WO2024087630A1 - Method and apparatus of supporting uplink transmissions - Google Patents

Method and apparatus of supporting uplink transmissions Download PDF

Info

Publication number
WO2024087630A1
WO2024087630A1 PCT/CN2023/098005 CN2023098005W WO2024087630A1 WO 2024087630 A1 WO2024087630 A1 WO 2024087630A1 CN 2023098005 W CN2023098005 W CN 2023098005W WO 2024087630 A1 WO2024087630 A1 WO 2024087630A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
relation information
tag
tci state
spatial relation
Prior art date
Application number
PCT/CN2023/098005
Other languages
French (fr)
Inventor
Wei Ling
Chenxi Zhu
Bingchao LIU
Yi Zhang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2023/098005 priority Critical patent/WO2024087630A1/en
Publication of WO2024087630A1 publication Critical patent/WO2024087630A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • Embodiments of the present application relate to wireless communications, more specifically, to techniques of supporting uplink (UL) transmissions.
  • UL uplink
  • a wireless communication system may include one or multiple network communication devices, such as base stations, which may be otherwise known as an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology.
  • Each network communication devices such as a base station (BS) may support wireless communications for one or multiple user communication devices, which may be otherwise known as user equipment (UE) , or other suitable terminology.
  • the wireless communications system may support wireless communications with one or multiple user communication devices by utilizing resources of the wireless communication system (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) .
  • the wireless communications system may support wireless communications across various radio access technologies including third generation (3G) radio access technology, fourth generation (4G) radio access technology, fifth generation (5G) radio access technology, among other suitable radio access technologies beyond 5G (e.g., sixth generation (6G) ) .
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • 6G sixth generation
  • a UL transmission is associated with a timing advance (TA) group (TAG) of two TAGs according to the associated transmission configuration indication (TCI) state, and the TA value (or TA) of the UL transmission is determined according to the associated TAG.
  • TA timing advance
  • TAG transmission configuration indication
  • TCI transmission configuration indication
  • An objective of the embodiments of the present application is to provide a technical solution of supporting uplink transmissions, e.g., a method and apparatus of supporting uplink transmissions, even if the uplink transmission is not associated with a TCI state or spatial relation information.
  • a wireless communication apparatus e.g., a UE or the like, which includes: a transceiver; and a processor coupled to the transceiver, wherein the processor is configured to: receive information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and transmit an uplink transmission which is associated with neither a TCI state nor spatial relation information with a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
  • Some other embodiments of the present application provide a wireless communication method, e.g., a method performed by a UE or the like, which includes: receiving information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and transmitting an uplink transmission which is associated with neither a TCI state nor spatial relation information with a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
  • a radio access network (RAN) node which includes: a transceiver; and a processor coupled to the transceiver, wherein the processor is configured to: transmit information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and receive an uplink transmission which is associated with neither a TCI state nor spatial relation information and is transmitted according to a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
  • RAN radio access network
  • the two or more failure detection RS sets and two or more candidate RS sets are one to one associated, and the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission associated with a failure detection RS set of the two or more failure detection RS sets whose spatial domain filter is changed by a spatial domain filter associated with a RS from a candidate RS set associated with the failure detection RS set from a spatial domain filter associated with a TCI state or a spatial relation information;
  • the processor is configured to: determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with the TCI state or the spatial relation information of the uplink transmission before changing the spatial domain filter; and determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  • the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission associated with the failure detection RS set whose spatial domain filter is changed by a spatial domain filter associated with a RS from the candidate RS set from a spatial domain filter associated with a TCI state or a spatial relation information;
  • the processor is configured to: determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a default TAG of the plurality of TAGs; and determine the TA value of an uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  • the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission whose spatial domain filter is same as that for a PUSCH transmission scheduled by a RAR uplink grant during an initial access procedure or during a random access procedure
  • the processor is configured to: determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with the initial access procedure or random access procedure of the plurality of TAGs or as a default TAG of the plurality of TAGs; and determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  • the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission whose spatial domain filter is same as that for a PUSCH transmission scheduled by a RAR uplink grant during an initial access procedure or during a random access procedure; and the processor is configured to: determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value indicated in the RAR.
  • the random access procedure is initiated by a reconfiguration with sync procedure.
  • the uplink transmission which is associated with neither a TCI state nor spatial relation information is a non-codebook SRS resource set
  • the processor is configured to: determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with a channel state information (CSI) -reference signal (RS) (CSI-RS) associated with the SRS resource set; and determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  • CSI channel state information
  • CSI-RS channel state information RS
  • the default TAG is a TAG with a lowest index or a highest index of the plurality of TAGs or is a TAG configured by radio resource control (RRC) .
  • RRC radio resource control
  • embodiments of the present application can determine the TA for an uplink transmission which is unassociated with TCI state and spatial relation information, and thus can support uplink transmissions in various scenarios, e.g., in scenarios of multiple transmit-receive points (TRPs) (multi-TRP or M-TRP) when multiple TAGs are configured, and thus can facilitate the implementation and application of NR.
  • TRPs transmit-receive points
  • M-TRP M-TRP
  • FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system in accordance with aspects of the present application.
  • FIG. 2 illustrates a flow chart of a method of supporting uplink transmissions in accordance with aspects of the present application.
  • FIG. 3 illustrates a block diagram of an apparatus of supporting uplink transmissions in accordance with aspects of the present application.
  • FIG. 4 illustrates a block diagram of an apparatus of supporting uplink transmissions in accordance with aspects of the present application.
  • two TAGs can be configured for a serving cell in some scenarios, e.g., in scenarios of multi-downlink control information (DCI) based M-TRP, wherein each uplink TCI state is associated with one TAG identifier (ID) .
  • DCI multi-downlink control information
  • ID TAG identifier
  • the TA of an uplink transmission associated with a TCI state or spatial relation information will be determined according to a TAG of the associated TCI state or spatial relation information.
  • an uplink transmission is not always associated with a TCI state or spatial relation information.
  • the beam of an uplink transmission will be reset as a new beam.
  • a beam it may be represented by a RS, e.g., CSI-RS or SSB, or spatial relationship filter, TCI state or quasi co-location (QCL) properties of demodulation reference signal (DMRS) port etc.
  • the reset new beam is SS/PBCH block (SSB) or CSI-RS configured in a candidate RS set as specified in TS38.213, the uplink transmission after BFRQ will be unassociated with a TCI state and spatial relation information.
  • the beam of UL transmissions is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the associated initial access procedure.
  • the beam of the PUSCH transmission scheduled by the RAR UL grant is neither a TCI state nor spatial relation information.
  • the beam of uplink transmissions is the same as that for a PUSCH transmission scheduled by a RAR UL grant during a random access procedure initiated by the reconfiguration with sync procedure.
  • the beam of the PUSCH transmission scheduled by the RAR UL grant is neither a TCI state nor spatial relation information.
  • the uplink transmission is not associated with a TCI state or spatial relation information
  • multiple (e.g., two) TAGs are configured for the UE, how to determine the TA of the uplink transmission should be solved.
  • embodiments of the present application provide a technical solution of supporting uplink transmissions, e.g., a method and apparatus of supporting uplink transmissions. More specifically, embodiments of the present application propose how to determine a TA value for an uplink transmission which is not associated with a TCI state or spatial information in the cases of two or more TAGs are configured for a serving cell.
  • An exemplary TCI state is a joint TCI state or UL TCI state based on unified beam framework.
  • the TA value of the uplink transmission which is not associated with a TCI state or spatial information will be determined according to the TAG of the uplink transmission before resetting beam due to BFRQ.
  • the TA value of the uplink transmission will be determined according to a default TAG.
