CN111593094A - 基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法 - Google Patents

基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法 Download PDF

Info

Publication number
CN111593094A
CN111593094A CN202010377297.9A CN202010377297A CN111593094A CN 111593094 A CN111593094 A CN 111593094A CN 202010377297 A CN202010377297 A CN 202010377297A CN 111593094 A CN111593094 A CN 111593094A
Authority
CN
China
Prior art keywords
quantum dot
mirna
dna
nucleic acid
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010377297.9A
Other languages
English (en)
Other versions
CN111593094B (zh
Inventor
孙清江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010377297.9A priority Critical patent/CN111593094B/zh
Publication of CN111593094A publication Critical patent/CN111593094A/zh
Application granted granted Critical
Publication of CN111593094B publication Critical patent/CN111593094B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法。具体实施方法由三部分组成:(1)制备负载DNA酶序列和猝灭剂修饰的底物序列的多色量子点胶束球形核酸(QM‑SNA);(2)在靶标触发且金属离子辅助条件下,DNA酶可实现沿QM表面DNA轨道(底物序列)的自动化行走;(3)采用荧光分光光度计测量行走结束后多色QM的荧光信号,实现对miRNA的检测分析。本发明中基于多色QM‑SNA的DNA机器用于循环miRNA的检测方法,采用DNA酶步行器介导QM荧光信号放大,实现miRNA高灵敏检测;采用多色QM‑SNA实现miRNA的多元检测,为循环miRNA精确检测提供了新方法。

