WO2022082563A1 - Method and apparatus for pucch transmission with repetitions - Google Patents

Method and apparatus for pucch transmission with repetitions Download PDF

Info

Publication number
WO2022082563A1
WO2022082563A1 PCT/CN2020/122691 CN2020122691W WO2022082563A1 WO 2022082563 A1 WO2022082563 A1 WO 2022082563A1 CN 2020122691 W CN2020122691 W CN 2020122691W WO 2022082563 A1 WO2022082563 A1 WO 2022082563A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pucch
slots
repetitions
slot
Prior art date
Application number
PCT/CN2020/122691
Other languages
French (fr)
Inventor
Wei Ling
Chenxi Zhu
Bingchao LIU
Yi Zhang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2020/122691 priority Critical patent/WO2022082563A1/en
Publication of WO2022082563A1 publication Critical patent/WO2022082563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system

Definitions

  • Embodiments of the present disclosure relate to wireless communication technology, especially to a method and an apparatus for physical uplink control channel (PUCCH) transmission with repetitions.
  • PUCCH physical uplink control channel
  • NR new radio
  • PDSCH physical downlink shared channel
  • TRP transmission reception points
  • R16 R16 reliability features.
  • the concerned channels other than PDSCH are: physical downlink control channel (PDCCH) , PUSCH, and physical uplink control channel (PUCCH) .
  • PUCCH repetitions with one beam is specified in R15 to increase the reliability and robustness.
  • Multiple beams (a beam may be represented by spatial relation information) will be used for PUCCH repetitions in R17 with multiple TRP's reception to further improve the reliability and robustness.
  • Multiple panels will be implemented on the UE side to support the PUCCH repetitions with multiple beams to multiple TRPs. However, only one panel can be used for uplink (UL) transmission in R17 considering the power limitation of UE.
  • At least one objective of the embodiments of the present disclosure is to provide a technical solution for PUCCH transmission with repetitions, especially for PUCCH transmission with repetitions using different beams.
  • An embodiment of the present disclosure provides a method, including: receiving configuration information indicating a plurality of PUCCH repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission; determining a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions; and transmitting the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
  • the PUCCH transmission is a sub-slot based transmission or a slot based transmission and the time gap is composed of a number of sub-slots for sub-slot based transmission or a number of slots for slots based transmission.
  • the time gap is configured by radio resource control (RRC) or indicated by downlink control information (DCI) .
  • RRC radio resource control
  • DCI downlink control information
  • the UE further applies the time gap to each two adjacent PUCCH repetitions with a same beam of the plurality of PUCCH repetitions.
  • the time gap is only applied to each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions.
  • the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is determined by a symbol length of a slot for slot based transmission or a length of a sub-slot for sub-slot based transmission, and a time threshold for beam switching.
  • the time threshold for beam switching is predefined or RRC configured.
  • the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is further determined by a symbol length of a gap between two adjacent PUCCH repetitions in two consecutive sub-slots for sub-slot based transmission or two consecutive slots for slot based transmission.
  • Another embodiment of the present disclosure provides a method, including: transmitting configuration information indicating a plurality of PUCCH repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission; determining a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions; and receiving the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
  • the PUCCH transmission is a sub-slot based transmission or a slot based transmission and the time gap is composed of a number of sub-slots for sub-slot based transmission or a number of slots for slots based transmission.
  • the time gap is configured by RRC or indicated by downlink control information (DCI) .
  • DCI downlink control information
  • the BS further applies the time gap to each two adjacent PUCCH repetitions with a same beam of the plurality of PUCCH repetitions.
  • the time gap is only applied to each two adjacent PUCCH repetitions with different beam of the plurality of PUCCH repetitions.
  • the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is determined by a symbol length of a slot for slot based transmission or a length of a sub-slot for sub-slot based transmission, and a time threshold for beam switching.
  • the time threshold for beam switching is predefined or RRC configured.
  • the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is further determined by a symbol length of a gap between two adjacent PUCCH repetitions in two consecutive sub-slots for sub-slot based transmission or two consecutive slots for slot based transmission.
  • Yet another embodiment of the present disclosure provides an apparatus, including: at least one non-transitory computer-readable medium having stored thereon computer-executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry, wherein the computer-executable instructions cause the at least one processor to implement a method according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic diagram illustrating an exemplary wireless communication system according to some embodiments of the present disclosure.
  • Fig. 2 illustrates a flow chart of a method for a PUCCH transmission with repetitions according to some embodiments of the present disclosure.
  • Fig. 3A illustrates an exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some embodiments of the present disclosure.
  • Fig. 3B illustrates another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some embodiments of the present disclosure.
  • Fig. 4A illustrates yet another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some embodiments of the present disclosure.
  • Fig. 4B illustrates yet another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some embodiments of the present disclosure.
  • Fig. 5 illustrates a block diagram of a UE according to the embodiments of the present disclosure.
  • Fig. 6 illustrates a block diagram of a BS according to the embodiments of the present disclosure.
  • Fig. 1 illustrates a schematic diagram of an exemplary wireless communication system 100 according to some embodiments of the present disclosure.
  • the wireless communication system 100 includes a UE 102 and a BS 101. Although merely one BS is illustrated in Fig. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present disclosure. Similarly, although merely one UE is illustrated in Fig. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present disclosure.
  • the BS 101 may also be referred to as an access point, an access terminal, a base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art.
  • the BS 101 is generally part of a radio access network that may include a controller communicably coupled to the BS 101.
  • the UE 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like.
  • the UE 102 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • the UE 102 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 102 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • the wireless communication system 100 is compatible with any type of network that is capable of sending and receiving wireless communication signals.
  • the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • a PUCCH resource (or PUCCH transmission) configured with repetitions is transmitted in consecutive slots if the PUCCH resource is slot based transmission, and a PUCCH resource configured with repetitions is transmitted in consecutive sub-slots if the PUCCH resource is sub-slot based transmission.
  • Sub-slot is specified in R16, and the length of a sub-slot may be 2 symbols or 7 symbols. If the length of sub-slot is 2 symbols, then the maximum gap between two adjacent repetitions of a PUCCH resource is 1 symbol. If the length of sub-slot is 7 symbols, then the maximum gap between two adjacent repetitions of a PUCCH resource is 6 symbols while the maximum gap between two adjacent repetitions of a long PUCCH resource is 3 symbols.
  • the UE may need time to switch beams for two adjacent PUCCH repetitions with different beams.
  • the abovementioned maximum gap might not be long enough for the UE to perform beam switching. Therefore, how to ensure the UE to have enough time for beam switching when transmitting a PUCCH with multiple PUCCH repetitions using different beams should be solved. Since the performance of PUCCH is very important to throughput, it is beneficial not to drop any symbol of a PUCCH resource due to beam switching.
  • Embodiments of the present disclosure propose a method and apparatus for PUCCH transmission with repetitions, wherein the time for beam switching is ensured, while no PUCCH repetition being dropped.
  • embodiments of the present disclosure also propose adding an additional gap between the PUCCH repetitions, so that the UE has enough time to perform beam switching.
  • Fig. 2 illustrates a flow chart of a method for PUCCH transmission with repetitions according to some embodiments of the present disclosure.
  • the method is illustrated in a system level by a UE on a remote side (or UE side) and a BS on a network side (or BS side) , persons skilled in the art can understand that the method implemented on the remote side and that implemented on the network side can be separately implemented and incorporated by other apparatus with similar functions.
  • the network may transmit configuration information to the remote side, e.g., a UE 102.
  • the configuration information may be transmitted by at least one of RRC signaling and downlink control information (DCI) .
  • the remote side may receive the configuration information from the network side.
  • the configuration information may indicate a plurality of PUCCH repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission. Each of the plurality of beams may be represented by spatial relation information.
  • a beam of the plurality of beams can be associated with (or mapped to) one or more corresponding PUCCH repetitions of the plurality of PUCCH repetitions.
  • the mapping pattern of the plurality of beams may be any beam mapping pattern, e.g., cyclical mapping pattern, or sequential mapping pattern, which has been agreed by 3GPP.
  • the UE may determine a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions.
