PUCCH resource and any of the remaining second PUCCH resources do not include a UCI with the same priority, the uplink resource with the highest priority within the first PUCCH resource and the remaining second PUCCH resource will be transmitted. On the other hand, for each overlapped repetition of the first PUCCH resource, when the first PUCCH resource and any of the remaining second PUCCH resources include a UCI with the same priority, the uplink resource starting at an earlier position, e.g., the earlier starting symbol in the time domain within the first PUCCH resource and the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource will be transmitted.
FIG. 5 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with other PUCCH resources by Scheme 3 according to some embodiments of the present application.
Referring to FIG. 5, PUCCH resource 1 is configured without repetition in slot n, PUCCH resource 2 is configured with intra-slot repetition in slot n, and PUCCH resource 3 is configured with inter-slot repetition, wherein the first repetition of PUCCH resource 3 is in slot n and the second repetition of PUCCH resource 3 is in slot n+1. UCI 1-3 with priority 3-1 are carried in PUCCH resource 1-3 respectively, wherein the order of the three UCI type priority is that priority 1 > priority 2 > priority 3. As shown in FIG. 5, regarding PUCCH resource 2 configured with intra-slot repetition, the first repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 3 and PUCCH resource 1, and the second repetition of PUCCH resource 2 is overlapped with the first repetition of PUCCH resource 3.
According to Scheme 3, for the first repetition of PUCCH resource 2, PUCCH resource 1 and the first repetition of PUCCH resource 3 in slot n will be dropped. Since there is only PUCCH resource 2 excluding PUCCH resource 1 and PUCCH resource 3 in slot n, the first repetition of PUCCH resource 2 will be transmitted. Similarly, the second repetition of PUCCH resource 2 will also be transmitted.
Case 2: a first PUCCH resource with intra-slot repetition overlaps with at least one PUSCH resource in a slot.
According to some embodiments of the present application, for a repetition of the first PUCCH resource, when a first PUCCH resource with intra-slot repetition overlaps with at least one PUSCH resource in a slot, the first PUCCH resource will be transmitted while the overlapped PUSCH resource will not be transmitted in the slot.
For example, for a repetition of the first PUCCH resource, a PUSCH resource overlapped with the first PUCCH resource in a slot may be a PUSCH repetition Type A with repetition number not smaller than 1 (when the PUSCH repetition number is 1, the PUSCH transmission is actually not repeated) . In this case, for any overlapped repetition of the first PUCCH resource, the PUCCH resource  will be transmitted, while the overlapped repetition of the PUSCH resource will not be transmitted.
In another example, for a repetition of the first PUCCH resource, a PUSCH resource overlapped with the first PUCCH resource in a slot be a PUSCH repetition Type B with actual repetition number not smaller than 1 (when the PUSCH repetition number is 1, the PUSCH transmission is actually not repeated) . In this case, all the overlapped intra-slot repetitions of the first PUCCH resource are transmitted and all overlapped actual repetitions of the PUSCH are not transmitted in the slot.
FIG. 6 illustrates an exemplary diagram of a PUCCH resource with intra-slot repetition multiplexing with at least one PUSCH according to some embodiments of the present application.
Referring to FIG. 6, there is a PUSCH resource configured with repetition Type B e.g., PUSCH 1, which has two nominal repetitions, e.g., nominal repetition 0 and nominal repetition 1 and three actual repetitions in slot n and slot n+1. Besides, there is a PUCCH resource, e.g., PUCCH resource 1 configured with 2 intra-slot repetitions in slot n. As shown in FIG. 6, the first repetition of PUCCH resource 1 is overlapped with the first actual repetition of PUSCH resource 1, and the second repetition of PUCCH resource 1 is overlapped with the second actual repetition of PUSCH 1. Accordingly, the first and second actual repetitions of PUSCH resource 1 overlapped with PUCCH resource 1 will be dropped, and the first and second repetition of PUCCH resource 1 will be transmitted as shown in FIG. 6.