Description

基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的 方法
技术领域
本发明涉及一种基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法,属于生物医学技术领域。
背景技术
microRNA(miRNA)是一类长度约为22个碱基组成的内源性的非编码RNA,可通过抑制靶向mRNA的表达来调控转录后基因的表达水平,同时miRNA可调控细胞发生、细胞分化、免疫应答等重要的生理过程,也可作为原癌基因或抑癌基因在不同癌细胞中的异常表达调控相应的病理过程。多项研究表明,在血液和体液中稳定存在的循环miRNA的异常表达与多种癌症的发生、发展密切相关,目前已成为一类重要的肿瘤分子标志物。循环miRNA具有序列短、相似度高、丰度较低,且一条miRNA可作用于多条mRNA,多条miRNA又可以同时作用于一条mRNA分子的特性。因此,如何开发出一种具有高灵敏、高特异性、多元检测能力的循环miRNA检测方法成为现阶段的巨大挑战。
传统的miRNA检测方法包括PCR法、微阵列法、测序法。PCR法检测miRNA具有较高的灵敏度和准确度,但检测过程包括引物设计、温度调控等相对复杂。微阵列和测序方法具有高通量检测的优势,但通常不兼容扩增过程,因而在灵敏度和特异性方面还有待改善,并且成本相对较高。荧光传感器具有制备简单和检测灵敏度高等优点,目前已成为miRNA检测的研究热点。量子点作为一种新型荧光团,具有抗光漂白性好、亮度高、单一波长激发多色发射等优良的光学性质,通过表面功能化可方便制备荧光传感器。现有的量子点荧光传感器大多是通过配体交换方法赋予其良好的水溶性,但制备时间较长,且荧光量子产率发生较大程度的下降。更为重要的是,配体交换方法制备的水溶性量子点粒径小,不便于功能性核酸的进一步集成。与之相对比,量子点胶束(QM)方法即直接在油溶量子点表面通过疏水作用包覆磷脂制成胶束的方法,具有制备简单的优势,并且保持了内核油溶性量子点高的荧光量子产率。同时量子点胶束有效增大了表面积,便于进一步的功能化如功能性核酸的集成等,因而更便于其在生物传感领域的应用。
miRNA低丰度的特点要求对miRNA的检测通常需要信号放大技术的辅助。目前发展的多种等温扩增技术如链式杂交反应(HCR)、滚环扩增反应(RCA)、链式取代反应(SDA)、催化发卡自组装(CHA)和DNA纳米机器(如DNA酶步行器)等均可实现有效的信号放大。DNA酶步行器是在无蛋白酶参与下利用金属离子DNA酶自身具有的催化活性对底物进行剪切并沿特定的轨道实现自动化行走。相比于蛋白酶,金属离子DNA酶具有合成成本低、结构稳定的显著优势。金属离子DNA酶行走具有条件温和、自动化、高效等优点,为检测miRNA提供了新的方法。
发明内容
技术问题:针对上述问题,本发明提供了一种基于量子点胶束球形核酸(QM-SNA)的DNA机器用于循环miRNA的检测方法,可以实现对循环miRNA的高灵敏度和多元检测。
技术方案:为了实现上述目的,本发明采用了以下技术方案,具体步骤包括:
(1)制备负载DNA酶和猝灭剂修饰的底物的多色量子点胶束球形核酸(QM-SNA);
(2)靶标miRNA触发金属离子DNA酶沿QM(量子点胶束)表面DNA轨道(底物序列)的自动化行走;
(3)采用荧光分光光度计测量步骤(2)中行走结束后QM的荧光信号,对循环miRNA进行多元检测分析。
其中,步骤(1)中所述的负载DNA酶及其底物的QM-SNA,包括三种量子点胶束(QM)、三种靶标、三种DNA酶序列及其底物序列和金属离子。三种QM分别由绿、黄、红三种颜色的量子点制备而成;三种靶标分子为血清中的三种循环miRNA,如非小细胞肺癌标志物miRNA-196a、miRNA-25、miRNA-21;三种DNA酶和对应的底物均为茎环结构,其序列分别为DNAzyme1/Substrate 1、DNAzyme 2/Substrate 2、DNAzyme 3/Substrate 3,DNAzyme的5’端修饰氨基,Substrate的5’端和3’端分别修饰猝灭剂(BHQ)和氨基。其中DNAzyme 1/Substrate 1用于检测miRNA 1,偶联至绿色的QM表面;DNAzyme 2/Substrate 2用于检测miRNA 2,偶联至黄色的QM表面;DNAzyme 3/Substrate 3用于检测miRNA3,偶联至红色的QM表面。由于偶联猝灭剂修饰的底物,三种QM的荧光均处于猝灭状态。采用的金属离子为锌离子或镁离子。