  • An exemplary default TAG is the TAG with the lowest (or lower) index of the TAGs configured in the serving cell, or the TAG with the highest (or higher) index of the TAGs configured in the serving cell, or the TAG configured by RRC of the TAGs configured in the serving cell.
  • the TA value of the uplink transmission which is not associated with a TCI state or spatial information will be determined according to a default TAG.
  • an exemplary default TAG is the TAG with the lowest (or lower) index of the TAGs configured in the serving cell, or the TAG the highest (or higher) index of the TAGs configured in the serving cell, or the TAG configured by RRC of the TAGs configured in the serving cell.
  • the TA value of the uplink transmission which is not associated with a TCI state or spatial information will be determined according to a TAG associated with the corresponding random access procedure (e.g., an initial access procedure in Cases 2 or a random access procedure initiated by the reconfiguration with sync procedure in Cases 3) .
  • the TA value of the uplink transmission which is not associated with a TCI state or spatial information will be determined according to a TA command (or TA value) in the RAR of the corresponding random access procedure (e.g., an initial access procedure in Cases 2 or a random access procedure initiated by the reconfiguration with sync procedure in Cases 3) .
  • embodiments of the present application solve TA determination for an uplink transmission which is not associated with a TCI state or spatial information, and thus can support uplink transmission in various scenarios newly proposed for 3GPP, e.g., in scenarios of M-DCI based M-TRP and 2 TAGs are configured, which contributes to the evolution of 3GPP.
  • FIG. 1 illustrates a schematic diagram of an exemplary wireless communication system 100 in accordance with aspects of the present application.
  • the wireless communication system 100 includes a UE 103 and a BS 101. Although merely one BS is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present application. Similarly, although merely one UE is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present application.
  • the wireless communication system 100 is compatible with any type of network that is capable of sending and receiving wireless communication signals.
  • the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • the BS 101 may also be referred to as an access point, an access terminal, a base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art.
  • the BS 101 is generally part of a radio access network that may include a controller communicably coupled to the BS 101.
  • a BS 101 may be configured with one TRP (or panel) , i.e., in a single-TRP scenario or more TRPs (or panels) , i.e., a multi-TRP scenario. That is, one or more TRPs are associated with the BS 101.
  • a TRP can act like a small BS, and can be represented by a CORESETPoolIndex value or the like.
  • Two TRPs can have the same cell ID (identity or index) or different cell IDs.
  • Two TRPs can communicate with each other by a backhaul link.
  • Such a backhaul link may be an ideal backhaul link or a non-ideal backhaul link.
  • Latency of the ideal backhaul link may be deemed as zero, and latency of the non-ideal backhaul link may be tens of milliseconds and much larger, e.g. on the order of tens of milliseconds, than that of the ideal backhaul link.
  • the UE 103 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like.
  • the UE 103 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • the UE 103 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 103 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • TA determination of an uplink transmission which is not associated with a TCI state or spatial relation information needs to be solved to support uplink transmissions in various scenarios newly proposed for 3GPP, e.g., in scenarios of M-DCI based M-TRP when multiple TAGs are configured (e.g., two CORESETPoolIndex values and two TAGs are configured in a serving cell) .
  • FIG. 2 illustrates a flow chart of a method of supporting uplink transmissions in accordance with aspects of the present application.
  • a wireless communication apparatus in a remote side e.g., UE and a wireless communication apparatus in a network side (or RAN side) , e.g., a RAN node (e.g., a gNB etc. )
  • a network side e.g., a RAN node (e.g., a gNB etc. )
  • a RAN node e.g., a gNB etc.
  • no transmission or reception failure is considered in the illustrated embodiments of the present application.
  • the network side e.g., a gNB will configure a plurality of TAGs for uplink transmissions which are associated with TCI states or spatial relation information in a serving cell.
  • the gNB will transmit information indicating the configured plurality of TAGs.
  • the gNB will configure two or more TAGs.
  • the uplink transmission will be associated with a TAG of the two or more TAGs via the TCI state or spatial relation information.
  • the remote side e.g., a UE will receive the information indicating the plurality of TAGs for uplink transmissions which are associated with TCI states or spatial relation information in step 202.
  • the UE will transmit the uplink transmissions which are associated with TCI states or spatial relation information with a TA value of a TAG of the plurality of TAGs, which is determined according to the associated TCI state or spatial relation information as legacy and will not be further illustrated herein.
  • the UE For an uplink transmission which is not associated with TCI states or spatial relation information (neither associated with a TCI state nor associated with spatial relation information) , the UE will determine a TA value of a TAG of the plurality of TAGs based on a predefined rule (e.g., predefined in 3GPP specification) or a signaling (e.g., via RRC signaling or the like) , which will be used as the TA value of the uplink transmission which is unassociated with a TCI state or spatial relation information. In step 204, the UE will transmit the uplink transmission which is associated with neither a TCI state nor spatial relation information with the determined TA value.
  • a predefined rule e.g., predefined in 3GPP specification
  • a signaling e.g., via RRC signaling or the like
  • the gNB will receive the uplink transmission, which is associated with neither a TCI state nor spatial relation information and is transmitted with the TA value of a TAG of the plurality of TAGs determined based on the predefined rule or the signaling.
  • the predefined rule or signaling can be various according to embodiments of the present application. More detailed embodiments will be illustrated in the following considering the exemplary cases stated above. These illustrated embodiments may also be applied to other cases according to some other embodiments of the present application, and should be unduly limited to the specific cases or scenarios.
  • TRP-specific BFRQ there are multiple failure detection RS sets and multiple candidate RS sets configured in a serving cell, and the multiple failure detection RS set and candidate RS sets are one to one associated.
  • the multiple failure detection RS set and candidate RS sets are one to one associated.
  • there are two failure detection RS sets e.g., the first and second failure detection RS sets
  • two candidate RS sets e.g., the first and second candidate RS sets
  • the first failure detection RS set is associated with the first candidate RS set
  • the second failure detection RS set is associated with the second candidate RS set.
  • an uplink transmission associated with the failure detection RS set whose beam (e.g., spatial domain filter) is associated with a TCI state or spatial relation information will be set (reset, or changed etc. ) , e.g., by a beam associated with a RS from a candidate RS set associated with the failure detection RS set. Accordingly, the uplink transmission with the reset beam will not be associated with a TCI state or spatial relation information anymore.
  • beam e.g., spatial domain filter
  • the beam of an uplink transmission associated with the failure detection RS set will be reset.
  • the reset beam will be a new beam associated with a RS from the candidate RS set associated with the failure detection RS set.
  • the TAG of the uplink transmission with the reset beam associated with a RS from the candidate RS set will be the same as the original (no change) . That is, the TAG of the uplink transmission associated with a TCI state or spatial relation information before resetting beam will be determined as the TAG for the uplink transmission with the reset beam. Then, the TA value of the uplink transmission with the reset beam will be determined according to the determined TAG. The UE will transmit the uplink transmission with the reset beam according to the TA value of the determined TAG.
  • failure detection RS set there is only one failure detection RS set and only one candidate RS set associated with the failure detection RS set configured in a serving cell.
  • an uplink transmission associated with the failure detection RS set whose beam (e.g., spatial domain filter) is associated with a TCI state or spatial relation information will be set (reset, or changed etc. ) , e.g., by a beam associated with a RS from the candidate RS set associated with the failure detection RS set. Accordingly, the uplink transmission with the reset beam will not be associated with a TCI state or spatial relation information anymore.
  • beam e.g., spatial domain filter
  • the serving cell is a primary cell (PCell) or primary secondary cell (PSCell)
  • PCell primary cell
  • PSCell primary secondary cell
  • the UE detects a DCI format with cyclic redundancy check (CRC) scrambled by cell-radio network temporary identifier (C-RNTI) or modulation coding scheme C-RNTI (MCS-C-RNTI)
  • C-RNTI cell-radio network temporary identifier
  • MCS-C-RNTI modulation coding scheme
  • the serving cell is a secondary cell (SCell)
  • SCell secondary cell
  • the beam of an uplink transmission associated with the failure detection RS set will be reset where the reset beam is a new beam associated with a RS from the candidate RS set.
  • the TAG of the uplink transmission with the reset beam associated with a RS from the candidate RS set will be a default TAG of the plurality of TAGs configured in the serving cell.
  • the TAG of the uplink transmission with the reset beam may be the TAG with the lowest index or the highest index of the plurality of TAGs (e.g., the first one of two configured TAGs or the second one of the two configured TAGs) .