Embodiments of the present application also propose an apparatus for multiplexing uplink resources. For example, FIG. 7 illustrates a block diagram of an apparatus 700 for multiplexing uplink resources according to some embodiments of the present application.
As shown in FIG. 7, the apparatus 700 may include at least one non-transitory computer-readable medium 701, at least one receiving circuitry 702, at least one transmitting circuitry 704, and at least one processor 706 coupled to the non-transitory computer-readable medium 701, the receiving circuitry 702 and the transmitting circuitry 704. The apparatus 700 may be a network side apparatus (e.g.,  a BS) configured to perform a method illustrated in FIG. 2 and the like, or a remote unit (e.g., a UE) configured to perform a method illustrated in FIG. 2 or the like.
Although in this figure, elements such as the at least one processor 706, transmitting circuitry 704, and receiving circuitry 702 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated. In some embodiments of the present application, the receiving circuitry 702 and the transmitting circuitry 704 can be combined into a single device, such as a transceiver. In certain embodiments of the present application, the apparatus 700 may further include an input device, a memory, and/or other components.
For example, in some embodiments of the present application, the non-transitory computer-readable medium 701 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the UE as described above. For example, the computer-executable instructions, when executed, cause the processor 706 interacting with receiving circuitry 702 and transmitting circuitry 704, so as to perform the steps with respect to the UE depicted in FIG. 2.
In some embodiments of the present application, the non-transitory computer-readable medium 701 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the BS as described above. For example, the computer-executable instructions, when executed, cause the processor 706 interacting with receiving circuitry 702 and transmitting circuitry 704, so as to perform the steps with respect to the BS depicted in FIG. 2.
The method according to embodiments of the present application can also be implemented on a programmed processor. However, the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like. In general, any device on which resides a finite state machine capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application. For example, an embodiment of the present application provides an apparatus for  multiplexing uplink resources, including a processor and a memory. Computer programmable instructions for implementing a method are stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method. The method may be a method as stated above or other method according to an embodiment of the present application.
An alternative embodiment preferably implements the methods according to embodiments of the present application in a non-transitory, computer-readable storage medium storing computer programmable instructions. The instructions are preferably executed by computer-executable components preferably integrated with a network security system. The non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical storage devices (CD or DVD) , hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device. For example, an embodiment of the present application provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein. The computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present application.
In addition, in this disclosure, relational terms such as "first, " "second, " and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms "comprises, " "comprising, " or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a, " "an, " or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element. Also, the term "another" is defined as at least a second or more. The terms "including, " "having, " and the like, as used herein, are defined as "comprising. "