步骤(2)中所述的靶标miRNA触发并在金属离子辅助条件下,DNA酶沿QM表面DNA轨道的行走。靶标不存在的条件下,DNA酶上下臂封闭。加入miRNA,靶标与DNA酶杂交打开DNA酶的封闭区域,释放出上下臂,上下臂与相邻底物杂交并结合金属离子,激活DNA酶的催化中心,剪切底物上的rA位点,释放5’端猝灭剂(BHQ)修饰的底物片段。由于DNA酶的下臂与剩余底物片段之间结合力较弱,DNA酶的上下臂重新释放出来,并行走至下一个底物与之杂交、剪切。经过DNA酶执行多次“识别-剪切-释放”的行走过程后,最终能剪切掉QM表面所有的底物序列。由于大量的BHQ脱离QM表面,QM荧光信号最大程度恢复。
步骤(3)中所述的采用荧光分光光度计测量步骤(2)中DNA酶行走结束后多色QM的荧光信号,实现miRNA的多元检测分析。三色QM荧光发射波长标记三种靶标miRNA,QM荧光强度标定靶标miRNA数量。QM荧光强度与靶标丰度之间存在线性关系,绘制标准曲线。通过测量实际样品中多色QM的荧光光谱,可实现靶标定量。
有益效果:与现有的技术相比,本发明制备了负载DNA酶步行器的多色量子点胶束球形核酸(QM-SNA)荧光传感器,通过靶标触发DNA酶自动行走介导的QM荧光增强,实现对循环miRNA的高灵敏度和多元检测。
检测(行走)时间:40分钟;检测限:10飞摩(fM);可同时检测至少三种靶标miRNA。
附图说明
图1为基于QM-SNA的DNA酶行走过程示意图;
图2为QM与QM-SNA的性质表征;
图3为QM表面DNA酶行走的时间动力学;
图4为DNA酶步行器检测miRNAs的灵敏度和标准曲线;
图5为DNA酶步行器检测miRNAs的特异性;
图6为DNA酶步行器检测miRNAs的多元能力评估;
图7为DNA酶步行器多元检测血清中循环miRNAs。
具体实施方式
以下结合附图和实施例对本发明作进一步说明
实施例1
三种靶标、三种DNA酶、三种底物的序列设计
如图1所示,针对三种靶标miRNA1-3(其序列为miRNA-196a、miRNA-25、miRNA-21序列),分别设计了相对应的DNA酶(DNAzyme 1-3)和底物(Substrate 1-3)。DNA酶序列主要包括三部分:靶标结合区、(底物)轨道结合区、催化中心区,5’端修饰氨基用于偶联至QM表面。其中,靶标结合区序列为靶标的互补序列,用于与靶标杂交打开DNA酶茎环结构;轨道结合区包括上下臂两段序列,用于与底物的结合;催化中心区用于结合金属离子识别并剪切rA位点。底物序列主要包括上下臂的互补序列、rA位点,3’端修饰氨基用于偶联至QM表面,5’端修饰BHQ用于猝灭QM荧光。所有靶标miRNA、DNA酶、底物序列均由南京金斯瑞生物科技有限公司合成。各序列如表1所示,其中表1中DNAzyme 1中,碱基序列第9位到第31位(CCCAACAACATGAAACTACCTA)为靶标结合区;碱基序列第47位到第53位(GGTAGTT)和第69位到第73位(TCATG)为轨道识别区;碱基序列第54位到第67位(AAGCTGGCCGAGCC)为催化中心区。DNAzyme 2中,碱基序列第9位到第31位(CAGACCGAGACAAGTGCAATG)为靶标结合区;碱基序列第47位到第53位(TTGCACT)和第69位到第73位(TGTCT)为轨道识别区;碱基序列第54位到第67位(AAGCTGGCCGAGCC)为催化中心区。DNAzyme 3中,碱基序列第9位到第31位(CAACATCAGTCTGATAAGCTA)为靶标结合区;碱基序列第47位到第53位(GCTTATC)和第69位到第73位(AGACT)为轨道识别区;碱基序列第54位到第67位(AAGCTGGCCGAGCC)为催化中心区。Substrate 1中碱基序列第20位到第24位(CATGA)和第27位到第33位(AGTGCAA)为DNA酶识别区;碱基序列第26位为rA位点。Substrate2中碱基序列第20位到第24位(AGACA)和第27位到第33位(AGTGCAA)为DNA酶识别区;碱基序列第26位为rA位点。Substrate 3中碱基序列第20位到第24位(AGTCT)和第27位到第33位(GATAAGC)为DNA酶识别区;碱基序列第26位为rA位点。miRNA3—mut中碱基序列第11位(U)为突变位点。
表1靶标miRNA、DNA酶、底物核酸以及碱基突变核酸的序列设计
Figure BDA0002480640560000041
实施例2
制备负载DNA酶和底物的三色QM-SNA
三色QM-SNA通过化学交联法制备,制备工艺相同。取50μL的QM溶液(浓度为50nM),10μL的EDC溶液(100μM)和Sulfo-NHS溶液(50μM)依次加入0.01M,pH7.4的磷酸盐缓冲溶液中(总体积500μL),混匀搅拌15min后,依次加入25μL的DNA酶溶液(45nM)和225μL的底物核酸溶液(455nM),适当的搅拌转速下,反应4h,超滤提纯。