  • the BS may also determine a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions.
  • step 205 the UE transmits the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
  • step 206 the BS receives the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
  • the PUCCH transmission may be a sub-slot based transmission.
  • the time gap is composed of a number of sub-slots for sub-slot based transmission.
  • the PUCCH transmission may be a slot based transmission, and the time gap is composed of a number of a number of slots for slots based transmission.
  • the time gap is configured by RRC or indicated by DCI.
  • the BS determines the time gap, and transmits the time gap to UE. Then the UE applies the time gap.
  • the time gap may also be applied to each two adjacent PUCCH repetitions with the same beam of the plurality of PUCCH repetitions.
  • the time gap is only applied to each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions, that is, the time gap may not be applied to each two adjacent PUCCH repetitions with the same beam of the plurality of PUCCH repetitions.
  • the number of sub-slots of the time gap for sub-slot based transmission is determined by a symbol length of a slot for slot based transmission, and a time threshold for beam switching.
  • the number of slots of the time gap for slot based transmission is determined by a length of a sub-slot for sub-slot based transmission, and a time threshold for beam switching.
  • the time threshold for beam switching may be predefined or RRC configured.
  • the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is further determined by a symbol length of a gap between two adjacent PUCCH repetitions in two consecutive sub-slots for sub-slot based transmission or two consecutive slots for slot based transmission.
  • the minimal time threshold for beam switching may be specifically determined for a UE based on the capability of the UE.
  • the minimal time threshold for beam switching may be similar to a threshold timeDurationForQCL for transmission configuration indication (TCI) state determination of PDSCH.
  • TCI transmission configuration indication
  • a UE may report its capability under beam switching of uplink (UL) transmission, and the network side will determine the minimal time threshold for beam switching for the UE based on the UE's capability.
  • the minimal time threshold is related to the UE capability, and the minimal time threshold is UE specific, that is, the minimal time threshold may be different for different UEs.
  • the time threshold for beam switching is predefined in specification (s) (or protocol (s) ) .
  • the time threshold for beam switching may be defined as a number of symbols, which is different in view of different subcarrier spacing (SCS) .
  • SCS subcarrier spacing
  • the time threshold for minimal beam switching time is predefined and it is related to the SCS of the UL transmission.
  • the time threshold for beam switching is not UE specific, and is the same for all the UE.
  • the BS when transmitting a PUCCH resource with repetitions, the BS always takes the minimal time threshold for beam switching, so the UE always has enough time to switch beams for adjacent repetitions with different beams.
  • the number of symbols for the minimal beam switching time is determined according to the SCS of the UL transmission and the minimal time threshold.
  • the number of symbols for the minimal beam switching time is predefined based on the SCS of the UL transmission.
  • the available time gap including the gap between two adjacent repetitions in two consecutive slots or sub-slots for switching beam should be at least larger than or equal to the minimal time threshold, and Figs. 3A-4B depict some embodiments according to the present disclosure.
  • Fig. 3A illustrates an exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some other embodiments of the present disclosure. Persons skilled in the art should understand that only four repetitions and two beams are shown for simplicity and clearness. There may be another repetition number or another beam number in other embodiments of the present disclosure, hereafter the same.
  • Fig. 3A there are 10 sub-slots, which are sub-slot 0, sub-slot 1, ..., and sub-slot 9 respectively, and the length of each sub-slot is 2 symbols.
  • a PUCCH resource, being a sub-slot based transmission is configured with 4 repetitions in 4 sub-slots.
  • the length of the PUCCH resource is 2 symbols.
  • the UE may transmit 4 PUCCH repetitions, repetition 0, repetition 1, repetition 2, and repetition 3 with two beams, beam 1 and beam 2.
  • Repetition 0 and repetition 1 are mapped to beam 1, and repetition 2 and repetition 3 are mapped to beam 2.
  • other mapping pattern is not limited, for example, another mapping pattern may be: repetition 0 and repetition 2 are mapped to beam 1, and repetition 1 and repetition 3 are mapped to beam 2.
  • the minimal length of symbols for beam switching is assumed to be 4 symbols. Since each sub-slot includes 2 symbols, the length of 2 sub-slots, i.e., 4 symbols, is not smaller than the minimal symbols for beam switching. Thus, to ensure the UE can switch the beam during the configured gap, 2 sub-slots are needed at least. Based on the calculated result, 2 sub-slots can be configured by RRC or DCI by base station for the PUCCH resource as a time gap for beam switching.
  • the first repetition i.e. repetition 0 is transmitted in sub-slot 0, which is configured by RRC or indicated by a DCI
  • the second repetition i.e. repetition 1 is transmitted after the first repetition and the 1 st gap, thus repetition 1 is transmitted in sub-slot 3.
  • the third repetition i.e. repetition 2 is transmitted in sub-slot 6
  • the fourth repetition i.e. repetition 3 is transmitted in sub-slot 9.
  • Fig. 3A there is a time gap composed of 2 sub-slots between each two consecutive PUCCH repetitions, which is used for the UE to switch beams.
  • Fig. 3A only describes a sub-slot based PUCCH transmission for an example, and the solution also applies to the slot based PUCCH transmission.
  • the reference numeral 0, 1, ..., 9 for sub-slot may also refer to slots.
  • 10 slots, which are slot 0, slot 1, ..., and slot 9 can respectively replace sub-slot 0, sub-slot 1, ..., and sub-slot 9.
  • the PUCCH resource e.g., being configured with 4 repetitions in 4 slots is slot based transmission.
  • the length of the PUCCH resource is 1 slot.
  • the minimal time for beam switching is 2 slots. Therefore, the time gap may be determined as 2 slots, which is equal to the minimal time for beam switching. Based on the calculated result, 2 slots are configured by RRC or DCI for PUCCH resource as a gap for beam switching.
  • Fig. 3A assuming that the first repetition, i.e. repetition 0, is transmitted in slot 0, which is configured by RRC or indicated by a DCI, then the second repetition, i.e. repetition 1, is transmitted after the first repetition and the 1 st gap, thus repetition 1 is transmitted in slot 3. Similarly, the third repetition, i.e. repetition 2, is transmitted in slot 6, and the fourth repetition, i.e. repetition 3, is transmitted in slot 9.
  • PUCCH repetition 0 and repetition 1 are transmitted with the same beam, i.e. beam 1, and no beam switching is needed between them.
  • a time gap e.g. the 1 st gap, between PUCCH repetition 0 and repetition 1. That is, the 1 st gap is not necessary.
  • the 3 rd gap is also not necessary.
  • the present disclosure also proposes an improved solution based on the solution in Fig. 3A.
  • Fig. 3B illustrates another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some other embodiments of the present disclosure. Persons skilled in the art should understand that only four repetitions and two beams are shown for simplicity and clearness. There may be another repetition number or another beam number in other embodiments of the present disclosure, hereafter the same.
  • Fig. 3B there are 10 sub-slots, which are sub-slot 0, sub-slot 1, ..., and sub-slot 9, respectively, and the length of each sub-slot is 2 symbols.
  • a PUCCH resource being a sub-slot based transmission is configured with 4 repetitions in 4 sub-slots.
  • the length of the PUCCH resource is 2 symbols.
  • the UE may transmit 4 PUCCH repetitions, repetition 0, repetition 1, repetition 2, and repetition 3 with two beams, beam 1 and beam 2.
  • Repetition 0 and repetition 1 are mapped to beam 1, and repetition 2 and repetition 3 are mapped to beam 2.
  • other mapping pattern is not limited, for example, another mapping pattern may be: repetition 0 and repetition 2 are mapped to beam 1, and repetition 1 and repetition 3 are mapped to beam 2.
  • the minimal length of symbols for beam switching is assumed to be 4 symbols. Since each sub-slot includes 2 symbols, the length of 2 sub-slots, i.e., 4 symbols, is not smaller than the minimal symbols for beam switching. Thus, to can ensure the UE can switch the beam during the configured gap, 2 sub-slots are required at least. Based on the calculated result, 2 sub-slots can be configured by RRC or DCI by base station for the PUCCH resource as a time gap for beam switching.
  • the first repetition i.e. repetition 0, which is transmitted with beam 1
  • sub-slot 2 which is configured by RRC or indicated by a DCI
  • the second repetition i.e. repetition 1, which is also transmitted with beam 1
  • no gap is needed since repetition 0 and repetition 1 are transmitted with the same beam. Therefore, repetition 1 is transmitted after the first repetition, in sub-slot 3.
  • the third repetition i.e. repetition 2 is transmitted with beam 2, which is different from the beam used for transmitting the second repetition, thus a gap is needed. Accordingly, repetition 2 is transmitted after the second repetition and a gap, namely, repetition 2 is transmitted in sub-slot 6.
  • the fourth repetition, i.e. repetition 3 is transmitted with beam 2, which is the same beam as the beam used for transmitting the third repetition, thus a gap is not needed. Accordingly, repetition 3 is transmitted after the third repetition, in sub-slot 7.
  • Fig. 3B only one time gap including sub-slot 4 and sub-slot 5 is configured, and the time gap is equal to the minimal switching time for the UE, thus the UE is capable of transmitting the four PUCCH repetitions without dropping any one. It should be noted that Fig. 3B only describes a sub-slot based PUCCH transmission for an example, and the solution also applies to the slot based PUCCH transmission.
  • Fig. 4A illustrates yet another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some other embodiments of the present disclosure. Persons skilled in the art should understand that only four repetitions and two beams are shown for simplicity and clearness. There may be another repetition number or another beam number in other embodiments of the present disclosure, hereafter the same.