Claims (15)

  1. A method, comprising:
    receiving configuration information on a set of uplink resources, wherein the set of uplink resource includes a first uplink resource, being a first physical uplink control channel (PUCCH) resource configured with a number of intra-slot repetitions;
    for each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, determining a third uplink resource to be transmitted from the first uplink resource and the at least one second uplink resource; and
    transmitting only the third uplink resource.
  2. The method of claim 1, wherein the at least one second uplink resource is a set of second PUCCH resource, and when any of the set of second PUCCH resources includes a same uplink control information (UCI) type priority as the first uplink resource, the first uplink resource and the any of the set of second PUCCH resource are configured to have different starting positions in the time domain.
  3. The method of claim 2, wherein determining a third uplink resource to be transmitted from the first uplink resource and the at least one second uplink resource comprises:
    determining whether the first PUCCH resource and any of the set of second PUCCH resource have the same UCI type priority; and
    in the case that the first PUCCH resource and any of the set of second PUCCH resource have different UCI type priorities, determining an uplink resource with the highest priority within the first PUCCH resource and the set of second PUCCH resource as the third uplink resource to be transmitted; or
    in the case that the first PUCCH resource and any of the set of second PUCCH resource have the same UCI type priority, determining an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and any of the  set of second PUCCH resource with the same UCI type priority of the first PUCCH resource as the third uplink resource to be transmitted.
  4. The method of claim 2, wherein in the case that all the set of second PUCCH resource is inter-slot repetition PUCCH resource, the method comprises:
    determining the first PUCCH resource as the third uplink resource to be transmitted.
  5. The method of claim 2, wherein in the case that all the set of second PUCCH resource is either inter-slot repetition PUCCH resource or non-repetition PUCCH resource, the method comprises:
    determining the first PUCCH resource as the third uplink resource to be transmitted.
  6. The method of claim 2, wherein in the case that only a part of the set of second PUCCH resource is intra-slot repetition PUCCH resource, the method comprises:
    determining whether the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority; and
    in the case that the first PUCCH resource and any of the part of the set of second PUCCH resource have different UCI type priorities, determining an uplink resource with the highest priority within the first PUCCH resource and the part of the set of second PUCCH resource as the third uplink resource to be transmitted; or
    in the case that the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority, determining an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and any of the part of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource as the third uplink resource to be transmitted.
  7. The method of claim 1, comprising: in the case that the at least one uplink resource is at least one physical uplink shared control channel (PUSCH) resource, determining the first PUCCH resource as the third uplink resource to be transmitted.
  8. A method, comprising:
    transmitting configuration information on a set of uplink resources, wherein the set of uplink resource includes a first uplink resource, being a first physical uplink control channel (PUCCH) resource configured with a number of intra-slot repetitions;
    for each intra-slot repetition of the first uplink resource, when there is at least one second uplink resource of the set of uplink resource overlapped with the first uplink resource in time domain, determining a third uplink resource to be received from the first uplink resource and the at least one second uplink resource; and
    receiving only the third uplink resource.
  9. The method of claim 8, wherein the at least one second uplink resource is a set of second PUCCH resource, and when any of the set of second PUCCH resources includes a same uplink control information (UCI) type priority as the first PUCCH resource, the first PUCCH resource and the any of the set of second PUCCH resource are configured to have different starting positions in the time domain.
  10. The method of claim 9, wherein determining a third uplink resource to be received from the first uplink resource and the at least one second uplink resource comprises:
    determining whether the first PUCCH resource and any of the set of second PUCCH resource have the same UCI type priority; and
    in the case that the first PUCCH resource and any of the set of second PUCCH resource have different UCI type priorities, determining an uplink resource with the  highest priority within the first PUCCH resource and the set of second PUCCH resource as the third uplink resource to be received; or
    in the case that the first PUCCH resource and any of the set of second PUCCH resource have the same UCI type priority, determining an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and any of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource as the third uplink resource to be received.
  11. The method of claim 9, wherein in the case that all the set of second PUCCH resource is inter-slot repetition PUCCH resource, the method comprises:
    determining the first PUCCH resource as the third uplink resource to be received.
  12. The method of claim 9, wherein in the case that all the set of second PUCCH resource is either inter-slot repetition PUCCH resource or non-repetition PUCCH resource, the method comprises:
    determining the first PUCCH resource as the third uplink resource to be received.
  13. The method of claim 9, wherein in the case that only a part of the set of second PUCCH resource is intra-slot repetition PUCCH resource, the method comprises:
    determining whether the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority; and
    in the case that the first PUCCH resource and any of the part of the set of second PUCCH resource have different UCI type priorities, determining an uplink resource with the highest priority within the first PUCCH resource and the part of the set of second PUCCH resource as the third uplink resource to be received; or
    in the case that the first PUCCH resource and any of the part of the set of second PUCCH resource have the same UCI type priority, determining an uplink resource starting at an earlier position in the time domain within the first PUCCH resource and any of the part of the set of second PUCCH resource with the same UCI type priority of the first PUCCH resource as the third uplink resource to be received.
  14. The method of claim 8, comprising: in the case that the at least one uplink resource is at least one physical uplink shared control channel (PUSCH) resource, determining the first PUCCH resource as the third uplink resource to be received.
  15. An apparatus, comprising:
    at least one non-transitory computer-readable medium having stored thereon computer-executable instructions;
    at least one receiving circuitry;
    at least one transmitting circuitry; and
    at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry,
    wherein the computer-executable instructions cause the at least one processor to implement the method of any of Claims 1-14 with the at least one receiving circuitry and the at least one transmitting circuitry.
PCT/CN2020/117103 2020-09-23 2020-09-23 Method and apparatus for multiplexing uplink resources WO2022061578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117103 WO2022061578A1 (en) 2020-09-23 2020-09-23 Method and apparatus for multiplexing uplink resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117103 WO2022061578A1 (en) 2020-09-23 2020-09-23 Method and apparatus for multiplexing uplink resources