对QM-SNA的组成、水动力尺寸、荧光等性质进行表征,结果如图2所示。图2A,相比于QM,QM-SNA的红外光谱中出现了归属于表面偶联的CONH键特征峰(1635cm-1),归属于核苷酸组成的P=O键特征峰(1062cm-1)以及归属于猝灭剂BHQ组成的苯环特征峰(1556cm-1),表明QM表面核酸的成功连接。图2B,QM-SNA的水动力尺寸为33nm,相比于QM增加了约9nm,表明QM表面偶联了较高密度的核酸。图2C为QM偶联核酸前后的荧光光谱。相比于QM,QM-SNA的荧光发生了约75%的猝灭。
实施例3
QM表面靶标触发的DNA酶行走
将QM-SNA(10nM),靶标miRNA(50pM)溶液依次加入Tris-HCl(25mM,pH7.4)缓冲溶液中,总体积195μL,在37℃条件下充分反应1h,使靶标miRNA充分杂交。再加入5μL的Zn2+(200mM)溶液,每隔5min测量一次荧光光谱。
QM的荧光强度变化如图3所示,Zn2+加入后随着时间的延长,QM荧光逐渐增强,并在40min左右荧光信号达到最大值,表明了DNA酶在QM表面的持续行走过程。
实施例4
DNA酶步行器检测miRNAs的灵敏度和标准曲线
将QM-SNA(10nM),Zn2+(200mM)溶液加入Tris-HCl(25mM,pH7.4)缓冲溶液中,分别与不同浓度的靶标miRNA孵育(浓度分别为0fM、1fM、5fM、10fM、50fM、100fM、500fM、1pM、5pM、10pM、50pM、100pM),在37℃条件下充分反应2h后,测量荧光光谱。三种颜色QM-SNA分别用于靶标miRNA1-3的灵敏度检测。
结果如图4所示,随着靶标miRNA浓度的不断增加,QM荧光不断增强。根据三种颜色QM-SNA荧光强度变化,绘制出检测miRNA1-3的标准曲线。以三倍标准差计算出三种miRNA的检测限均为10fM,线性范围为10fM-50pM,相关系数≥0.99。
实施例5
DNA酶步行器检测miRNAs的特异性
将红色QM-SNA(10nM),Zn2+(200mM)溶液加入Tris-HCl(25mM,pH7.4)缓冲溶液中,分别与浓度均为50pM的miRNA 1-3以及miRNA 3单碱基突变序列(miRNA 3—mut)溶液共同孵育2h后,测量荧光光谱。将无miRNA加入的空白溶液作为阴性对照。
结果如图5所示。miRNA 1和miRNA 2不引起红色荧光信号变化。只有靶标miRNA 3导致强的红色荧光。miRNA 3—mut引起较弱的红色荧光变化,仅为miRNA 3的约18%,说明该方法具有较高的miRNA检测特异性。
实施例6
DNA酶步行器检测miRNAs的多元能力评估
绿、黄、红三种颜色的QM-SNA以1:1:1的比例混合后,分别与miRNA 1-3的7种不同组合孵育,充分反应后,测量荧光光谱,绘制柱状图。无靶标加入样品作为空白对照。
结果如图6所示。其中,“+”表示靶标存在,“-”表示靶标不存在。不同的靶标存在时导致不同颜色的QM-SNA产生不同的荧光信号响应,且每种靶标单独存在时产生的荧光变化与两种、三种靶标共存时产生的荧光信号响应相同,表明该方法具有多元检测miRNA的能力。
实施例7
DNA酶步行器多元检测血清中的循环miRNAs
血清样本为正常人和非小细胞肺癌患者两种血清。提取血清试剂盒为血清/血浆miRNA提取分离试剂盒(DP503),从天根生化科技(北京)有限公司购买。提取血清的步骤按照试剂盒中的说明书操作,分别提取正常人和非小细胞肺癌患者血清中总miRNA,浓缩20倍溶于无RNA酶的纯水。
采用实例6的方法加入5μL血清中提取的总RNA溶液,反应2小时。用荧光分光光度计测量荧光光谱,并绘制成柱状图。
结果如图7所示。图1中,(A)荧光光谱;(B)与(A)中荧光光谱相对应的柱状图。根据图4中标准曲线计算出每微升正常人血清和非小细胞肺癌患者血清中3种miRNA的拷贝数,在表2中列出。相比于正常人血清,非小细胞肺癌患者血清中三种靶标miRNA(miRNA-196a、miRNA-25、miRNA-21)的表达量均显著升高。因此,该基于多色QM-SNA的DNA酶步行器的miRNA检测方法适用于血清中循环miRNA的高灵敏和多元检测。
表2 DNA酶行走多元检测血清中的循环miRNAs
Figure BDA0002480640560000071
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (6)

