CN111584829A - 一种柔性vs2薄膜电极及其制备方法 - Google Patents

一种柔性vs2薄膜电极及其制备方法 Download PDF

Info

Publication number
CN111584829A
CN111584829A CN202010452721.1A CN202010452721A CN111584829A CN 111584829 A CN111584829 A CN 111584829A CN 202010452721 A CN202010452721 A CN 202010452721A CN 111584829 A CN111584829 A CN 111584829A
Authority
CN
China
Prior art keywords
flexible
nano
preparation
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010452721.1A
Other languages
English (en)
Inventor
王晓君
刘治明
杨磊
孙洪冉
徐常蒙
李海昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202010452721.1A priority Critical patent/CN111584829A/zh
Publication of CN111584829A publication Critical patent/CN111584829A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于电极材料制备技术领域,具体涉及一种柔性VS2薄膜电极及其制备方法。包括制备VS2·NH3,超声分散,合成柔性VS2复合薄膜,干燥与切片的步骤。本发明先通过超声分散的方法将VS2纳米片分散为纳米微片并将其与碳纳米管均匀混合,通过真空抽滤法合成柔性VS2复合薄膜,缓解了VS2在充放电过程中重新聚集的问题;再通过干燥与切片制备自支撑可直接用作电极的VS2纳米微片与碳纳米管复合电极材料,从而避免了使用导电添加剂和聚合物粘结剂,具有高循环性能和倍率性能。

Description

一种柔性VS2薄膜电极及其制备方法
技术领域:
本发明属于电极材料制备技术领域,具体涉及一种柔性VS2薄膜电极及其制备方法。
背景技术:
单一的VS2材料处于粉末状态,需要与导电添加剂和聚合物粘结剂混合制备电极材料,但导电剂和聚合物粘结剂的加入会使电阻增大,导致容量迅速下降;而使用粘合剂会严重阻碍离子传输的扩散通道,活性物质从集流体上剥落导致容量损失。此外,大表面片层结构的 VS2层间范德华力会使其在充放电过程中重新聚集,大大减少了电极与电解质界面的有效面积。
发明内容:
本发明要解决的技术问题是粉末状的VS2制备电极材料时需要加入导电剂和聚合物粘结剂,导电剂和聚合物粘结剂的加入使电阻增大,导致容量迅速下降,粘合剂会严重阻碍离子传输的扩散通道,活性物质从集流体上剥落导致容量损失;此外大表面片层结构的VS2层间范德华力会使其在充放电过程中重新聚集,大大减少了电极与电解质界面的有效面积。
为解决上述问题,本发明先通过超声分散的方法将VS2纳米片分散为纳米微片并将其与碳纳米管均匀混合,通过真空抽滤法合成柔性VS2复合薄膜,缓解了VS2在充放电过程中重新聚集的问题;再通过干燥与切片制备自支撑可直接用作电极的VS2纳米微片与碳纳米管复合电极材料,从而避免了使用导电添加剂和聚合物粘结剂,具有高循环性能和倍率性能。
为达到上述目的,本发明通过以下技术方案实现,一种柔性VS2薄膜电极的制备方法,包括制备VS2·NH3,超声分散,合成柔性VS2复合薄膜,干燥与切片的步骤。
进一步的,制备VS2·NH3步骤具体为将钒酸盐(优选为3mmol Na3VO4·12H2O)和15mmol 硫代乙酰胺(TAA)溶于40ml去离子水中,搅拌1小时形成均匀的溶液,然后转移到50ml 聚四氟乙烯内衬的高压釜中,在160℃下保持24小时,之后冷却至室温;通过离心收集黑色沉淀,用去离子水洗涤数次。其中,钒酸盐提供钒离子,TAA提供S离子,在高温处理过程中,钒酸盐和TAA发生化学反应生成VS2·NH3
进一步的,超声分散步骤具体为:
(2-1)20mgVS2·NH3用30ml水分散于锥形瓶中,然后用氩气鼓泡将溶解氧从溶液中排出,避免V(IV)氧化为V(V)。将上述弥散液在冰浴中超声处理3小时,合成的黑色悬浮液使用中速定性滤纸器进行过滤,去除溶液中未剥落的薄片,得到VS2纳米片的半透明溶液。
(2-2)将10mg单壁碳纳米管(SWCNT)加入20ml DMF溶液中,强力超声震荡分散均匀。
(2-3)将10mgVS2与3.5mg碳纳米管加入到50mlDMF中。搅拌五分钟后,将上述溶液密封超声处理72h备用。将VS2和碳纳米管均匀分散,避免团聚,只有经过超声处理后两者均匀分散,得到的复合薄膜柔性才会好。
进一步的,合成柔性VS2复合薄膜步骤具体为将超声后的VS2纳米微片与碳纳米管混合液利用真空抽滤装置进行真空抽滤。抽滤的滤膜采用AAO膜或者celegard隔膜。抽滤时,由 VS2和碳纳米管的混合溶液经真空抽滤得到二维VS2/碳纳米管复合柔性薄膜。
进一步的,干燥与切片步骤具体为:
(4-1)将抽滤后的滤膜与材料放置在60℃下干燥一个小时,干燥完全后,抽滤得到的 VS2纳米微片与碳纳米管复合薄膜将自动脱落。
(4-2)将VS2纳米微片与碳纳米管复合薄膜切割或者冲压为电极片得到一种自支撑VS2纳米微片与碳纳米管复合电极材料。VS2与碳纳米管间通过范德华静电吸附力相连接,使其复合结构更加牢固。
一种上述方法制备的柔性VS2薄膜电极,VS2纳米微片层之间通过高导电性的碳纳米管相互联接,具有较大的比表面积。与此同时,VS2与碳纳米管间通过范德华静电吸附力相连接,使其所得到的复合薄膜具有很好的柔韧性,可有效缓解电极所受到的应力。
这种复合结构充分发挥了VS2纳米微片高比表面积、高活性位点、金属性质的协同特性等特点,VS2纳米微片层之间通过高导电性的碳纳米管相互联接,有效减小了电子和离子的传输路径,VS2纳米微片大的比表面积可以提高与电解液的接触面积,这些优点可有效提高电极材料的循环性能和倍率性能。
本发明的有益效果为:
(1)得到的柔性VS2薄膜电极中VS2纳米微片与碳纳米管均匀联接,其中碳纳米管不仅可以提高电极材料整体的导电性,还能提高结构整体的稳定性;碳纳米管属柔性基底材料,尤其是与VS2相互联接的存在,可以缓解VS2充放电过程中的应力问题与VS2纳米微片团聚的问题,提高复合电极材料的循环性能与倍率性能。
(2)本发明的电极复合结构充分发挥了VS2纳米微片高比表面积、高活性位点、金属性质的协同特性等特点,VS2纳米微片大的比表面积不仅可以提高与电解液的接触面积,同时 VS2纳米微片与碳纳米管复合的结构减小了电子和离子的传输路径,这些优点可有效提高电极材料的循环性能和倍率性能。
(3)本发明先通过超声分散的方法将VS2纳米片分散为纳米微片并将其与碳纳米管均匀混合,通过真空抽滤法合成柔性VS2复合薄膜,缓解了VS2在充放电过程中重新聚集的问题;再通过干燥与切片制备自支撑可直接用作电极的VS2纳米微片与碳纳米管复合电极材料,从而避免了使用导电添加剂和聚合物粘结剂,具有高循环性能和倍率性能。
附图说明
图1是本发明的合成的VS2纳米片扫描电镜图片;
图2是本发明的合成柔性VS2薄膜电极电镜图片。
具体实施方式:
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种柔性VS2薄膜电极的制备方法,包括以下步骤:
S1:将3mmol Na3VO4·12H2O和15mmol硫代乙酰胺(TAA)溶于40ml去离子水中,搅拌1小时形成均匀的溶液,然后转移到50ml聚四氟乙烯内衬的高压釜中,在160℃下保持24 小时,之后冷却至室温;通过离心收集黑色沉淀,用去离子水洗涤数次。
S2:20mgVS2·NH3用30ml水分散于锥形瓶中,然后用氩气鼓泡将溶解氧从溶液中排出,避免V(IV)氧化为V(V)。将上述弥散液在冰浴中超声处理3小时,合成的黑色悬浮液使用中速定性滤纸器进行过滤,去除溶液中未剥落的薄片,得到VS2纳米片的半透明溶液。
S3:将10mg单壁碳纳米管(SWCNT)加入20ml DMF溶液中,强力超声震荡分散均匀。
S1:将10mgVS2与3.5mg碳纳米管加入到50mlDMF中。搅拌五分钟后,将上述溶液密封超声处理72h。
S2:将上述得到的溶液利用真空抽滤装置进行真空抽滤。抽滤的滤膜采用AAO膜或者 celegard隔膜。
S3:将抽滤后的滤膜与材料放置在60℃下干燥一个小时,干燥完全后,抽滤得到的VS2纳米微片与碳纳米管复合薄膜将自动脱落。
S4:将VS2纳米微片与碳纳米管复合薄膜切割或者冲压为电极片得到一种自支撑VS2纳米微片与碳纳米管复合电极材料。

Claims (7)

1.一种柔性VS2薄膜电极的制备方法,其特征在于:包括制备VS2·NH3,超声分散,合成柔性VS2复合薄膜,干燥与切片的步骤。
2.如权利要求1所述的柔性VS2薄膜电极的制备方法,其特征在于:制备VS2·NH3步骤具体为将钒酸盐和硫代乙酰胺溶于去离子水中,搅拌形成均匀的溶液,然后转移到聚四氟乙烯内衬的高压釜中,在160℃下保持24小时,之后冷却至室温;通过离心收集黑色沉淀,用去离子水洗涤数次得到VS2·NH3
3.如权利要求2所述的柔性VS2薄膜电极的制备方法,其特征在于:所述钒酸盐为Na3VO4·12H2O。
4.如权利要求1所述的柔性VS2薄膜电极的制备方法,其特征在于:超声分散步骤具体为:
(2-1)将VS2·NH3用水分散于锥形瓶中,然后用氩气鼓泡将溶解氧从溶液中排出;将上述弥散液在冰浴中超声处理,合成的黑色悬浮液使用中速定性滤纸器进行过滤,得到VS2纳米片的半透明溶液。
(2-2)将单壁碳纳米管加入DMF溶液中,强力超声震荡分散均匀;
(2-3)将(2-1)的VS2与(2-2)的碳纳米管加入到DMF中;搅拌后将上述溶液密封超声处理72h备用。
5.如权利要求1所述的柔性VS2薄膜电极的制备方法,其特征在于:合成柔性VS2复合薄膜步骤具体为将超声后的VS2纳米微片与碳纳米管混合液利用真空抽滤装置进行真空抽滤,得到柔性VS2复合薄膜。
6.如权利要求1所述的柔性VS2薄膜电极的制备方法,其特征在于:干燥与切片步骤具体为:(4-1)将抽滤后的滤膜与材料放置在60℃下干燥至抽滤得到的VS2纳米微片与碳纳米管复合薄膜将自动脱落;
(4-2)将VS2纳米微片与碳纳米管复合薄膜切割或者冲压为电极片得到一种自支撑VS2纳米微片与碳纳米管复合电极材料。
7.一种权利要求1的方法制备的柔性VS2薄膜电极,其特征在于:VS2纳米微片层之间通过高导电性的碳纳米管相互联接,具有较大的比表面积和良好的导电性。
CN202010452721.1A 2020-05-26 2020-05-26 一种柔性vs2薄膜电极及其制备方法 Pending CN111584829A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010452721.1A CN111584829A (zh) 2020-05-26 2020-05-26 一种柔性vs2薄膜电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010452721.1A CN111584829A (zh) 2020-05-26 2020-05-26 一种柔性vs2薄膜电极及其制备方法

Publications (1)

Publication Number Publication Date
CN111584829A true CN111584829A (zh) 2020-08-25

Family

ID=72123407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010452721.1A Pending CN111584829A (zh) 2020-05-26 2020-05-26 一种柔性vs2薄膜电极及其制备方法

Country Status (1)

Country Link
CN (1) CN111584829A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467103A (zh) * 2020-11-23 2021-03-09 复旦大学 一种三元正极材料的高载量自支撑厚电极的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183830A (zh) * 2014-08-19 2014-12-03 中南大学 一种二维无机层状化合物/石墨烯复合材料的制备方法
CN105923652A (zh) * 2016-04-29 2016-09-07 陕西科技大学 一种多级结构vs4纳米粉体及其制备方法和应用
CN109019686A (zh) * 2018-10-01 2018-12-18 湘潭大学 一种气凝胶状二硫化钒纳米材料的制备方法和应用
CN109748319A (zh) * 2019-02-26 2019-05-14 陕西科技大学 一种四硫化钒@碳纳米管复合粉体的制备方法和应用
CN110526296A (zh) * 2019-09-26 2019-12-03 东华大学 一种掺杂碳纳米管的二硫化钨复合薄膜电极的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183830A (zh) * 2014-08-19 2014-12-03 中南大学 一种二维无机层状化合物/石墨烯复合材料的制备方法
CN105923652A (zh) * 2016-04-29 2016-09-07 陕西科技大学 一种多级结构vs4纳米粉体及其制备方法和应用
CN109019686A (zh) * 2018-10-01 2018-12-18 湘潭大学 一种气凝胶状二硫化钒纳米材料的制备方法和应用
CN109748319A (zh) * 2019-02-26 2019-05-14 陕西科技大学 一种四硫化钒@碳纳米管复合粉体的制备方法和应用
CN110526296A (zh) * 2019-09-26 2019-12-03 东华大学 一种掺杂碳纳米管的二硫化钨复合薄膜电极的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467103A (zh) * 2020-11-23 2021-03-09 复旦大学 一种三元正极材料的高载量自支撑厚电极的制备方法

Similar Documents

Publication Publication Date Title
US9923200B2 (en) Method for making sulfur-graphene composite material
US8765302B2 (en) Graphene-enabled vanadium oxide cathode and lithium cells containing same
US8691441B2 (en) Graphene-enhanced cathode materials for lithium batteries
CN107706424B (zh) 碳纳米管导电浆料及其制备方法和锂离子电池
WO2016095559A1 (zh) 一种锂离子电容器电极浆料中复合导电剂的分散方法
Al Ja’farawy et al. A review: the development of SiO 2/C anode materials for lithium-ion batteries
CN113223776B (zh) 一种自支撑MXene/MWCNT柔性复合薄膜及其制备方法和应用
Zhang et al. Fabricating Fe3O4/Fe/biocarbon fibers using cellulose nanocrystals for high-rate Li-ion battery anode
CN106450335B (zh) 一种含硅的石墨烯复合材料及其制备方法和在柔性锂电池中的应用
WO2017036350A1 (zh) 锂离子电池负极材料及其制备方法和锂离子电池
CN104934610A (zh) 一种锂离子电池用自支撑柔性复合电极材料制备方法
CN108390064A (zh) 一种石墨烯基柔性自支撑混合凝胶电极及其制备方法
CN113066984B (zh) 一种导电浆料及其制备方法和应用
CN105977049A (zh) 一种碳化钼/石墨烯纳米带复合材料的制备方法
CN113173598A (zh) 一种钒基MXene原位衍生硫化物的方法
CN111584829A (zh) 一种柔性vs2薄膜电极及其制备方法
CN108448085A (zh) 钛酸锂-碳纳米管复合材料及其制备方法、锂离子电池
CN110391418A (zh) 一种高性能石墨烯复合导电浆料及其制备方法
CN114784227B (zh) 一种石墨烯/金属氧化物复合纳米材料及其制备方法和应用、电极极片及其应用
TW201341304A (zh) 石墨烯複合材料的製備方法
CN106006601A (zh) 一种用于化学电源的碳纳米管的前处理方法
CN113698639A (zh) 碳纳米管复合材料电磁屏蔽薄膜及其制备方法
CN110380028B (zh) 一种CNT/MoS2锂离子电池负极材料及其制备方法
CN109768249B (zh) 锂离子电池的负极材料及其制备方法和锂离子电池
CN116137327A (zh) 一种导电浆料及制备、含硅负极浆料及制备、含硅负极电极

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825