Publications (1)

Publication Number Publication Date
WO2022061578A1 true WO2022061578A1 (en) 2022-03-31

Family

ID=80844521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117103 WO2022061578A1 (en) 2020-09-23 2020-09-23 Method and apparatus for multiplexing uplink resources

Country Status (1)

Country Link
WO (1) WO2022061578A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019143982A1 (en) * 2018-01-19 2019-07-25 Qualcomm Incorporated Uci transmission for overlapping uplink resource assignments with repetition
US20200221448A1 (en) * 2019-01-07 2020-07-09 Kt Corporation Method and apparatus for transmitting and receiving uplink control information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019143982A1 (en) * 2018-01-19 2019-07-25 Qualcomm Incorporated Uci transmission for overlapping uplink resource assignments with repetition
US20200221448A1 (en) * 2019-01-07 2020-07-09 Kt Corporation Method and apparatus for transmitting and receiving uplink control information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues on PUCCH structure in long-duration", 3GPP DRAFT; R1-1801340, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051397504 *
HUAWEI, HISILICON: "Review Summary for Al 7.1.3.2 related to long PUCCH", 3GPP DRAFT; R1-1811918 REVIEW SUMMARY FOR AL 7.1.3.2 LONG PUCCH - V4.0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20180908 - 20180912, 9 October 2018 (2018-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051519242 *
ZTE: "Remaining issues on PUSCH enhancements for NR URLLC", 3GPP DRAFT; R1-2001613, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200424, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875202 *

Similar Documents

Publication Publication Date Title
US20220304059A1 (en) Method and Apparatus for Sharing Channel Occupancy Time on Unlicensed Spectrum
US20240178974A1 (en) Method and apparatus for fallback operation for semi-static harq-ack codebook determination
EP3738245B1 (en) Method and apparatus for determining a harq-ack codebook for carrier aggregation
US20220416870A1 (en) Method and Apparatus for Transmitting SCell Beam Failure Recovery Requests
US12009934B2 (en) Method and apparatus for transmitting HARQ-ACK feedback on unlicensed spectrum
WO2022061578A1 (en) Method and apparatus for multiplexing uplink resources
US20220256578A1 (en) Method and Apparatus for Overhead Reduction for Configured Grant Based Uplink Transmission
WO2024087630A1 (en) Method and apparatus of supporting uplink transmissions
WO2023056605A1 (en) Method and apparatus for beam determination
WO2022261930A1 (en) Method and apparatus for beam determination
WO2024065170A1 (en) Method and apparatus of radio resource determination
WO2024082338A1 (en) Method and apparatus of supporting physical uplink control channel (pucch) repetition
WO2022205302A1 (en) Method and apparatus for pusch transmission with repetitions
WO2023010413A1 (en) Methods and apparatuses for physical uplink control channel transmission
WO2023283876A1 (en) Method and apparatus for uplink transmission
WO2023150911A1 (en) Methods and apparatuses for sidelink transmission on unlicensed spectrum
US20240063880A1 (en) Method and apparatus for uplink transmission
WO2023201464A1 (en) Methods and apparatuses for resource selection for sidelink transmission
WO2023150969A1 (en) Method and apparatus of beam indication
WO2022082563A1 (en) Method and apparatus for pucch transmission with repetitions
WO2022165734A1 (en) Methods and apparatuses for a pre-emption check procedure for a sidelink transmission
WO2023206252A1 (en) Methods and apparatuses for determining virtual phr
WO2023133807A1 (en) Methods and apparatuses for resource re-evaluation and pre-emption for sidelink ca
WO2023159354A1 (en) Method and apparatus of determining resources
US20230412240A1 (en) Method and apparatus for beam failure recovery in multi-dci based multiple trps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20954432

Country of ref document: EP

Kind code of ref document: A1