1.一种基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法,其特征在于,包括以下步骤:
(1) 制备负载DNA酶序列和猝灭剂修饰的底物序列的多色量子点胶束球形核酸;
(2) 靶标触发和金属离子辅助条件下,DNA酶沿量子点胶束表面底物序列的自动化行走;
(3) 采用荧光分光光度计测量步骤(2)中行走结束后量子点胶束的荧光信号,实现对miRNA的检测分析。
2.根据权利要求1所述的基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法,其特征在于:包括三种颜色的量子点胶束、三种靶标、三种DNA酶及其对应底物和金属离子;所述的三种颜色量子点胶束分别为绿、黄、红色;所述三种靶标分子为血清中的三种循环miRNA;所述三种DNA酶包括DNAzyme 1、DNAzyme 2、DNAzyme 3,其5’端均修饰氨基;所述三种底物包括Substrate 1、Substrate 2、Substrate 3,其5’端修饰猝灭剂,3’端修饰氨基;所述金属离子为锌离子或镁离子。
3.根据权利要求2所述的基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法,其特征在于:三种循环miRNA为非小细胞肺癌标志物miRNA-196a、miRNA-25、miRNA-21。
4.根据权利要求2所述的基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法,其特征在于:步骤(1)中所述的负载DNA酶序列和猝灭剂修饰的底物序列的多色量子点胶束球形核酸是将三种DNA酶及其底物通过化学交联法分别连接至三种颜色的量子点胶束表面。
5.根据权利要求1所述的基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法,其特征在于:步骤(2)中所述靶标miRNA触发并在金属离子辅助条件下,DNA酶沿DNA轨道的自动化行走;靶标与量子点胶束表面DNA酶杂交将DNA酶的上下臂释放出来识别邻近的底物,结合金属离子激活DNA酶活性特异性剪切底物上的rA位点,剪切后DNA酶和猝灭剂释放;释放的DNA酶自动识别剪切下一个底物序列,实现沿DNA轨道的多步“识别-剪切-释放”行走。
6.根据权利要求1所述的基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法,其特征在于:步骤(3)中所述使用荧光分光光度计对步骤(2)中DNA酶行走结束后三色量子点胶束的荧光信号进行检测;三色量子点胶束荧光发射波长标记三种靶标miRNA,量子点胶束荧光强度标定靶标miRNA数量。
CN202010377297.9A 2020-05-07 2020-05-07 基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法 Active CN111593094B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010377297.9A CN111593094B (zh) 2020-05-07 2020-05-07 基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010377297.9A CN111593094B (zh) 2020-05-07 2020-05-07 基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法