  • Fig. 4A there are 7 sub-slots, which are sub-slot 0, sub-slot 1, ..., and sub-slot 6, respectively, and the length of each sub-slot is 7 symbols.
  • a PUCCH resource being a sub-slot based transmission is configured with 4 repetitions in 4 sub-slots.
  • the length of the PUCCH resource is 6 symbols.
  • the minimal length of symbols for beam switching is assumed to be 6 symbols.
  • the UE may transmit 4 PUCCH repetitions, repetition 0, repetition 1, repetition 2, and repetition 3 with two beams, beam 1 and beam 2.
  • Repetition 0 and repetition 1 are mapped to beam 1, and repetition 2 and repetition 3 are mapped to beam 2.
  • other mapping pattern is not limited, for example, another mapping pattern may be: repetition 0 and repetition 2 are mapped to beam 1, and repetition 1 and repetition 3 are mapped to beam 2.
  • the present disclosure proposes to use the following parameters:
  • the sum of the length of the additional time gap and the length of the time gap between two repetitions in two consecutive slots or sub-slots should be larger than or equal to the minimal beam switching time. That is, K ⁇ L + N ⁇ M. Furthermore, K is the smallest natural number which satisfies the inequality to make the latency of transmission of all repetitions as smaller as possible.
  • the length of the sub-slot, L is 7 symbols
  • the length of the time gap between two repetitions in two sub-slots is the length of the sub-slot minus the length of the length of the repetition, which is 7 symbols minus 6 symbols, i.e. 1 symbol.
  • the minimal beam switching time, M is assumed to be 6 symbols. Therefore, the above inequality is K ⁇ 7 + 1 ⁇ 6, which is further calculated as K ⁇ 5/7.
  • K is determined as 1 since the smallest natural number satisfying the above inequality is 1. Therefore, the length of the additional time gap is 1 sub-slot.
  • the UE is aware that there is an additional time gap composed of 1 sub-slot between each two consecutive PUCCH transmission.
  • Fig. 4A assuming that the first repetition, i.e. repetition 0, is transmitted in sub-slot 0, which is determined based on the calculation of the UE, then the second repetition, i.e. repetition 1, is transmitted after the first repetition, the time gap between two repetitions in two consecutive sub-slots, and the 1 st gap, thus repetition 1 is transmitted in sub-slot 2.
  • the third repetition, i.e. repetition 2 is transmitted in sub-slot 4
  • the fourth repetition i.e. repetition 3 is transmitted in sub-slot 5.
  • Fig. 4A there is an additional time gap composed of a number of sub-slots, in addition to the time gap between two repetitions in two consecutive sub-slots, and the length of this additional time gap is calculated by the above inequality, K ⁇ L + N ⁇ M. Furthermore, K is the smallest natural number which satisfies the inequality to make the latency of transmission of all repetitions as smaller as possible. It should be noted that K is determined as mentioned above on both the UE side and the BS side.
  • K is the smallest natural number which satisfies the inequality to make the latency of transmission of all repetitions as smaller as possible. It should be noted that K is determined as mentioned above on both the UE side and the BS side.
  • PUCCH repetition 0 and repetition 1 are transmitted with the same beam, i.e. beam 1, and no beam switching is needed between them.
  • a time gap i.e. the 1 st gap, between PUCCH repetition 0 and repetition 1. That is, the 1 st gap is not necessary.
  • the 3 rd gap is also not necessary.
  • the present disclosure also proposes an improved solution based on the solution in Fig. 4A.
  • Fig. 4B illustrates yet another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some other embodiments of the present disclosure. Persons skilled in the art should understand that only four repetitions and two beams are shown for simplicity and clearness. There may be another repetition number or another beam number in other embodiments of the present disclosure, hereafter the same.
  • Fig. 4B there are 5 sub-slots, which are sub-slot 0, sub-slot 1, ..., and sub-slot 4 respectively, and the length of each sub-slot is 7 symbols.
  • a PUCCH resource being configured with a sub-slot based transmission is configured with 4 repetitions in 4 sub-slots.
  • the length of the PUCCH resource is 6 symbols.
  • the minimal length of symbols for beam switching is assumed to be 6 symbols.
  • the UE may transmit 4 PUCCH repetitions, repetition 0, repetition 1, repetition 2, and repetition 3 with two beams, beam 1 and beam 2.
  • Repetition 0 and repetition 1 are mapped to beam 1, and repetition 2 and repetition 3 are mapped to beam 2.
  • other mapping pattern is not limited, for example, another mapping pattern may be: repetition 0 and repetition 2 are mapped to beam 1, and repetition 1 and repetition 3 are mapped to beam 2.
  • the present disclosure proposes to use the following parameters:
  • the sum of the length of the additional time gap and the length of the time gap between two repetitions in two consecutive slots or sub-slots should be larger than or equal to the minimal beam switching time. That is, K ⁇ L + N ⁇ M. Furthermore, K is the smallest natural number which satisfies the inequality to make the latency of transmission of all repetitions as smaller as possible.
  • the length of the sub-slot, L is 7 symbols
  • the length of the time gap between two repetitions in two sub-slots is the length of the sub-slot minus the length of the length of the repetition, which is 7 symbols minus 6 symbols, i.e. 1 symbol.
  • the minimal beam switching time, M is assumed to be 6 symbols. Therefore, the above inequality is K ⁇ 7 + 1 ⁇ 6, which is further calculated as K ⁇ 5/7.
  • K is determined as 1 since the smallest natural number satisfying the above inequality is 1. Therefore, the length of the additional time gap is 1 sub-slot.
  • the UE is aware that there is an additional time gap composed of 1 sub-slot between each two consecutive PUCCH transmission.
  • the first repetition i.e. repetition 0
  • the second repetition i.e. repetition 1
  • beam 1 which is the same beam for transmitting the first repetition
  • the additional time gap is not needed. Therefore, the time gap between the first repetition and the second repetition is the time gap between two repetitions in two consecutive sub-slots, thus repetition 1 is transmitted in sub-slot 1.
  • the third repetition i.e. repetition 2 is transmitted with beam 2, which is a different beam for transmitting the second repetition, thus the additional time gap is required. Therefore, the time gap between repetition 1 and repetition 2 includes the time gap between two repetitions in two consecutive sub-slots, and the additional time gap, thus repetition 2 is transmitted in sub-slot 3.
  • the fourth repetition i.e. repetition 3, is transmitted with beam 2, which is the same beam for transmitting the third repetition, thus the additional time gap is not needed. Therefore, the time gap between the third repetition and the fourth repetition is the time gap between two repetitions in two consecutive sub-slots, thus repetition 3 is transmitted in sub-slot 4.
  • Fig. 4B there is an additional time gap composed of a number of sub-slots, in addition to the time gap between two repetitions in two consecutive sub-slots, and the length of this additional time gap is calculated by the above inequality, K ⁇ L + N ⁇ M where K is the smallest natural number satisfying the inequality, on both the UE side and the BS side.
  • the time gap between two repetitions in two consecutive sub-slots is ignored, thus the inequality is: K ⁇ L ⁇ M.
  • Fig. 4B only one additional time gap, i.e. the time gap located at sub-slot 2 is configured, and the time gap is larger than the minimal switching time for the UE, thus the UE is capable of transmitting the four PUCCH repetitions without dropping any one.
  • Figs. 3A-4B only describe a sub-slot based PUCCH transmission for an example, and these solutions also apply to the slot based PUCCH transmission.
  • Fig. 5 illustrates a block diagram of a UE according to the embodiments of the subject disclosure.
  • the BS may include receiving circuitry, a processor, and transmitting circuitry.
  • the UE may include a non-transitory computer-readable medium having stored thereon computer-executable instructions; receiving circuitry; transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry.
  • the computer executable instructions can be programmed to implement a method (e.g., the method in Fig. 2) with the receiving circuitry, the transmitting circuitry and the processor.
  • Fig. 6 illustrates a block diagram of a BS according to the embodiments of the subject disclosure.
  • the BS may include receiving circuitry, a processor, and transmitting circuitry.
  • the UE may include a non-transitory computer-readable medium having stored thereon computer-executable instructions; receiving circuitry; transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry.
  • the computer executable instructions can be programmed to implement a method (e.g., the method in Fig. 2) with the receiving circuitry, the transmitting circuitry and the processor.
  • the method according to embodiments of the present disclosure can also be implemented on a programmed processor.
  • the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like.
  • any device on which resides a finite state machine capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application.
  • an embodiment of the present disclosure provides an apparatus for PUSCH transmission with repetition, including a processor and a memory.
  • Computer programmable instructions for implementing a method are stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method.
  • the method may be a method as stated above or other method according to an embodiment of the present disclosure.
  • An alternative embodiment preferably implements the methods according to embodiments of the present disclosure in a non-transitory, computer-readable storage medium storing computer programmable instructions.
  • the instructions are preferably executed by computer-executable components preferably integrated with a network security system.
  • the non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical storage devices (CD or DVD) , hard drives, floppy drives, or any suitable device.
  • the computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device.
  • an embodiment of the present disclosure provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein.
  • the computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present disclosure.

Abstract

The present disclosure relates to a method and an apparatus for physical uplink control channel (PUCCH) transmission with repetition. One embodiment of the present disclosure provides a method, including: receiving configuration information indicating a plurality of PUCCH repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission; determining a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions; and transmitting the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.

Description

METHOD AND APPARATUS FOR PUCCH TRANSMISSION WITH REPETITIONS TECHNICAL FIELD
Embodiments of the present disclosure relate to wireless communication technology, especially to a method and an apparatus for physical uplink control channel (PUCCH) transmission with repetitions.
BACKGROUND OF THE INVENTION
In new radio (NR) R17, it is proposed to identify and specify features to improve reliability and robustness for channels other than physical downlink shared channel (PDSCH) using multiple transmission reception points (TRP) and/or multi-panel, with R16 reliability features. The concerned channels other than PDSCH are: physical downlink control channel (PDCCH) , PUSCH, and physical uplink control channel (PUCCH) .
Specifically, regarding PUCCH, PUCCH repetitions with one beam is specified in R15 to increase the reliability and robustness. Multiple beams (a beam may be represented by spatial relation information) will be used for PUCCH repetitions in R17 with multiple TRP's reception to further improve the reliability and robustness. Multiple panels will be implemented on the UE side to support the PUCCH repetitions with multiple beams to multiple TRPs. However, only one panel can be used for uplink (UL) transmission in R17 considering the power limitation of UE.
Therefore, it may need time to switch beams between two PUCCH repetitions with different beams, how to handle two adjacent PUCCH repetitions with different beams in time domain should be further studied.
SUMMARY
At least one objective of the embodiments of the present disclosure is to provide a technical solution for PUCCH transmission with repetitions, especially for PUCCH transmission with repetitions using different beams.
An embodiment of the present disclosure provides a method, including: receiving configuration information indicating a plurality of PUCCH repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission; determining a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions; and transmitting the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
In an embodiment of the present disclosure, wherein the PUCCH transmission is a sub-slot based transmission or a slot based transmission and the time gap is composed of a number of sub-slots for sub-slot based transmission or a number of slots for slots based transmission.
In an embodiment of the present disclosure, the time gap is configured by radio resource control (RRC) or indicated by downlink control information (DCI) .
In an embodiment of the present disclosure, the UE further applies the time gap to each two adjacent PUCCH repetitions with a same beam of the plurality of PUCCH repetitions.
In an embodiment of the present disclosure, the time gap is only applied to each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions.
In an embodiment of the present disclosure, the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is determined by a symbol length of a slot for slot based transmission or a length of a sub-slot for sub-slot based transmission, and a time threshold for beam switching.
In an embodiment of the present disclosure, the time threshold for beam switching is predefined or RRC configured.
In an embodiment of the present disclosure, the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is further determined by a symbol length of a gap between two adjacent PUCCH repetitions in two consecutive sub-slots for sub-slot based transmission or two consecutive slots for slot based transmission.
Another embodiment of the present disclosure provides a method, including: transmitting configuration information indicating a plurality of PUCCH repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission; determining a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions; and receiving the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
In an embodiment of the present disclosure, the PUCCH transmission is a sub-slot based transmission or a slot based transmission and the time gap is composed of a number of sub-slots for sub-slot based transmission or a number of slots for slots based transmission.
In an embodiment of the present disclosure, the time gap is configured by RRC or indicated by downlink control information (DCI) .
In an embodiment of the present disclosure, the BS further applies the time gap to each two adjacent PUCCH repetitions with a same beam of the plurality of PUCCH repetitions.
In an embodiment of the present disclosure, the time gap is only applied to each two adjacent PUCCH repetitions with different beam of the plurality of PUCCH repetitions.
In an embodiment of the present disclosure, the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot  based transmission is determined by a symbol length of a slot for slot based transmission or a length of a sub-slot for sub-slot based transmission, and a time threshold for beam switching.
In an embodiment of the present disclosure, the time threshold for beam switching is predefined or RRC configured.
In an embodiment of the present disclosure, the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is further determined by a symbol length of a gap between two adjacent PUCCH repetitions in two consecutive sub-slots for sub-slot based transmission or two consecutive slots for slot based transmission.
Yet another embodiment of the present disclosure provides an apparatus, including: at least one non-transitory computer-readable medium having stored thereon computer-executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry, wherein the computer-executable instructions cause the at least one processor to implement a method according to an embodiment of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which advantages and features of the present disclosure can be obtained, a description of the present disclosure is rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. These drawings depict only exemplary embodiments of the present disclosure and are not therefore intended to limit the scope of the present disclosure.
Fig. 1 is a schematic diagram illustrating an exemplary wireless communication system according to some embodiments of the present disclosure.
Fig. 2 illustrates a flow chart of a method for a PUCCH transmission with  repetitions according to some embodiments of the present disclosure.
Fig. 3A illustrates an exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some embodiments of the present disclosure.
Fig. 3B illustrates another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some embodiments of the present disclosure.
Fig. 4A illustrates yet another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some embodiments of the present disclosure.
Fig. 4B illustrates yet another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some embodiments of the present disclosure.
Fig. 5 illustrates a block diagram of a UE according to the embodiments of the present disclosure.
Fig. 6 illustrates a block diagram of a BS according to the embodiments of the present disclosure.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of the currently preferred embodiments of the present disclosure and is not intended to represent the only form in which the present disclosure may be practiced. It is to be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present disclosure.
Reference will now be made in detail to some embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. To  facilitate understanding, embodiments are provided under specific network architecture and new service scenarios, such as 3rd generation partnership project (3GPP) 5G, 3GPP long term evolution (LTE) Release 8 and so on. Persons skilled in the art know very well that, with the development of network architecture and new service scenarios, the embodiments in the present disclosure are also applicable to similar technical problems.
Fig. 1 illustrates a schematic diagram of an exemplary wireless communication system 100 according to some embodiments of the present disclosure.
As shown in Fig. 1, the wireless communication system 100 includes a UE 102 and a BS 101. Although merely one BS is illustrated in Fig. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present disclosure. Similarly, although merely one UE is illustrated in Fig. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present disclosure.
The BS 101 may also be referred to as an access point, an access terminal, a base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art. The BS 101 is generally part of a radio access network that may include a controller communicably coupled to the BS 101.
The UE 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like. According to an embodiment of the present disclosure, the UE 102 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network. In some embodiments, the UE 102 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like.  Moreover, the UE 102 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
The wireless communication system 100 is compatible with any type of network that is capable of sending and receiving wireless communication signals. For example, the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
According to the present 3GPP documents, a PUCCH resource (or PUCCH transmission) configured with repetitions is transmitted in consecutive slots if the PUCCH resource is slot based transmission, and a PUCCH resource configured with repetitions is transmitted in consecutive sub-slots if the PUCCH resource is sub-slot based transmission. Sub-slot is specified in R16, and the length of a sub-slot may be 2 symbols or 7 symbols. If the length of sub-slot is 2 symbols, then the maximum gap between two adjacent repetitions of a PUCCH resource is 1 symbol. If the length of sub-slot is 7 symbols, then the maximum gap between two adjacent repetitions of a PUCCH resource is 6 symbols while the maximum gap between two adjacent repetitions of a long PUCCH resource is 3 symbols.
In order to transmit the PUCCH resource with multiple beams, the UE may need time to switch beams for two adjacent PUCCH repetitions with different beams. However, the abovementioned maximum gap might not be long enough for the UE to perform beam switching. Therefore, how to ensure the UE to have enough time for beam switching when transmitting a PUCCH with multiple PUCCH repetitions using different beams should be solved. Since the performance of PUCCH is very important to throughput, it is beneficial not to drop any symbol of a PUCCH resource due to beam switching.
Embodiments of the present disclosure propose a method and apparatus for  PUCCH transmission with repetitions, wherein the time for beam switching is ensured, while no PUCCH repetition being dropped. In particular, in addition to the abovementioned maximum gap, embodiments of the present disclosure also propose adding an additional gap between the PUCCH repetitions, so that the UE has enough time to perform beam switching.
Fig. 2 illustrates a flow chart of a method for PUCCH transmission with repetitions according to some embodiments of the present disclosure. Although the method is illustrated in a system level by a UE on a remote side (or UE side) and a BS on a network side (or BS side) , persons skilled in the art can understand that the method implemented on the remote side and that implemented on the network side can be separately implemented and incorporated by other apparatus with similar functions.
In the exemplary method shown in Fig. 2, in step 202, the network, e.g., a BS 101 as shown in Fig. 1, may transmit configuration information to the remote side, e.g., a UE 102. The configuration information may be transmitted by at least one of RRC signaling and downlink control information (DCI) . Correspondingly, in step 201, the remote side may receive the configuration information from the network side. The configuration information may indicate a plurality of PUCCH repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission. Each of the plurality of beams may be represented by spatial relation information. According to the mapping pattern, a beam of the plurality of beams can be associated with (or mapped to) one or more corresponding PUCCH repetitions of the plurality of PUCCH repetitions. The mapping pattern of the plurality of beams may be any beam mapping pattern, e.g., cyclical mapping pattern, or sequential mapping pattern, which has been agreed by 3GPP.
After receiving the configuration information, in step 203, the UE may determine a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions. Correspondingly, in order to receive the PUCCH repetitions from the UE, in step 204, the BS may also determine a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions.
In step 205, the UE transmits the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap. Correspondingly, in step 206, the BS receives the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
The PUCCH transmission may be a sub-slot based transmission. The time gap is composed of a number of sub-slots for sub-slot based transmission. Alternatively, the PUCCH transmission may be a slot based transmission, and the time gap is composed of a number of a number of slots for slots based transmission.
In some embodiments, the time gap is configured by RRC or indicated by DCI. In other words, in such embodiments, the BS determines the time gap, and transmits the time gap to UE. Then the UE applies the time gap.
In addition to the time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions as determined in step 203 and step 204, the time gap may also be applied to each two adjacent PUCCH repetitions with the same beam of the plurality of PUCCH repetitions. Alternatively, the time gap is only applied to each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions, that is, the time gap may not be applied to each two adjacent PUCCH repetitions with the same beam of the plurality of PUCCH repetitions.
In some embodiments, the number of sub-slots of the time gap for sub-slot based transmission is determined by a symbol length of a slot for slot based transmission, and a time threshold for beam switching. The number of slots of the time gap for slot based transmission is determined by a length of a sub-slot for sub-slot based transmission, and a time threshold for beam switching. The time threshold for beam switching may be predefined or RRC configured.
In some other embodiments, in addition to the above elements, the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is further determined by a symbol length of a gap between two adjacent PUCCH repetitions in two consecutive sub-slots for sub-slot based transmission or two consecutive slots for slot based transmission.
Based on the above basic solutions, more details will be illustrated in various embodiments hereafter. Considering the consistency between the remote side and network side, although the following demonstrations are provided mainly on the remote side, persons skilled in the art should clearly understand how to apply them on the network side.
Regarding the beam switching time, there are several approaches to determine the beam switching time for PUCCH repetitions. In a first scheme, the minimal time threshold for beam switching may be specifically determined for a UE based on the capability of the UE. For example, the minimal time threshold for beam switching may be similar to a threshold timeDurationForQCL for transmission configuration indication (TCI) state determination of PDSCH. A UE may report its capability under beam switching of uplink (UL) transmission, and the network side will determine the minimal time threshold for beam switching for the UE based on the UE's capability. In such a scheme, the minimal time threshold is related to the UE capability, and the minimal time threshold is UE specific, that is, the minimal time threshold may be different for different UEs.
In a second scheme, the time threshold for beam switching is predefined in specification (s) (or protocol (s) ) . For example, the time threshold for beam switching may be defined as a number of symbols, which is different in view of different subcarrier spacing (SCS) . The time threshold for minimal beam switching time is predefined and it is related to the SCS of the UL transmission. In such a scheme, the time threshold for beam switching is not UE specific, and is the same for all the UE.
For both first and second schemes, when transmitting a PUCCH resource with repetitions, the BS always takes the minimal time threshold for beam switching, so the UE always has enough time to switch beams for adjacent repetitions with different beams.
Regarding the first scheme, after determining the minimal time threshold, the number of symbols for the minimal beam switching time is determined according to the SCS of the UL transmission and the minimal time threshold. Regarding the second scheme, the number of symbols for the minimal beam switching time is predefined based on the SCS of the UL transmission.
In order to ensure the UE has enough time to switch beam for transmitting PUCCH repetitions, the available time gap including the gap between two adjacent repetitions in two consecutive slots or sub-slots for switching beam should be at least larger than or equal to the minimal time threshold, and Figs. 3A-4B depict some embodiments according to the present disclosure.
Fig. 3A illustrates an exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some other embodiments of the present disclosure. Persons skilled in the art should understand that only four repetitions and two beams are shown for simplicity and clearness. There may be another repetition number or another beam number in other embodiments of the present disclosure, hereafter the same.
In Fig. 3A, there are 10 sub-slots, which are sub-slot 0, sub-slot 1, …, and sub-slot 9 respectively, and the length of each sub-slot is 2 symbols. A PUCCH resource, being a sub-slot based transmission is configured with 4 repetitions in 4 sub-slots. The length of the PUCCH resource is 2 symbols.
According to a beam mapping pattern, the UE may transmit 4 PUCCH repetitions, repetition 0, repetition 1, repetition 2, and repetition 3 with two beams, beam 1 and beam 2. Repetition 0 and repetition 1 are mapped to beam 1, and repetition 2 and repetition 3 are mapped to beam 2. It should be noted that other mapping pattern is not limited, for example, another mapping pattern may be: repetition 0 and repetition 2 are mapped to beam 1, and repetition 1 and repetition 3 are mapped to beam 2.
The minimal length of symbols for beam switching is assumed to be 4 symbols. Since each sub-slot includes 2 symbols, the length of 2 sub-slots, i.e., 4 symbols, is not smaller than the minimal symbols for beam switching. Thus, to ensure the UE can switch the beam during the configured gap, 2 sub-slots are needed at least. Based on the calculated result, 2 sub-slots can be configured by RRC or DCI by base station for the PUCCH resource as a time gap for beam switching.
In Fig. 3A, the first repetition, i.e. repetition 0, is transmitted in sub-slot 0, which is configured by RRC or indicated by a DCI, then the second repetition, i.e.  repetition 1, is transmitted after the first repetition and the 1 st gap, thus repetition 1 is transmitted in sub-slot 3. Similarly, the third repetition, i.e. repetition 2, is transmitted in sub-slot 6, and the fourth repetition, i.e. repetition 3, is transmitted in sub-slot 9.
To sum up, in Fig. 3A, there is a time gap composed of 2 sub-slots between each two consecutive PUCCH repetitions, which is used for the UE to switch beams.
It should be noted that Fig. 3A only describes a sub-slot based PUCCH transmission for an example, and the solution also applies to the slot based PUCCH transmission. For example, the  reference numeral  0, 1, …, 9 for sub-slot may also refer to slots. In Fig. 3A, 10 slots, which are slot 0, slot 1, …, and slot 9 can respectively replace sub-slot 0, sub-slot 1, …, and sub-slot 9. The PUCCH resource, e.g., being configured with 4 repetitions in 4 slots is slot based transmission. The length of the PUCCH resource is 1 slot. The minimal time for beam switching is 2 slots. Therefore, the time gap may be determined as 2 slots, which is equal to the minimal time for beam switching. Based on the calculated result, 2 slots are configured by RRC or DCI for PUCCH resource as a gap for beam switching.
In Fig. 3A, assuming that the first repetition, i.e. repetition 0, is transmitted in slot 0, which is configured by RRC or indicated by a DCI, then the second repetition, i.e. repetition 1, is transmitted after the first repetition and the 1 st gap, thus repetition 1 is transmitted in slot 3. Similarly, the third repetition, i.e. repetition 2, is transmitted in slot 6, and the fourth repetition, i.e. repetition 3, is transmitted in slot 9.
As can be seen, for PUCCH repetition 0 and repetition 1, they are transmitted with the same beam, i.e. beam 1, and no beam switching is needed between them. However, there is also a time gap, e.g. the 1 st gap, between PUCCH repetition 0 and repetition 1. That is, the 1 st gap is not necessary. Similarly, the 3 rd gap is also not necessary.
Thus, the present disclosure also proposes an improved solution based on the solution in Fig. 3A.
Fig. 3B illustrates another exemplary diagram of four repetitions of a  PUCCH transmission with two beams according to some other embodiments of the present disclosure. Persons skilled in the art should understand that only four repetitions and two beams are shown for simplicity and clearness. There may be another repetition number or another beam number in other embodiments of the present disclosure, hereafter the same.
In Fig. 3B, there are 10 sub-slots, which are sub-slot 0, sub-slot 1, …, and sub-slot 9, respectively, and the length of each sub-slot is 2 symbols. A PUCCH resource being a sub-slot based transmission is configured with 4 repetitions in 4 sub-slots. The length of the PUCCH resource is 2 symbols.
According to a beam mapping pattern, the UE may transmit 4 PUCCH repetitions, repetition 0, repetition 1, repetition 2, and repetition 3 with two beams, beam 1 and beam 2. Repetition 0 and repetition 1 are mapped to beam 1, and repetition 2 and repetition 3 are mapped to beam 2. It should be noted that other mapping pattern is not limited, for example, another mapping pattern may be: repetition 0 and repetition 2 are mapped to beam 1, and repetition 1 and repetition 3 are mapped to beam 2.
The minimal length of symbols for beam switching is assumed to be 4 symbols. Since each sub-slot includes 2 symbols, the length of 2 sub-slots, i.e., 4 symbols, is not smaller than the minimal symbols for beam switching. Thus, to can ensure the UE can switch the beam during the configured gap, 2 sub-slots are required at least. Based on the calculated result, 2 sub-slots can be configured by RRC or DCI by base station for the PUCCH resource as a time gap for beam switching.
In Fig. 3B, the first repetition, i.e. repetition 0, which is transmitted with beam 1, is transmitted in sub-slot 2, which is configured by RRC or indicated by a DCI, then the second repetition, i.e. repetition 1, which is also transmitted with beam 1, and no gap is needed since repetition 0 and repetition 1 are transmitted with the same beam. Therefore, repetition 1 is transmitted after the first repetition, in sub-slot 3. The third repetition, i.e. repetition 2 is transmitted with beam 2, which is different from the beam used for transmitting the second repetition, thus a gap is needed. Accordingly, repetition 2 is transmitted after the second repetition and a gap, namely, repetition 2 is transmitted in sub-slot 6. The fourth repetition, i.e. repetition 3 is  transmitted with beam 2, which is the same beam as the beam used for transmitting the third repetition, thus a gap is not needed. Accordingly, repetition 3 is transmitted after the third repetition, in sub-slot 7.
In Fig. 3B, only one time gap including sub-slot 4 and sub-slot 5 is configured, and the time gap is equal to the minimal switching time for the UE, thus the UE is capable of transmitting the four PUCCH repetitions without dropping any one. It should be noted that Fig. 3B only describes a sub-slot based PUCCH transmission for an example, and the solution also applies to the slot based PUCCH transmission.
Fig. 4A illustrates yet another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some other embodiments of the present disclosure. Persons skilled in the art should understand that only four repetitions and two beams are shown for simplicity and clearness. There may be another repetition number or another beam number in other embodiments of the present disclosure, hereafter the same.
In Fig. 4A, there are 7 sub-slots, which are sub-slot 0, sub-slot 1, …, and sub-slot 6, respectively, and the length of each sub-slot is 7 symbols. A PUCCH resource, being a sub-slot based transmission is configured with 4 repetitions in 4 sub-slots. The length of the PUCCH resource is 6 symbols. There is a time gap between two repetitions in two consecutive slots or sub-slots, which is 1 symbol. The minimal length of symbols for beam switching is assumed to be 6 symbols.
According to a beam mapping pattern, the UE may transmit 4 PUCCH repetitions, repetition 0, repetition 1, repetition 2, and repetition 3 with two beams, beam 1 and beam 2. Repetition 0 and repetition 1 are mapped to beam 1, and repetition 2 and repetition 3 are mapped to beam 2. It should be noted that other mapping pattern is not limited, for example, another mapping pattern may be: repetition 0 and repetition 2 are mapped to beam 1, and repetition 1 and repetition 3 are mapped to beam 2.
In order to calculate the time gap, the present disclosure proposes to use the following parameters:
i. the length of the additional gap: K slots or K sub-slots;
ii. the length of the sub-slot or slot: L symbols;
iii. the length of the gap between two repetitions in two consecutive slots or sub-slots: N symbols; and
iv. the minimal beam switching time: M symbols.
In order to ensure that the UE to have enough time to switch the beams, the sum of the length of the additional time gap and the length of the time gap between two repetitions in two consecutive slots or sub-slots should be larger than or equal to the minimal beam switching time. That is, K × L + N ≥ M. Furthermore, K is the smallest natural number which satisfies the inequality to make the latency of transmission of all repetitions as smaller as possible.
In Fig. 4A, the length of the sub-slot, L, is 7 symbols, the length of the time gap between two repetitions in two sub-slots is the length of the sub-slot minus the length of the length of the repetition, which is 7 symbols minus 6 symbols, i.e. 1 symbol. The minimal beam switching time, M, is assumed to be 6 symbols. Therefore, the above inequality is K × 7 + 1 ≥ 6, which is further calculated as K ≥5/7.
Based on calculation, K is determined as 1 since the smallest natural number satisfying the above inequality is 1. Therefore, the length of the additional time gap is 1 sub-slot. The UE is aware that there is an additional time gap composed of 1 sub-slot between each two consecutive PUCCH transmission.
In Fig. 4A, assuming that the first repetition, i.e. repetition 0, is transmitted in sub-slot 0, which is determined based on the calculation of the UE, then the second repetition, i.e. repetition 1, is transmitted after the first repetition, the time gap between two repetitions in two consecutive sub-slots, and the 1 st gap, thus repetition 1 is transmitted in sub-slot 2. Similarly, the third repetition, i.e. repetition 2, is transmitted in sub-slot 4, and the fourth repetition, i.e. repetition 3, is transmitted in sub-slot 5.
To sum up, in Fig. 4A, there is an additional time gap composed of a number of sub-slots, in addition to the time gap between two repetitions in two consecutive sub-slots, and the length of this additional time gap is calculated by the above inequality, K × L + N ≥ M. Furthermore, K is the smallest natural number which satisfies the inequality to make the latency of transmission of all repetitions as smaller as possible. It should be noted that K is determined as mentioned above on both the UE side and the BS side.
In another embodiment, the time gap between two repetitions in two consecutive sub-slots is ignored, thus the inequality is: K × L ≥ M. Furthermore, K is the smallest natural number which satisfies the inequality to make the latency of transmission of all repetitions as smaller as possible. It should be noted that K is determined as mentioned above on both the UE side and the BS side.
As can be seen, for PUCCH repetition 0 and repetition 1, they are transmitted with the same beam, i.e. beam 1, and no beam switching is needed between them. However, there is also a time gap, i.e. the 1 st gap, between PUCCH repetition 0 and repetition 1. That is, the 1 st gap is not necessary. Similarly, the 3 rd gap is also not necessary.
Thus, the present disclosure also proposes an improved solution based on the solution in Fig. 4A.
Fig. 4B illustrates yet another exemplary diagram of four repetitions of a PUCCH transmission with two beams according to some other embodiments of the present disclosure. Persons skilled in the art should understand that only four repetitions and two beams are shown for simplicity and clearness. There may be another repetition number or another beam number in other embodiments of the present disclosure, hereafter the same.
In Fig. 4B, there are 5 sub-slots, which are sub-slot 0, sub-slot 1, …, and sub-slot 4 respectively, and the length of each sub-slot is 7 symbols. A PUCCH resource being configured with a sub-slot based transmission, is configured with 4 repetitions in 4 sub-slots. The length of the PUCCH resource is 6 symbols. There is a gap between two repetitions in two consecutive slots or sub-slots, which is 1  symbol. The minimal length of symbols for beam switching is assumed to be 6 symbols.
According to a beam mapping pattern, the UE may transmit 4 PUCCH repetitions, repetition 0, repetition 1, repetition 2, and repetition 3 with two beams, beam 1 and beam 2. Repetition 0 and repetition 1 are mapped to beam 1, and repetition 2 and repetition 3 are mapped to beam 2. It should be noted that other mapping pattern is not limited, for example, another mapping pattern may be: repetition 0 and repetition 2 are mapped to beam 1, and repetition 1 and repetition 3 are mapped to beam 2.
In order to calculate the time gap, the present disclosure proposes to use the following parameters:
v. the length of the additional gap: K slots or K sub-slots;
vi. the length of the sub-slot or slot: L symbols;vii. the length of the gap between two repetitions in two consecutive slots or sub-slots: N symbols; and
viii. the minimal beam switching time: M symbols.
In order to ensure that the UE to have enough time to switch the beams, the sum of the length of the additional time gap and the length of the time gap between two repetitions in two consecutive slots or sub-slots should be larger than or equal to the minimal beam switching time. That is, K × L + N ≥ M. Furthermore, K is the smallest natural number which satisfies the inequality to make the latency of transmission of all repetitions as smaller as possible.
In Fig. 4B, the length of the sub-slot, L, is 7 symbols, the length of the time gap between two repetitions in two sub-slots is the length of the sub-slot minus the length of the length of the repetition, which is 7 symbols minus 6 symbols, i.e. 1 symbol. The minimal beam switching time, M, is assumed to be 6 symbols. Therefore, the above inequality is K × 7 + 1 ≥ 6, which is further calculated as K ≥5/7.
Based on calculation, K is determined as 1 since the smallest natural number satisfying the above inequality is 1. Therefore, the length of the additional time gap is 1 sub-slot. The UE is aware that there is an additional time gap composed of 1 sub-slot between each two consecutive PUCCH transmission.
In Fig. 4B, assuming that the first repetition, i.e. repetition 0, is transmitted in sub-slot 0, which is determined based on the calculation of the UE. The second repetition, i.e. repetition 1, is transmitted with beam 1, which is the same beam for transmitting the first repetition, thus the additional time gap is not needed. Therefore, the time gap between the first repetition and the second repetition is the time gap between two repetitions in two consecutive sub-slots, thus repetition 1 is transmitted in sub-slot 1.
The third repetition, i.e. repetition 2, is transmitted with beam 2, which is a different beam for transmitting the second repetition, thus the additional time gap is required. Therefore, the time gap between repetition 1 and repetition 2 includes the time gap between two repetitions in two consecutive sub-slots, and the additional time gap, thus repetition 2 is transmitted in sub-slot 3. The fourth repetition, i.e. repetition 3, is transmitted with beam 2, which is the same beam for transmitting the third repetition, thus the additional time gap is not needed. Therefore, the time gap between the third repetition and the fourth repetition is the time gap between two repetitions in two consecutive sub-slots, thus repetition 3 is transmitted in sub-slot 4.
To sum up, in Fig. 4B, there is an additional time gap composed of a number of sub-slots, in addition to the time gap between two repetitions in two consecutive sub-slots, and the length of this additional time gap is calculated by the above inequality, K × L + N ≥ M where K is the smallest natural number satisfying the inequality, on both the UE side and the BS side.
In another embodiment, the time gap between two repetitions in two consecutive sub-slots is ignored, thus the inequality is: K × L ≥ M.
In Fig. 4B, only one additional time gap, i.e. the time gap located at sub-slot 2 is configured, and the time gap is larger than the minimal switching time for the UE, thus the UE is capable of transmitting the four PUCCH repetitions without dropping  any one.
It should be noted that Figs. 3A-4B only describe a sub-slot based PUCCH transmission for an example, and these solutions also apply to the slot based PUCCH transmission.
It also should be noted that the solutions for determining time gaps in Figs. 3A-4B are performed on both the UE side and the network side, because the BS needs to receive the transmission beams with the corresponding receiving beams.
Fig. 5 illustrates a block diagram of a UE according to the embodiments of the subject disclosure.
The BS may include receiving circuitry, a processor, and transmitting circuitry. In one embodiment, the UE may include a non-transitory computer-readable medium having stored thereon computer-executable instructions; receiving circuitry; transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry. The computer executable instructions can be programmed to implement a method (e.g., the method in Fig. 2) with the receiving circuitry, the transmitting circuitry and the processor.
Fig. 6 illustrates a block diagram of a BS according to the embodiments of the subject disclosure.
The BS may include receiving circuitry, a processor, and transmitting circuitry. In one embodiment, the UE may include a non-transitory computer-readable medium having stored thereon computer-executable instructions; receiving circuitry; transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry. The computer executable instructions can be programmed to implement a method (e.g., the method in Fig. 2) with the receiving circuitry, the transmitting circuitry and the processor.
The method according to embodiments of the present disclosure can also be  implemented on a programmed processor. However, the controllers, flowcharts, and modules may also be implemented on a general purpose or special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit elements, an integrated circuit, a hardware electronic or logic circuit such as a discrete element circuit, a programmable logic device, or the like. In general, any device on which resides a finite state machine capable of implementing the flowcharts shown in the figures may be used to implement the processor functions of this application. For example, an embodiment of the present disclosure provides an apparatus for PUSCH transmission with repetition, including a processor and a memory. Computer programmable instructions for implementing a method are stored in the memory, and the processor is configured to perform the computer programmable instructions to implement the method. The method may be a method as stated above or other method according to an embodiment of the present disclosure.
An alternative embodiment preferably implements the methods according to embodiments of the present disclosure in a non-transitory, computer-readable storage medium storing computer programmable instructions. The instructions are preferably executed by computer-executable components preferably integrated with a network security system. The non-transitory, computer-readable storage medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical storage devices (CD or DVD) , hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device. For example, an embodiment of the present disclosure provides a non-transitory, computer-readable storage medium having computer programmable instructions stored therein. The computer programmable instructions are configured to implement a method as stated above or other method according to an embodiment of the present disclosure.
In addition, in this disclosure, relational terms such as "first, " "second, " and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms "comprises, " "including, " or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process,  method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a, " "an, " or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element. Also, the term "another" is defined as at least a second or more. The terms "including, " "having, " and the like, as used herein, are defined as "including. "

Claims (15)

  1. A method, comprising:
    receiving configuration information indicating a plurality of physical uplink control channel (PUCCH) repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission;
    determining a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions; and
    transmitting the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
  2. The method of Claim 1, wherein the PUCCH transmission is a sub-slot based transmission or a slot based transmission and the time gap is composed of a number of sub-slots for sub-slot based transmission or a number of slots for slots based transmission.
  3. The method of Claim 2, wherein the time gap is configured by radio resource control (RRC) or indicated by downlink control information (DCI) .
  4. The method of Claim 1, further comprising:
    applying the time gap to each two adjacent PUCCH repetitions with a same beam of the plurality of PUCCH repetitions.
  5. The method of Claim 2, wherein the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is determined by a symbol length of a slot for slot based transmission or a length of a sub-slot for sub-slot based transmission, and a time threshold for beam switching.
  6. The method of Claim 5, wherein the time threshold for beam switching is predefined or RRC configured.
  7. The method of Claim 5, wherein the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is further determined by a symbol length of a gap between two adjacent PUCCH repetitions in two consecutive sub-slots for sub-slot based transmission or two consecutive slots for slot based transmission.
  8. A method, comprising:
    transmitting configuration information indicating a plurality of physical uplink control channel (PUCCH) repetitions of a PUCCH transmission using a plurality of beams and a beam mapping pattern for the PUCCH transmission;
    determining a time gap between each two adjacent PUCCH repetitions with different beams of the plurality of PUCCH repetitions; and
    receiving the plurality of PUCCH repetitions using the plurality of beams based on the beam mapping pattern and the time gap.
  9. The method of Claim 8, wherein the PUCCH transmission is a sub-slot based transmission or a slot based transmission and the time gap is composed of a number of sub-slots for sub-slot based transmission or a number of slots for slots based transmission.
  10. The method of Claim 8, wherein the time gap is configured by radio resource control (RRC) or indicated by downlink control information (DCI) .
  11. The method of Claim 8, further comprising:
    applying the time gap to each two adjacent PUCCH repetitions with a same beam of the plurality of PUCCH repetitions.
  12. The method of Claim 8, wherein the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is determined by a symbol length of a slot for slot based transmission or a length of a sub-slot for sub-slot based transmission, and a time threshold for beam switching.
  13. The method of Claim 12, wherein the time threshold for beam switching is predefined or RRC configured.
  14. The method of Claim 13, wherein the number of sub-slots of the time gap for sub-slot based transmission or the number of slots of the time gap for slot based transmission is further determined by a symbol length of a gap between two adjacent PUCCH repetitions in two consecutive sub-slots for sub-slot based transmission or two consecutive slots for slot based transmission.
  15. An apparatus, comprising:
    at least one non-transitory computer-readable medium having stored thereon computer-executable instructions;
    at least one receiving circuitry;
    at least one transmitting circuitry; and
    at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry,
    wherein the computer-executable instructions cause the at least one processor to implement the method of any of Claims 1-14 with the at least one receiving circuitry and the at least one transmitting circuitry.
PCT/CN2020/122691 2020-10-22 2020-10-22 Method and apparatus for pucch transmission with repetitions WO2022082563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122691 WO2022082563A1 (en) 2020-10-22 2020-10-22 Method and apparatus for pucch transmission with repetitions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122691 WO2022082563A1 (en) 2020-10-22 2020-10-22 Method and apparatus for pucch transmission with repetitions

Publications (1)

Publication Number Publication Date
WO2022082563A1 true WO2022082563A1 (en) 2022-04-28

Family

ID=81289538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122691 WO2022082563A1 (en) 2020-10-22 2020-10-22 Method and apparatus for pucch transmission with repetitions

Country Status (1)

Country Link
WO (1) WO2022082563A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313389A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Uplink control channel beam switch procedure
CN111092697A (en) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 Data transmission method, device and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313389A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Uplink control channel beam switch procedure
CN111092697A (en) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 Data transmission method, device and storage medium

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2006791, vol. RAN WG1, 8 August 2020 (2020-08-08), pages 1 - 14, XP051918241 *
SPREADTRUM COMMUNICATIONS: "Discussion on enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2006258, vol. RAN WG1, 8 August 2020 (2020-08-08), pages 1 - 5, XP051917939 *
ZTE: "Further details on multi-beam/TRP operation", 3GPP DRAFT; R1-1910287 FURTHER DETAILS ON MULTI-BEAM AND TRP OPERATION, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 16, XP051789092 *
ZTE: "Multi-TRP enhancements for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2005455, vol. RAN WG1, 8 August 2020 (2020-08-08), pages 1 - 12, XP051917479 *

Similar Documents

Publication Publication Date Title
US11916678B2 (en) Method and apparatus for HARQ-ACK feedback for carrier aggregation
US20220418000A1 (en) Communication methods and apparatuses
EP3739788B1 (en) Signal receiving device and communication system
WO2023050402A1 (en) Method and apparatus for beam determination
WO2022082563A1 (en) Method and apparatus for pucch transmission with repetitions
WO2021163961A1 (en) Method and apparatus for frequency hopping with multiple beams
US20220256578A1 (en) Method and Apparatus for Overhead Reduction for Configured Grant Based Uplink Transmission
WO2022073231A1 (en) Method and apparatus for pusch transmission with repetition
CN115334684A (en) Method, apparatus, storage medium and computer program product for random access
WO2022205302A1 (en) Method and apparatus for pusch transmission with repetitions
WO2024087630A1 (en) Method and apparatus of supporting uplink transmissions
WO2022000125A1 (en) Method and apparatus for mapping pusch repetitions
WO2023283876A1 (en) Method and apparatus for uplink transmission
WO2022000431A1 (en) Method and apparatus for frequency hopping with multiple beams
WO2023283877A1 (en) Method and apparatus for physical uplink control channel (pucch) transmission
WO2022261930A1 (en) Method and apparatus for beam determination
WO2022061578A1 (en) Method and apparatus for multiplexing uplink resources
US20240063880A1 (en) Method and apparatus for uplink transmission
WO2024065170A1 (en) Method and apparatus of radio resource determination
US20230412240A1 (en) Method and apparatus for beam failure recovery in multi-dci based multiple trps
WO2023056605A1 (en) Method and apparatus for beam determination
WO2023010413A1 (en) Methods and apparatuses for physical uplink control channel transmission
WO2024007240A1 (en) Methods and apparatuses of pusch transmission
WO2024074025A1 (en) Method and apparatus of supporting physical random access channel (prach) transmission
WO2023130346A1 (en) Method and apparatus of beam determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958146

Country of ref document: EP

Kind code of ref document: A1