  • the TAG of the uplink transmission with the reset beam may be the TAG of the plurality of TAGs configured by RRC or the like.
  • the RS in the candidate RS set will be only associated with one TRP associated with the default TAG.
  • the TA value of the uplink transmission with the reset beam will be determined according to the default TAG.
  • the UE will transmit the uplink transmission with the reset beam according to the TA value of the default TAG.
  • an uplink transmission may only be associated with a TCI state, but not associated with spatial relation information.
  • uplink transmission (s) may be transmitted before an associated TCI state (e.g., a common TCI state) of the configured TCI states is applied. That is, such uplink transmission (s) will not be associated with a TCI state or spatial relation information.
  • the beam of an uplink transmission is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure.
  • the beam of the uplink transmission is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the random access procedure initiated by the reconfiguration with sync procedure.
  • the TAG of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure, is determined as a default TAG of the plurality of TAGs configured in the serving cell.
  • the default TAG may be a TAG with the lowest index or the highest index of the plurality TAGs, or the default TAG may be a TAG configured by RRC of the plurality TAGs.
  • the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure will be determined according to the default TAG.
  • the UE will transmit the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure according to the TA value of the default TAG.
  • the TAG of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure, is determined as the TAG associated with the corresponding random access procedure (e.g., the initial access procedure or the random access procedure initiated by the reconfiguration with sync procedure) .
  • the TAG associated with the corresponding random access procedure will be indicated by the RAR in some embodiments of the present application.
  • the TAG associated with the corresponding random access procedure will be indicated by grouping SSBs into multiple groups (e.g., two groups in the cases of two TAGs being configured in a serving cell) , where each SSB group is associated with a corresponding TAG of the plurality of TAGs.
  • the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure will be determined according to the determined TAG.
  • the UE will transmit the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the corresponding random access procedure according to the TA value of the determined TAG.
  • the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure will be directly determined.
  • the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the corresponding random procedure is determined as the TA value indicated in the RAR associated with the corresponding random access procedure.
  • the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the corresponding random access procedure will not be updated according to the TA updating of a TAG, because it is not associated with a TAG. Only the uplink transmission associated with a TCI state will be associated with a TAG.
  • spatial relation information other than TCI state will be configured or indicated for uplink transmissions.
  • CSI-RS s
  • SRS resource set of multiple SRS resource sets configured with “non-codebook, ” spatial relation information cannot be configured for any SRS resource in the SRS resource set. That is, the SRS resource in the SRS resource set configured with “non-codebook” will not be associated with a TCI state or spatial relation information.
  • two TAGs can be configured in a serving cell configured with M-DCI based M-TRP, and there are two SRS resource sets configured in the serving cell.
  • non-codebook PUSCH is configured, then the two SRS resource sets will be configured with usage “non-codebook. ”
  • the CSI-RS is configured for a SRS resource set of the two SRS resource sets configured with “non-codebook, ” then spatial relation information cannot be configured for any SRS resource in the SRS resource set.
  • each associated CSI-RS of each SRS resource set configured with non-codebook there is an association between each associated CSI-RS of each SRS resource set configured with non-codebook and a TAG of the configured TAGs.
  • the association can be configured by RRC or the like.
  • the TA value of a SRS resource of a SRS resource set configured with non-codebook will be determined according to the TAG associated with the associated CSI-RS of the SRS resource set.
  • the UE will transmit the SRS resource set configured with non-codebook according to the determined TA value.
  • embodiments of the present application also propose an apparatus of supporting uplink transmissions.
  • FIG. 3 illustrates a block diagram of an apparatus 300 of supporting uplink transmissions in accordance with aspects of the present application.
  • the apparatus 300 may include at least one non-transitory computer-readable medium 301, at least one receiving circuitry 302, at least one transmitting circuitry 304, and at least one processor 306 coupled to the non-transitory computer-readable medium 301, the receiving circuitry 302 and the transmitting circuitry 304.
  • the at least one processor 306 may be a central processing unit (CPU) , a digital signaling processing (DSP) , a microprocessor etc.
  • the apparatus 300 may be a wireless communication apparatus in the network side (e.g., a RAN node) or in the remote side (e.g., a UE) configured to perform a method illustrated in the above or the like.
  • the at least one processor 306, transmitting circuitry 304, and receiving circuitry 302 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated.
  • the receiving circuitry 302 and the transmitting circuitry 304 can be combined into a single device, such as a transceiver.
  • the apparatus 300 may further include an input device, a memory, and/or other components.
  • the non-transitory computer-readable medium 301 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the wireless communication apparatus in the network side, e.g., the gNB as described above.
  • the computer-executable instructions when executed, cause the processor 306 interacting with receiving circuitry 302 and transmitting circuitry 304, so as to perform the steps with respect to the wireless communication apparatus in the network side as depicted above.
  • the non-transitory computer-readable medium 301 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the wireless communication apparatus in the remote side, e.g., the UE as described above.
  • the computer-executable instructions when executed, cause the processor 306 interacting with receiving circuitry 302 and transmitting circuitry 304, so as to perform the steps with respect to the wireless communication apparatus in the remote side as illustrated above.
  • FIG. 4 is a block diagram of an apparatus 400 of supporting uplink transmissions in accordance with aspects of the present application.
  • the apparatus 400 for example a wireless communication apparatus in the network side or in remote side may include at least one processor 402 and at least one transceiver 404 coupled to the at least one processor 402.
  • the transceiver 404 may include at least one separate receiving circuitry 406 and transmitting circuitry 408, or at least one integrated receiving circuitry 406 and transmitting circuitry 408.
  • the at least one processor 402 may be a CPU, a DSP, a microprocessor etc.
  • the apparatus 400 is a wireless communication apparatus in the network side, e.g., a gNB, which includes: a transceiver; and a processor coupled to the transceiver, wherein the processor is configured to: transmit information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and receive an uplink transmission which is associated with neither a TCI state nor spatial relation information and is transmitted according to a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
  • a gNB which includes: a transceiver; and a processor coupled to the transceiver, wherein the processor is configured to: transmit information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and receive an uplink transmission which is associated with neither a TCI state nor spatial relation information and is transmitted according to
  • the apparatus 400 is a wireless communication apparatus in the remote side, e.g., a UE, which includes: a transceiver; and a processor coupled to the transceiver, wherein the processor is configured to: receive information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and transmit an uplink transmission which is associated with neither a TCI state nor spatial relation information with a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
  • the method according to embodiments of the present application can also be implemented on a programmed processor.
  • the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like.
  • any device capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application.
  • an embodiment of the present application provides an apparatus, including a processor and a memory. Computer programmable instructions for implementing a method are stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method.
  • the method may be a method as stated above or other method according to an embodiment of the present application.
  • An alternative embodiment preferably implements the methods according to embodiments of the present application in a non-transitory, computer-readable storage medium storing computer programmable instructions.
  • the instructions are preferably executed by computer-executable components preferably integrated with a network security system.
  • the non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as random access memory (RAMs) , read only memory (ROMs) , flash memory, electrically erasable programmable read only memory (EEPROMs) , optical storage devices (compact disc (CD) or digital video disc (DVD) ) , hard drives, floppy drives, or any suitable device.
  • the computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device.
  • an embodiment of the present application provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein.
  • the computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment
  • the terms “includes, “ “including, “ or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by “a, “ “an, “ or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • the term “another” is defined as at least a second or more.
  • the terms “having, “ and the like, as used herein, are defined as “including. "

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present application are related to a method and apparatus of supporting uplink transmissions. An exemplary method includes: receiving information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and transmitting an uplink transmission which is associated with neither a TCI state nor spatial relation information with a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.

Description

METHOD AND APPARATUS OF SUPPORTING UPLINK TRANSMISSIONS TECHNICAL FIELD
Embodiments of the present application relate to wireless communications, more specifically, to techniques of supporting uplink (UL) transmissions.
BACKGROUND
A wireless communication system may include one or multiple network communication devices, such as base stations, which may be otherwise known as an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology. Each network communication devices, such as a base station (BS) may support wireless communications for one or multiple user communication devices, which may be otherwise known as user equipment (UE) , or other suitable terminology. The wireless communications system may support wireless communications with one or multiple user communication devices by utilizing resources of the wireless communication system (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) . Additionally, the wireless communications system may support wireless communications across various radio access technologies including third generation (3G) radio access technology, fourth generation (4G) radio access technology, fifth generation (5G) radio access technology, among other suitable radio access technologies beyond 5G (e.g., sixth generation (6G) ) .
According to legacy 3rd generation partnership project (3GPP) release, a UL transmission is associated with a timing advance (TA) group (TAG) of two TAGs according to the associated transmission configuration indication (TCI) state, and the TA value (or TA) of the UL transmission is determined according to the associated TAG. However, when there is no TCI state associated with a UL transmission, how to determine the TA of the UL transmission has not been discussed in 3GPP contributions and meetings yet.
SUMMARY OF THE APPLICATION
An objective of the embodiments of the present application is to provide a technical solution of supporting uplink transmissions, e.g., a method and apparatus of supporting uplink transmissions, even if the uplink transmission is not associated with a TCI state or spatial relation information.
Some embodiments of the present application provide a wireless communication apparatus, e.g., a UE or the like, which includes: a transceiver; and a processor coupled to the transceiver, wherein the processor is configured to: receive information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and transmit an uplink transmission which is associated with neither a TCI state nor spatial relation information with a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
Some other embodiments of the present application provide a wireless communication method, e.g., a method performed by a UE or the like, which includes: receiving information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and transmitting an uplink transmission which is associated with neither a TCI state nor spatial relation information with a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
Some yet other embodiments of the present application provide another wireless communication apparatus, e.g., a radio access network (RAN) node, which includes: a transceiver; and a processor coupled to the transceiver, wherein the processor is configured to: transmit information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and receive an uplink transmission which is associated with neither a TCI state nor spatial relation information and is transmitted according to a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
In some embodiments of the present application, in the case that two or more  failure detection reference signal (RS) sets and two or more candidate RS sets are configured in the serving cell, the two or more failure detection RS sets and two or more candidate RS sets are one to one associated, and the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission associated with a failure detection RS set of the two or more failure detection RS sets whose spatial domain filter is changed by a spatial domain filter associated with a RS from a candidate RS set associated with the failure detection RS set from a spatial domain filter associated with a TCI state or a spatial relation information; the processor is configured to: determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with the TCI state or the spatial relation information of the uplink transmission before changing the spatial domain filter; and determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
In some embodiments of the present application, in the case that only one failure detection RS set and only one candidate RS set are configured in the serving cell, and the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission associated with the failure detection RS set whose spatial domain filter is changed by a spatial domain filter associated with a RS from the candidate RS set from a spatial domain filter associated with a TCI state or a spatial relation information; the processor is configured to: determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a default TAG of the plurality of TAGs; and determine the TA value of an uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
In some embodiments of the present application, the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission whose spatial domain filter is same as that for a PUSCH transmission scheduled by a RAR uplink grant during an initial access procedure or during a random access procedure, and the processor is configured to: determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with the initial access procedure or  random access procedure of the plurality of TAGs or as a default TAG of the plurality of TAGs; and determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
In some embodiments of the present application, the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission whose spatial domain filter is same as that for a PUSCH transmission scheduled by a RAR uplink grant during an initial access procedure or during a random access procedure; and the processor is configured to: determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value indicated in the RAR.
According to some embodiments of the present application, the random access procedure is initiated by a reconfiguration with sync procedure.
In some embodiments of the present application, the uplink transmission which is associated with neither a TCI state nor spatial relation information is a non-codebook SRS resource set, and the processor is configured to: determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with a channel state information (CSI) -reference signal (RS) (CSI-RS) associated with the SRS resource set; and determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
According to some embodiments of the present application, the default TAG is a TAG with a lowest index or a highest index of the plurality of TAGs or is a TAG configured by radio resource control (RRC) .
Given the above, embodiments of the present application can determine the TA for an uplink transmission which is unassociated with TCI state and spatial relation information, and thus can support uplink transmissions in various scenarios, e.g., in scenarios of multiple transmit-receive points (TRPs) (multi-TRP or M-TRP) when multiple TAGs are configured, and thus can facilitate the implementation and application of NR.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which advantages and features of the application can be obtained, a description of the application is rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. These drawings depict only example embodiments of the application and are not therefore to be considered limiting of its scope.
FIG. 1 is a schematic diagram illustrating an exemplary wireless communication system in accordance with aspects of the present application.
FIG. 2 illustrates a flow chart of a method of supporting uplink transmissions in accordance with aspects of the present application.
FIG. 3 illustrates a block diagram of an apparatus of supporting uplink transmissions in accordance with aspects of the present application.
FIG. 4 illustrates a block diagram of an apparatus of supporting uplink transmissions in accordance with aspects of the present application.
DETAILED DESCRIPTION
According to the latest 3GPP agreement, two TAGs can be configured for a serving cell in some scenarios, e.g., in scenarios of multi-downlink control information (DCI) based M-TRP, wherein each uplink TCI state is associated with one TAG identifier (ID) . In addition, it is possible to support that spatial relation information of an uplink transmission can be associated with a TAG of the two configured TAGs according to the latest 3GPP progress. As a result, the TA of an uplink transmission associated with a TCI state or spatial relation information will be determined according to a TAG of the associated TCI state or spatial relation information. However, an uplink transmission is not always associated with a TCI state or spatial relation information.
For example, in some cases (hereafter "Cases 1" ) , after beam failure recovery  request (BFRQ) , the beam of an uplink transmission will be reset as a new beam. Regarding a beam, it may be represented by a RS, e.g., CSI-RS or SSB, or spatial relationship filter, TCI state or quasi co-location (QCL) properties of demodulation reference signal (DMRS) port etc. In the case that the reset new beam is SS/PBCH block (SSB) or CSI-RS configured in a candidate RS set as specified in TS38.213, the uplink transmission after BFRQ will be unassociated with a TCI state and spatial relation information.
In some other cases (hereafter "Cases 2" ) , after a UE receives an initial higher layer configuration of dl-OrJoint-TCIStateList with more than one TCI state or more than one UL TCI state and before applying an indicated TCI state of the configured TCI states, the beam of UL transmissions is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the associated initial access procedure. The beam of the PUSCH transmission scheduled by the RAR UL grant is neither a TCI state nor spatial relation information.
Similar to Cases 2, in some yet other cases (hereafter "Cases 3" ) , after a UE receives a higher layer configuration of dl-OrJoint-TCIStateList with more than one TCI state or more than one UL TCI state as a part of a reconfiguration with sync procedure and before applying an indicated TCI state of the configured TCI states, the beam of uplink transmissions is the same as that for a PUSCH transmission scheduled by a RAR UL grant during a random access procedure initiated by the reconfiguration with sync procedure. The beam of the PUSCH transmission scheduled by the RAR UL grant is neither a TCI state nor spatial relation information.
In some yet other cases (hereafter "Cases 4" ) , since CSI-RS sets and spatial relation information cannot be simultaneously configured for SRS resource sets (uplink transmissions) configured with “non-codebook, ” SRS resource sets which are configured with “non-codebook” and are associated CSI-RS sets will be unassociated with spatial relation information.
In all of the aforementioned cases where the uplink transmission is not associated with a TCI state or spatial relation information, if multiple (e.g., two) TAGs are configured for the UE, how to determine the TA of the uplink transmission should be solved.
At least for solving the above technical problems, embodiments of the present application provide a technical solution of supporting uplink transmissions, e.g., a method and apparatus of supporting uplink transmissions. More specifically, embodiments of the present application propose how to determine a TA value for an uplink transmission which is not associated with a TCI state or spatial information in the cases of two or more TAGs are configured for a serving cell. An exemplary TCI state is a joint TCI state or UL TCI state based on unified beam framework.
For example, in Cases 1, according to some embodiments of the present application, the TA value of the uplink transmission which is not associated with a TCI state or spatial information will be determined according to the TAG of the uplink transmission before resetting beam due to BFRQ. According to some other embodiments of the present application, the TA value of the uplink transmission will be determined according to a default TAG. An exemplary default TAG is the TAG with the lowest (or lower) index of the TAGs configured in the serving cell, or the TAG with the highest (or higher) index of the TAGs configured in the serving cell, or the TAG configured by RRC of the TAGs configured in the serving cell.
In Cases 2 and 3, according to some embodiments of the present application, the TA value of the uplink transmission which is not associated with a TCI state or spatial information will be determined according to a default TAG. Similarly, an exemplary default TAG is the TAG with the lowest (or lower) index of the TAGs configured in the serving cell, or the TAG the highest (or higher) index of the TAGs configured in the serving cell, or the TAG configured by RRC of the TAGs configured in the serving cell. According to some other embodiments of the present application, the TA value of the uplink transmission which is not associated with a TCI state or spatial information will be determined according to a TAG associated with the corresponding random access procedure (e.g., an initial access procedure in Cases 2 or a random access procedure initiated by the reconfiguration with sync procedure in Cases 3) . According to some yet other embodiments of the present application, the TA value of the uplink transmission which is not associated with a TCI state or spatial information will be determined according to a TA command (or TA value) in the RAR of the corresponding random access procedure (e.g., an initial access procedure in Cases 2 or a random access procedure initiated by the reconfiguration with sync  procedure in Cases 3) .
In Cases 4, for a SRS resource of a SRS resource set configured with non-codebook and not configured with spatial relation information (that is, the uplink transmission is not associated with a TCI state or spatial information) , the TA value thereof will be determined according to a TAG associated with the CSI-RS configured for the SRS resource set.
It can be seen that embodiments of the present application solve TA determination for an uplink transmission which is not associated with a TCI state or spatial information, and thus can support uplink transmission in various scenarios newly proposed for 3GPP, e.g., in scenarios of M-DCI based M-TRP and 2 TAGs are configured, which contributes to the evolution of 3GPP.
FIG. 1 illustrates a schematic diagram of an exemplary wireless communication system 100 in accordance with aspects of the present application.
As shown in FIG. 1, the wireless communication system 100 includes a UE 103 and a BS 101. Although merely one BS is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present application. Similarly, although merely one UE is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present application.
The wireless communication system 100 is compatible with any type of network that is capable of sending and receiving wireless communication signals. For example, the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
The BS 101 may also be referred to as an access point, an access terminal, a  base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art. The BS 101 is generally part of a radio access network that may include a controller communicably coupled to the BS 101.
In addition, a BS 101 may be configured with one TRP (or panel) , i.e., in a single-TRP scenario or more TRPs (or panels) , i.e., a multi-TRP scenario. That is, one or more TRPs are associated with the BS 101. A TRP can act like a small BS, and can be represented by a CORESETPoolIndex value or the like. Two TRPs can have the same cell ID (identity or index) or different cell IDs. Two TRPs can communicate with each other by a backhaul link. Such a backhaul link may be an ideal backhaul link or a non-ideal backhaul link. Latency of the ideal backhaul link may be deemed as zero, and latency of the non-ideal backhaul link may be tens of milliseconds and much larger, e.g. on the order of tens of milliseconds, than that of the ideal backhaul link.
The UE 103 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like. According to an embodiment of the present application, the UE 103 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network. In some embodiments of the present application, the UE 103 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 103 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
As stated above, TA determination of an uplink transmission which is not associated with a TCI state or spatial relation information needs to be solved to  support uplink transmissions in various scenarios newly proposed for 3GPP, e.g., in scenarios of M-DCI based M-TRP when multiple TAGs are configured (e.g., two CORESETPoolIndex values and two TAGs are configured in a serving cell) .
FIG. 2 illustrates a flow chart of a method of supporting uplink transmissions in accordance with aspects of the present application. Although the method is illustrated in a system level by a wireless communication apparatus in a remote side (or UE side) , e.g., UE and a wireless communication apparatus in a network side (or RAN side) , e.g., a RAN node (e.g., a gNB etc. ) , persons skilled in the art can understand that the method implemented in the remote side and that implemented in the network side can be separately implemented and incorporated by other apparatus with similar functions. In addition, no transmission or reception failure is considered in the illustrated embodiments of the present application.
Referring to FIG. 2, in some scenarios, the network side, e.g., a gNB will configure a plurality of TAGs for uplink transmissions which are associated with TCI states or spatial relation information in a serving cell. In step 201, the gNB will transmit information indicating the configured plurality of TAGs. For example, in scenarios of M-DCI M-TRP supporting TA enhancement, the gNB will configure two or more TAGs. For an uplink transmission associated with a TCI state or spatial relation information, the uplink transmission will be associated with a TAG of the two or more TAGs via the TCI state or spatial relation information.
Correspondingly, the remote side, e.g., a UE will receive the information indicating the plurality of TAGs for uplink transmissions which are associated with TCI states or spatial relation information in step 202. The UE will transmit the uplink transmissions which are associated with TCI states or spatial relation information with a TA value of a TAG of the plurality of TAGs, which is determined according to the associated TCI state or spatial relation information as legacy and will not be further illustrated herein.
For an uplink transmission which is not associated with TCI states or spatial relation information (neither associated with a TCI state nor associated with spatial relation information) , the UE will determine a TA value of a TAG of the plurality of TAGs based on a predefined rule (e.g., predefined in 3GPP specification) or a  signaling (e.g., via RRC signaling or the like) , which will be used as the TA value of the uplink transmission which is unassociated with a TCI state or spatial relation information. In step 204, the UE will transmit the uplink transmission which is associated with neither a TCI state nor spatial relation information with the determined TA value. Accordingly, in step 205, the gNB will receive the uplink transmission, which is associated with neither a TCI state nor spatial relation information and is transmitted with the TA value of a TAG of the plurality of TAGs determined based on the predefined rule or the signaling.
The predefined rule or signaling can be various according to embodiments of the present application. More detailed embodiments will be illustrated in the following considering the exemplary cases stated above. These illustrated embodiments may also be applied to other cases according to some other embodiments of the present application, and should be unduly limited to the specific cases or scenarios.
Cases 1
In Cases 1, two scenarios will be considered, i.e., TRP-specific BFRQ and cell-specific BFRQ.
In the case that TRP-specific BFRQ is configured, there are multiple failure detection RS sets and multiple candidate RS sets configured in a serving cell, and the multiple failure detection RS set and candidate RS sets are one to one associated. For example, there are two failure detection RS sets, e.g., the first and second failure detection RS sets, and two candidate RS sets, e.g., the first and second candidate RS sets, wherein the first failure detection RS set is associated with the first candidate RS set and the second failure detection RS set is associated with the second candidate RS set.
In response to a TRP-specific BFRQ of a failure detection RS set of the multiple failure detection RS sets, an uplink transmission associated with the failure detection RS set whose beam (e.g., spatial domain filter) is associated with a TCI state or spatial relation information will be set (reset, or changed etc. ) , e.g., by a beam associated with a RS from a candidate RS set associated with the failure detection RS  set. Accordingly, the uplink transmission with the reset beam will not be associated with a TCI state or spatial relation information anymore. For example, after a number of (e.g., 28) symbols from a last symbol of a first physical downlink control channel (PDCCH) reception with a DCI format scheduling a PUSCH transmission with the same hybrid automatic repeat request-acknowledge (HARQ) process number as for transmission of another PUSCH carrying TRP beam failure recovery (BFR) media access control (MAC) control element (CE) which indicates a new beam associated with a failure detection RS set and have a toggled network device interface (NDI) field value, the beam of an uplink transmission associated with the failure detection RS set will be reset. The reset beam will be a new beam associated with a RS from the candidate RS set associated with the failure detection RS set.
According to some embodiments of the present application, the TAG of the uplink transmission with the reset beam associated with a RS from the candidate RS set will be the same as the original (no change) . That is, the TAG of the uplink transmission associated with a TCI state or spatial relation information before resetting beam will be determined as the TAG for the uplink transmission with the reset beam. Then, the TA value of the uplink transmission with the reset beam will be determined according to the determined TAG. The UE will transmit the uplink transmission with the reset beam according to the TA value of the determined TAG.
In the case that cell-specific BFRQ is configured, there is only one failure detection RS set and only one candidate RS set associated with the failure detection RS set configured in a serving cell.
Similarly, in response to a cell-specific BFRQ, an uplink transmission associated with the failure detection RS set whose beam (e.g., spatial domain filter) is associated with a TCI state or spatial relation information will be set (reset, or changed etc. ) , e.g., by a beam associated with a RS from the candidate RS set associated with the failure detection RS set. Accordingly, the uplink transmission with the reset beam will not be associated with a TCI state or spatial relation information anymore. For example, if the serving cell is a primary cell (PCell) or primary secondary cell (PSCell) , then after a number of (e.g., 28) symbols from a last symbol of a first PDCCH reception in a search space set provided by  recoverySearchSpaceId where the UE detects a DCI format with cyclic redundancy check (CRC) scrambled by cell-radio network temporary identifier (C-RNTI) or modulation coding scheme C-RNTI (MCS-C-RNTI) , the beam of an uplink transmission associated with the failure detection RS set will be reset where the reset beam is a new beam associated with a RS from the candidate RS set. If the serving cell is a secondary cell (SCell) , then after a number of (e.g., 28) symbols from a last symbol of a PDCCH reception with a DCI format scheduling a PUSCH transmission with the same HARQ process number as for the transmission of another PUSCH carrying BFR MAC CE indicating a new beam and having a toggled NDI field value, the beam of an uplink transmission associated with the failure detection RS set will be reset where the reset beam is a new beam associated with a RS from the candidate RS set.
According to some embodiments of the present application, the TAG of the uplink transmission with the reset beam associated with a RS from the candidate RS set will be a default TAG of the plurality of TAGs configured in the serving cell. For example, the TAG of the uplink transmission with the reset beam may be the TAG with the lowest index or the highest index of the plurality of TAGs (e.g., the first one of two configured TAGs or the second one of the two configured TAGs) . For another example, the TAG of the uplink transmission with the reset beam may be the TAG of the plurality of TAGs configured by RRC or the like. The RS in the candidate RS set will be only associated with one TRP associated with the default TAG.
Similarly, the TA value of the uplink transmission with the reset beam will be determined according to the default TAG. The UE will transmit the uplink transmission with the reset beam according to the TA value of the default TAG.
Cases 2 and 3
In some scenarios, e.g., unified TCI framework is applied, an uplink transmission may only be associated with a TCI state, but not associated with spatial relation information. For example, although the UE has received the configured TCI state (s) through RRC signalling, uplink transmission (s) may be transmitted before an associated TCI state (e.g., a common TCI state) of the configured TCI states is applied.  That is, such uplink transmission (s) will not be associated with a TCI state or spatial relation information. For example, according to the latest specification, after a UE receives an initial higher layer configuration of dl-OrJoint-TCIStateList with more than one TCI state or more than one UL TCI state and before application of an indicated TCI state from the configured TCI states, the beam of an uplink transmission is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure. After a UE receives a higher layer configuration of dl-OrJoint-TCIStateList with more than one TCI state or more than one TCI UL state as a part of a reconfiguration with sync procedure, e.g., as described in TS 38.331 and before applying an indicated TCI state from the configured TCI states, the beam of the uplink transmission is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the random access procedure initiated by the reconfiguration with sync procedure.
According to some embodiments of the present application, the TAG of the uplink transmission, whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure, is determined as a default TAG of the plurality of TAGs configured in the serving cell. The default TAG may be a TAG with the lowest index or the highest index of the plurality TAGs, or the default TAG may be a TAG configured by RRC of the plurality TAGs.
The TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure will be determined according to the default TAG. The UE will transmit the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure according to the TA value of the default TAG.
According to some other embodiments of the present application, the TAG of the uplink transmission, whose beam is the same as that for a PUSCH transmission  scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure, is determined as the TAG associated with the corresponding random access procedure (e.g., the initial access procedure or the random access procedure initiated by the reconfiguration with sync procedure) . The TAG associated with the corresponding random access procedure will be indicated by the RAR in some embodiments of the present application. In some other embodiments of the present application, the TAG associated with the corresponding random access procedure will be indicated by grouping SSBs into multiple groups (e.g., two groups in the cases of two TAGs being configured in a serving cell) , where each SSB group is associated with a corresponding TAG of the plurality of TAGs.
Similarly, the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure will be determined according to the determined TAG. The UE will transmit the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the corresponding random access procedure according to the TA value of the determined TAG.
According to some yet other embodiments of the present application, the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the initial access procedure or during the random access procedure initiated by the reconfiguration with sync procedure will be directly determined. For example, the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the corresponding random procedure is determined as the TA value indicated in the RAR associated with the corresponding random access procedure. There is no association between TAG and the uplink transmission, while there is an association between a TA command in the RAR of the corresponding random access procedure and TAG. Therefore, the TA value of the uplink transmission whose beam is the same as that for a PUSCH transmission scheduled by a RAR UL grant during the corresponding random access procedure will not be updated according to the TA updating of a TAG, because it is not associated with a  TAG. Only the uplink transmission associated with a TCI state will be associated with a TAG.
Cases 4
In Cases 4, spatial relation information other than TCI state will be configured or indicated for uplink transmissions. If CSI-RS (s) is configured for a SRS resource set of multiple SRS resource sets configured with “non-codebook, ” then spatial relation information cannot be configured for any SRS resource in the SRS resource set. That is, the SRS resource in the SRS resource set configured with “non-codebook” will not be associated with a TCI state or spatial relation information. For example, two TAGs can be configured in a serving cell configured with M-DCI based M-TRP, and there are two SRS resource sets configured in the serving cell. If non-codebook PUSCH is configured, then the two SRS resource sets will be configured with usage “non-codebook. ” If the CSI-RS is configured for a SRS resource set of the two SRS resource sets configured with “non-codebook, ” then spatial relation information cannot be configured for any SRS resource in the SRS resource set.
According to some embodiments of the present application, there is an association between each associated CSI-RS of each SRS resource set configured with non-codebook and a TAG of the configured TAGs. The association can be configured by RRC or the like. The TA value of a SRS resource of a SRS resource set configured with non-codebook will be determined according to the TAG associated with the associated CSI-RS of the SRS resource set. The UE will transmit the SRS resource set configured with non-codebook according to the determined TA value.
Persons skilled in the art should well know that although some configurations and/or parameters, e.g., "recoverySearchSpaceId, " and "dl-OrJoint-TCIStateList" etc. are common known in legacy specifications, they may evolve into other terms as the evolution of 3GPPP. Thus, the name of such configurations and/or parameters should not be used to unduly limit the scope of the present application, and should be reasonably interpreted with their technical substance. In addition, although some embodiments are illustrated in view of only one side, e.g., the network side or the  remote side, persons skilled in the art would clearly determine how to consistently apply the technical solutions in the other side based on the consistency between the network side and remote side.
Besides the methods, embodiments of the present application also propose an apparatus of supporting uplink transmissions.
For example, FIG. 3 illustrates a block diagram of an apparatus 300 of supporting uplink transmissions in accordance with aspects of the present application.
As shown in FIG. 3, the apparatus 300 may include at least one non-transitory computer-readable medium 301, at least one receiving circuitry 302, at least one transmitting circuitry 304, and at least one processor 306 coupled to the non-transitory computer-readable medium 301, the receiving circuitry 302 and the transmitting circuitry 304. The at least one processor 306 may be a central processing unit (CPU) , a digital signaling processing (DSP) , a microprocessor etc. The apparatus 300 may be a wireless communication apparatus in the network side (e.g., a RAN node) or in the remote side (e.g., a UE) configured to perform a method illustrated in the above or the like.
Although in this figure, elements such as the at least one processor 306, transmitting circuitry 304, and receiving circuitry 302 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated. In some embodiments of the present application, the receiving circuitry 302 and the transmitting circuitry 304 can be combined into a single device, such as a transceiver. In certain embodiments of the present application, the apparatus 300 may further include an input device, a memory, and/or other components.
In some embodiments of the present application, the non-transitory computer-readable medium 301 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the wireless communication apparatus in the network side, e.g., the gNB as described above. For example, the computer-executable instructions, when executed, cause the processor 306 interacting with receiving circuitry 302 and transmitting circuitry 304, so as to perform the steps with respect to the wireless communication apparatus in the  network side as depicted above.
In some embodiments of the present application, the non-transitory computer-readable medium 301 may have stored thereon computer-executable instructions to cause a processor to implement the method with respect to the wireless communication apparatus in the remote side, e.g., the UE as described above. For example, the computer-executable instructions, when executed, cause the processor 306 interacting with receiving circuitry 302 and transmitting circuitry 304, so as to perform the steps with respect to the wireless communication apparatus in the remote side as illustrated above.
FIG. 4 is a block diagram of an apparatus 400 of supporting uplink transmissions in accordance with aspects of the present application.
Referring to FIG. 4, the apparatus 400, for example a wireless communication apparatus in the network side or in remote side may include at least one processor 402 and at least one transceiver 404 coupled to the at least one processor 402. The transceiver 404 may include at least one separate receiving circuitry 406 and transmitting circuitry 408, or at least one integrated receiving circuitry 406 and transmitting circuitry 408. The at least one processor 402 may be a CPU, a DSP, a microprocessor etc.
According to some embodiments of the present application, the apparatus 400 is a wireless communication apparatus in the network side, e.g., a gNB, which includes: a transceiver; and a processor coupled to the transceiver, wherein the processor is configured to: transmit information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and receive an uplink transmission which is associated with neither a TCI state nor spatial relation information and is transmitted according to a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
According to some embodiments of the present application, the apparatus 400 is a wireless communication apparatus in the remote side, e.g., a UE, which includes: a transceiver; and a processor coupled to the transceiver, wherein the  processor is configured to: receive information indicating a plurality of TAGs configured for uplink transmissions associated with TCI states or spatial relation information in a serving cell; and transmit an uplink transmission which is associated with neither a TCI state nor spatial relation information with a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
The method according to embodiments of the present application can also be implemented on a programmed processor. However, the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like. In general, any device capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application. For example, an embodiment of the present application provides an apparatus, including a processor and a memory. Computer programmable instructions for implementing a method are stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method. The method may be a method as stated above or other method according to an embodiment of the present application.
An alternative embodiment preferably implements the methods according to embodiments of the present application in a non-transitory, computer-readable storage medium storing computer programmable instructions. The instructions are preferably executed by computer-executable components preferably integrated with a network security system. The non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as random access memory (RAMs) , read only memory (ROMs) , flash memory, electrically erasable programmable read only memory (EEPROMs) , optical storage devices (compact disc (CD) or digital video disc (DVD) ) , hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device. For example, an embodiment of the present application provides a non-transitory, computer-readable storage medium having computer programmable  instructions stored therein. The computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present application.
The detailed description of the appended drawings is intended as a description of preferred embodiments of the present application, and is not intended to represent the only form in which the present application may be practiced. It should be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present application.
To facilitate understanding, embodiments, which are illustrated in the accompanying drawings, are provided under specific network architecture and new service scenarios, such as 3GPP 5G, 3GPP LTE, and so on. It is contemplated that along with the developments of network architectures and new service scenarios, all embodiments in the present application are also applicable to similar technical problems; and moreover, the terminologies recited in the present application may change, which should not affect the principle of the present application.
In addition, in this disclosure, the terms "includes, " "including, " or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a, " "an, " or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element. Also, the term "another" is defined as at least a second or more. The terms "having, " and the like, as used herein, are defined as "including. "

Claims (15)

  1. A wireless communication apparatus, comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein the processor is configured to:
    receive information indicating a plurality of timing advance (TA) groups (TAGs) configured for uplink transmissions associated with transmission configuration indication (TCI) states or spatial relation information in a serving cell; and
    transmit an uplink transmission which is associated with neither a TCI state nor spatial relation information with a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
  2. The wireless communication apparatus of claim 1, wherein, in the case that two or more failure detection reference signal (RS) sets and two or more candidate RS sets are configured in the serving cell, the two or more failure detection RS sets and two or more candidate RS sets are one to one associated, and the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission associated with a failure detection RS set of the two or more failure detection RS sets whose spatial domain filter is changed by a spatial domain filter associated with a RS from a candidate RS set associated with the failure detection RS set from a spatial domain filter associated with a TCI state or a spatial relation information; the processor is configured to:
    determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with the TCI state or the spatial relation information of the uplink transmission before changing the spatial domain filter; and
    determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  3. The wireless communication apparatus of claim 1, wherein, in the case that only one failure detection RS set and only one candidate RS set are configured in the serving cell, and the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission associated with the failure detection RS set whose spatial domain filter is changed by a spatial domain filter associated with a RS from the candidate RS set from a spatial domain filter associated with a TCI state or a spatial relation information; the processor is configured to:
    determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a default TAG of the plurality of TAGs; and
    determine the TA value of an uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  4. The wireless communication apparatus of claim 1, wherein, the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission whose spatial domain filter is same as that for a physical uplink shared channel (PUSCH) transmission scheduled by a random access response (RAR) uplink grant during an initial access procedure or during a random access procedure, and the processor is configured to:
    determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with the initial access procedure or random access procedure of the plurality of TAGs or as a default TAG of the plurality of TAGs; and
    determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  5. The wireless communication apparatus of claim 1, wherein, the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission whose spatial domain filter is same as that for a physical uplink shared channel (PUSCH) transmission scheduled by a random access response (RAR) uplink grant during an initial access procedure or during a random access procedure; and the processor is configured to:
    determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value indicated in the RAR.
  6. The wireless communication apparatus of claim 4 or 5, wherein, the random access procedure is initiated by a reconfiguration with sync procedure.
  7. The wireless communication apparatus of claim 3 or 4, wherein the default TAG is a TAG with a lowest index or a highest index of the plurality of TAGs or is a TAG configured by radio resource control (RRC) .
  8. A wireless communication apparatus, comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein the processor is configured to:
    transmit information indicating a plurality of timing advance (TA) groups (TAGs) configured for uplink transmissions associated with transmission configuration indication (TCI) states or spatial relation information in a serving cell; and
    receive an uplink transmission which is associated with neither a TCI state nor spatial relation information and is transmitted according to a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
  9. The wireless communication apparatus of claim 8, wherein, in the case that two or more failure detection reference signal (RS) sets and two or more candidate RS sets are configured in the serving cell, the two or more failure detection RS sets and two or more candidate RS sets are one to one associated, and the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission associated with a failure detection RS set of the two or more failure detection RS sets whose spatial domain filter is changed by a spatial domain filter associated with a RS from a candidate RS set associated with the failure detection RS set from a spatial domain filter associated with a TCI state or a spatial relation information; the processor is configured to:
    determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with the TCI state or the spatial relation information of the uplink transmission before changing the spatial domain filter; and
    determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  10. The wireless communication apparatus of claim 8, wherein, in the case that only one failure detection RS set and only one candidate RS set are configured in the serving cell, and the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission associated with the failure detection RS set whose spatial domain filter is changed by a spatial domain filter  associated with a RS from the candidate RS set from a spatial domain filter associated with a TCI state or a spatial relation information; the processor is configured to:
    determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a default TAG of the plurality of TAGs; and
    determine the TA value of an uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  11. The wireless communication apparatus of claim 8, wherein, the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission whose spatial domain filter is same as that for a physical uplink shared channel (PUSCH) transmission scheduled by a random access response (RAR) uplink grant during an initial access procedure or during a random access procedure, and the processor is configured to:
    determine a TAG for the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TAG associated with the initial access procedure or random access procedure of the plurality of TAGs or as a default TAG of the plurality of TAGs; and
    determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value of the determined TAG.
  12. The wireless communication apparatus of claim 8, wherein, the uplink transmission which is associated with neither a TCI state nor spatial relation information is an uplink transmission whose spatial domain filter is same as that for a physical uplink shared channel (PUSCH) transmission scheduled by a random access response (RAR) uplink grant during an initial access procedure or during a random access procedure; and the processor is configured to:
    determine the TA value of the uplink transmission which is associated with neither a TCI state nor spatial relation information as a TA value indicated in the RAR.
  13. The wireless communication apparatus of claim 11 or 12, wherein, the random access procedure is initiated by a reconfiguration with sync procedure.
  14. The wireless communication apparatus of claim 10 or 11, wherein the default TAG is a TAG with a lowest index or a highest index of the plurality of TAGs or is a TAG configured by radio resource control (RRC) .
  15. A wireless communication method, comprising:
    transmitting information indicating a plurality of timing advance (TA) groups (TAGs) configured for uplink transmissions associated with transmission configuration indication (TCI) states or spatial relation information in a serving cell; and
    receiving an uplink transmission which is associated with neither a TCI state nor spatial relation information and is transmitted according to a TA value, wherein the TA value is a TA value of a TAG of the plurality of TAGs based on a predefined rule or a signaling.
PCT/CN2023/098005 2023-06-02 2023-06-02 Method and apparatus of supporting uplink transmissions WO2024087630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/098005 WO2024087630A1 (en) 2023-06-02 2023-06-02 Method and apparatus of supporting uplink transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/098005 WO2024087630A1 (en) 2023-06-02 2023-06-02 Method and apparatus of supporting uplink transmissions

Publications (1)

Publication Number Publication Date
WO2024087630A1 true WO2024087630A1 (en) 2024-05-02

Family

ID=90829867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098005 WO2024087630A1 (en) 2023-06-02 2023-06-02 Method and apparatus of supporting uplink transmissions

Country Status (1)

Country Link
WO (1) WO2024087630A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086983A (en) * 2021-03-12 2022-09-20 索尼公司 Electronic device and method for wireless communication, computer-readable storage medium
CN115299153A (en) * 2020-03-30 2022-11-04 高通股份有限公司 Uplink timing associated with uplink Transmission Configuration Indication (TCI) status
WO2023010452A1 (en) * 2021-08-05 2023-02-09 Zte Corporation Methods, systems and devices that provide fast mobility
WO2023031854A1 (en) * 2021-09-03 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Framework and signaling for multi-time advance for multiple transmission/reception points

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115299153A (en) * 2020-03-30 2022-11-04 高通股份有限公司 Uplink timing associated with uplink Transmission Configuration Indication (TCI) status
CN115086983A (en) * 2021-03-12 2022-09-20 索尼公司 Electronic device and method for wireless communication, computer-readable storage medium
WO2023010452A1 (en) * 2021-08-05 2023-02-09 Zte Corporation Methods, systems and devices that provide fast mobility
WO2023031854A1 (en) * 2021-09-03 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Framework and signaling for multi-time advance for multiple transmission/reception points

Similar Documents

Publication Publication Date Title
WO2023050402A1 (en) Method and apparatus for beam determination
WO2024087630A1 (en) Method and apparatus of supporting uplink transmissions
US20220256578A1 (en) Method and Apparatus for Overhead Reduction for Configured Grant Based Uplink Transmission
WO2022261930A1 (en) Method and apparatus for beam determination
WO2023283876A1 (en) Method and apparatus for uplink transmission
WO2022061578A1 (en) Method and apparatus for multiplexing uplink resources
WO2024065170A1 (en) Method and apparatus of radio resource determination
US20230412240A1 (en) Method and apparatus for beam failure recovery in multi-dci based multiple trps
WO2022082563A1 (en) Method and apparatus for pucch transmission with repetitions
WO2023056605A1 (en) Method and apparatus for beam determination
WO2024073945A1 (en) Method and apparatus of beam determination
WO2022205302A1 (en) Method and apparatus for pusch transmission with repetitions
US20240187995A1 (en) Method and apparatus for pusch transmission with repetitions
WO2023010413A1 (en) Methods and apparatuses for physical uplink control channel transmission
WO2023097482A1 (en) Method and apparatus for data transmission during wireless communication
WO2023193263A1 (en) Method and apparatus of beam determination
WO2022073231A1 (en) Method and apparatus for pusch transmission with repetition
WO2023150969A1 (en) Method and apparatus of beam indication
WO2023283877A1 (en) Method and apparatus for physical uplink control channel (pucch) transmission
US20240063880A1 (en) Method and apparatus for uplink transmission
WO2022000125A1 (en) Method and apparatus for mapping pusch repetitions
WO2023000129A1 (en) Methods and apparatuses for physical uplink control channel transmission
WO2023015555A1 (en) Methods and apparatuses for physical uplink control channel transmission in case of beam failure
WO2023150911A1 (en) Methods and apparatuses for sidelink transmission on unlicensed spectrum
WO2023206416A1 (en) Methods and apparatuses for scheduling multiple physical downlink shared channel (pdsch) transmissions