Publications (2)

Publication Number Publication Date
CN111593094A true CN111593094A (zh) 2020-08-28
CN111593094B CN111593094B (zh) 2022-09-20

Family

ID=72185305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010377297.9A Active CN111593094B (zh) 2020-05-07 2020-05-07 基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法

Country Status (1)

Country Link
CN (1) CN111593094B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033942A (zh) * 2020-07-30 2020-12-04 东南大学 一种双色量子点硅质体球形核酸比率荧光传感器用于miRNA高灵敏可视化检测的方法
CN113943777A (zh) * 2021-10-29 2022-01-18 福州大学 一种自保护DNA酶步行器的构建方法及其在活细胞miRNA检测中的应用
CN114574553A (zh) * 2021-12-31 2022-06-03 南京医科大学第二附属医院 一种碳点-纳米金球形核酸及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305937A (zh) * 2019-07-04 2019-10-08 东南大学 多元核酸检测方法及试剂盒

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305937A (zh) * 2019-07-04 2019-10-08 东南大学 多元核酸检测方法及试剂盒

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RUI Y: "Target-triggered DNA nanoassembly on quantum dots and DNAzyme-modulated double quenching for ultrasensitive microRNA biossensing", 《BIOSENSORS AND BIOELECTRONICS》 *
杨立敏等: "纳米荧光探针用于核酸分子的检测及成像研究", 《化学学报》 *
谭鲁: "基于量子点电致化学发光及信号放大技术的生物传感分析研究", 《中国优秀硕士学位论文全文数据库 (工程科技I辑)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033942A (zh) * 2020-07-30 2020-12-04 东南大学 一种双色量子点硅质体球形核酸比率荧光传感器用于miRNA高灵敏可视化检测的方法
CN112033942B (zh) * 2020-07-30 2023-03-28 东南大学 一种双色量子点硅质体球形核酸比率荧光传感器用于miRNA高灵敏可视化检测的方法
CN113943777A (zh) * 2021-10-29 2022-01-18 福州大学 一种自保护DNA酶步行器的构建方法及其在活细胞miRNA检测中的应用
CN114574553A (zh) * 2021-12-31 2022-06-03 南京医科大学第二附属医院 一种碳点-纳米金球形核酸及其制备方法和应用

Also Published As

Publication number Publication date
CN111593094B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN111593094B (zh) 基于量子点胶束球形核酸的DNA机器用于循环miRNA检测的方法
Cheng et al. Recent advances in microRNA detection
JP6571895B1 (ja) 核酸プローブ及びゲノム断片検出方法
US6235503B1 (en) Procedure for subtractive hybridization and difference analysis
CN111154839B (zh) 一种同时检测多种dna糖基化酶的荧光化学传感器、其检测方法及应用
CN105803074B (zh) 一种被双向链置换的引物型核酸荧光探针
CN102102130A (zh) 检测rna分子的方法、试剂盒及其相关用途
Wang et al. Controllable fabrication of bio-bar codes for dendritically amplified sensing of human T-lymphotropic viruses
EP0855447A3 (en) Method of assay of nucleic acid sequences
CN112662777B (zh) 一种同时检测多种长链非编码rna的复合物及方法
CN117529560A (zh) 检测微小rna的方法和试剂盒
KR20210118585A (ko) 자가 헤어핀 프라이머 기반 등온 증폭 기술
EP3730613A1 (en) Hooked probe, method for ligating nucleic acid and method for constructing sequencing library
US20090123923A1 (en) Method for obtaining information regarding quantity of DNA after non-methylated cytosine converting treatment in analysis of DNA methylation
KR20170138829A (ko) 회전환 증폭을 이용한 miRNA의 형광 검출 방법
JPWO2020021272A5 (zh)
CN114250276B (zh) 基于指数扩增反应和Argonaute核酸酶的microRNA检测体系及方法
EP3907298A1 (en) Single nucleic acid for real-time detection of genetic variation of single target gene, and detection method using same
CN110885887B (zh) 检测C8orf34基因rs1517114位点多态性的人工模拟核酸分子信标与试剂盒
KR102003976B1 (ko) CTG DNA를 붙인 금 나노입자와 환형 DNA에 기반한 miRNA 탐지 기술
CN107406879A (zh) 基因变异的检测方法及在其中使用的荧光标记寡核苷酸
Do et al. cDNA labeling strategies for microarrays using fluorescent dyes
CN116445586B (zh) 一种基于荧光杂交链式反应的生物传感器
CN117512076B (zh) 一种基于劈裂式Cas9系统的RNA免反转录的检测方法
CN117363708A (zh) 一种基于Cas免扩增核酸检测方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant