CN111584176B - 一种疏水型导热粘结磁性复合材料及其制备方法 - Google Patents

一种疏水型导热粘结磁性复合材料及其制备方法 Download PDF

Info

Publication number
CN111584176B
CN111584176B CN202010611480.0A CN202010611480A CN111584176B CN 111584176 B CN111584176 B CN 111584176B CN 202010611480 A CN202010611480 A CN 202010611480A CN 111584176 B CN111584176 B CN 111584176B
Authority
CN
China
Prior art keywords
parts
hydrophobic
composite material
heat
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010611480.0A
Other languages
English (en)
Other versions
CN111584176A (zh
Inventor
邵萌
段晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Weipu Technology Co ltd
Original Assignee
Jiangxi Weipu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Weipu Technology Co ltd filed Critical Jiangxi Weipu Technology Co ltd
Priority to CN202010611480.0A priority Critical patent/CN111584176B/zh
Publication of CN111584176A publication Critical patent/CN111584176A/zh
Application granted granted Critical
Publication of CN111584176B publication Critical patent/CN111584176B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Abstract

本发明涉及一种疏水型导热粘结磁性复合材料及其制备方法。该疏水型导热粘结磁性复合材料包括如下重量份组分:Sm‑Co‑Fe‑Zr纳米复相永磁材料40~50份、粘结树脂20~30份、导热填料10~20份、助剂5~10份;所述粘结树脂由环氧树脂和三元氯醋树脂,按1:(0.2~0.4)的重量配比混合而成;所述导热填料为氮化铝和二硼化钛混合物。制备时,按配比将各组分通过混合、球磨、螺旋挤压、热压成型过程制备得到。本发明所述的疏水型导热粘结磁性复合材料具有疏水性好、导热率高、磁力性质强的特点。

Description

一种疏水型导热粘结磁性复合材料及其制备方法
技术领域
本发明属于磁性材料及复合材料技术领域,具体涉及一种疏水型导热粘结磁性复合材料及其制备方法。
背景技术
粘结磁体以其性价比高、形状自由度大和尺寸精度高等优势在电机领域中得到了广泛应用。但是由于粘结磁体中的永磁材料大多为合金所制,化学性质极其活泼,在潮湿的空气或者在其他的腐蚀环境中很容易被氧化和腐蚀。因此,往往采用电镀或电泳沉积等方法来提高磁体的耐腐蚀性能。由于粘结磁体是通过将磁粉与高分子树脂混合,采用模压或注射成型的方法来制备,存在产品导热性差、致密度低、孔隙率大等缺点。尤其是当磁体形状不规则时,由于存在比较明显的尖端放电和边缘效应等因素,通过电镀或电泳沉积的方法,在磁体表面得到一层均匀致密的镀层并不容易。而且在电镀或电泳沉积过程中,镀液容易通过孔隙渗入磁体内部,若磁体的前处理和后处理不恰当,必将会加速磁体腐蚀,影响磁体性能。
发明内容
为了克服上述现有技术的不足,本发明提供了一种疏水型导热粘结磁性复合材料及其制备方法。本发明采用优质磁性材料纳米复相永磁材料,通过与疏水性能好的粘结树脂和偶联剂、疏水增强剂、固化剂、导热填料,制备得到的复合材料具有疏水性好、导热率高、磁力性质强的特点。
为了实现上述目的,本发明所采用的技术方案是:
一方面,提供了一种疏水型导热粘结磁性复合材料,包括如下重量份组分:Sm-Co-Fe-Zr纳米复相永磁材料40~50份、粘结树脂20~30份、导热填料10~20份、助剂5~10份。
进一步地,粘结树脂由环氧树脂和三元氯醋树脂,按1:(0.2~0.4)的重量配比混合而成。
进一步地,导热填料由氮化铝和二硼化钛,按1:(0.1~0.3)的重量配比混合而成。
进一步地,助剂包括偶联剂、疏水增强剂和固化剂。
本发明中所用的偶联剂为硅烷偶联剂。
本发明中所用的疏水增强剂为氧化锌。
本发明中所用的固化剂为2-乙基-4-甲基咪唑。
进一步地,助剂按质量百分比计偶联剂、疏水增强剂和固化剂的质量百分比例为(2%~6%):(1%~3%):(0.5%~3%)。
进一步地,纳米复相永磁材料的粒径大小为0.1~10μm。
进一步地,氮化铝的粒径大小为50~100μm,二硼化钛的粒径大小为0.1~5μm。
另一方面,提供了一种疏水型导热粘结磁性复合材料的制备方法,包括如下步骤:
(1)按配方称取纳米复相永磁材料,真空干燥后,置于乙醇溶液中超声分散20~30min,再加入硅烷偶联剂,继续超声分散10~20min,静置60~80min后,真空干燥;所述乙醇溶液浓度为按质量百分比计为75%~95%;
(2)将经步骤1干燥后的纳米复相永磁材料、粘结树脂和疏水增强剂,搅拌混匀,再加入固化剂混匀后置于球磨机中,以100~120r/min的转速球磨60~80min;
(3)将经步骤2球磨后的混合物置于双螺杆挤出机中挤出造粒,双螺杆挤出机挤出温度为180~200℃,挤出转速为250~350r/min,得共混样品;
(4)将步骤3得到的共混样品置于平板硫化机上模压成型,热压10~20min,排气保压5~10min,冷却后出模,即得复合材料。
进一步地,步骤1中真空干燥条件具体为在70~80℃温度条件下,干燥6~8h;
进一步地,步骤4中双螺杆挤出机的加工条件具体为:第一区域为190℃,第二区域为210℃,第三区域为230℃,第四区域为200℃,第五区域为190℃。
本发明有益效果:
(1)本发明通过疏水性能强的粘结树脂,疏水性的偶联剂包裹纳米复相磁体材料,以及在环氧树脂中添加ZnO颗粒,以便在树脂构造微观粗糙结构,形成微乳突,使复合材料表面出现一定程度的“荷叶效应”,以上多种方式联合提高了复合材料的疏水性。
(2)本发明通过将偶联剂包裹纳米复相永磁材料的物理方式,增加了纳米复相永磁材料与树脂粘结剂的粘结能力;其次,通过加入固化剂与粘结树脂发生固化作用产生的交联产物,进一步增强了粘结树脂的抗压和耐热的能力。
(3)本发明采用具有高磁性能力的Sm-Co-Fe-Zr纳米复相永磁材料,通过具有疏水性能强的粘结树脂、偶联剂、固化剂,再加入绝缘导热填料氮化铝和二硼化钛,所制得的粘结磁性复合材料改善了单一组分粘结材料的缺陷,不仅疏水性能好、导热率高,而且磁力性质强,相对磁导率达到6.2、比饱和磁化强度为192.3(A.m2)/kg、矫顽力3.52×104A/m。
具体实施方式
下面结合实施例对本发明做进一步的描述,有必要在此指出的是以下实施例只是用于对本发明进行进一步的说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据上述发明内容所做出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1
一种疏水型导热粘结磁性复合材料,包括如下重量份的组分:磁粉:Sm-Co-Fe-Zr纳米合金45份,粘结树脂:环氧树脂E51 20份、三元氯醋树脂(E15/45M)4份,导热填料:氮化铝12份、二硼化钛2份,助剂:硅烷偶联剂KH550 5份、疏水增强剂氧化锌2份、固化剂2-乙基-4-甲基咪唑(2E4MI)1份。
制备方法,包括以下步骤:
(1)按配方称取纳米复相永磁材料,80℃真空干燥7h后,置于90%乙醇溶液中超声分散30min,再加入硅烷偶联剂,继续超声分散15min,静置60min后,置于80℃真空干燥7h;
(2)将经步骤1干燥后的纳米复相永磁材料、粘结树脂和疏水增强剂,搅拌混匀,再加入固化剂混匀后,置于球磨机中,以100r/min的转速球磨60min;
(3)将经步骤2球磨后的混合物置于双螺杆挤出机中挤出造粒,双螺杆挤出机的加工条件为:第一区域为190℃,第二区域为210℃,第三区域为230℃,第四区域为200℃,第五区域为190℃;挤出温度为200℃,挤出转速为300r/min,得共混样品;
(4)将步骤3得到的共混样品置于平板硫化机上模压成型,在条件为80℃、10Mpa,热压塑化15min,排气保压10min,再在条件为5℃、8Mpa,冷压8min后出模,即得磁性材料。
实施例2
一种疏水型导热粘结磁性复合材料,包括如下重量份的组分:磁粉:Sm-Co-Fe-Zr纳米合金40份,粘结树脂:环氧树脂E51 20份、三元氯醋树脂(E15/45M)6份,导热填料:氮化铝10份、二硼化钛3份,助剂:硅烷偶联剂KH550 2份、疏水增强剂氧化锌3份、固化剂2-乙基-4-甲基咪唑(2E4MI)3份。
制备方法,包括以下步骤:
(1)按配方称取纳米复相永磁材料,80℃真空干燥6h后,置于75%乙醇溶液中超声分散20min,再加入硅烷偶联剂,继续超声分散15min,静置80min后,置于80℃真空干燥6h;
(2)将经步骤1干燥后的纳米复相永磁材料、粘结树脂和疏水增强剂,搅拌混匀,再加入固化剂混匀后,置于球磨机中,以120r/min的转速球磨60min;
(3)将经步骤2球磨后的混合物置于双螺杆挤出机中挤出造粒,双螺杆挤出机的加工条件为:第一区域为190℃,第二区域为210℃,第三区域为230℃,第四区域为200℃,第五区域为190℃;挤出温度为200℃,挤出转速为300r/min,得共混样品;
(4)将步骤3得到的共混样品置于平板硫化机上模压成型,在条件为80℃、10Mpa,热压塑化15min,排气保压10min,再在条件为5℃、8Mpa,冷压8min后出模,即得磁性材料。
实施例3
一种疏水型导热粘结磁性复合材料,包括如下重量份的组分:磁粉:Sm-Co-Fe-Zr纳米合金50份,粘结树脂:环氧树脂E51 20份、三元氯醋树脂(E15/45M)8份,导热填料:氮化铝10份、二硼化钛3份,助剂:硅烷偶联剂KH550 2份、疏水增强剂氧化锌3份、固化剂2-乙基-4-甲基咪唑(2E4MI)3份。
制备方法,包括以下步骤:
(1)按配方称取纳米复相永磁材料,80℃真空干燥8h后,置于90%乙醇溶液中超声分散25min,再加入硅烷偶联剂,继续超声分散20min,静置80min后,置于80℃真空干燥8h;
(2)将经步骤1干燥后的纳米复相永磁材料、粘结树脂和疏水增强剂,搅拌混匀,再加入固化剂混匀后,置于球磨机中,以110r/min的转速球磨70min;
(3)将经步骤2球磨后的混合物置于双螺杆挤出机中挤出造粒,双螺杆挤出机的加工条件为:第一区域为190℃,第二区域为210℃,第三区域为230℃,第四区域为200℃,第五区域为190℃;挤出温度为200℃,挤出转速为300r/min,得共混样品;
(4)将步骤3得到的共混样品置于平板硫化机上模压成型,在条件为80℃、10Mpa,热压塑化15min,排气保压10min,再在条件为5℃、8Mpa,冷压8min后出模,即得磁性材料。
对比例1
与实施例1比,成分上不含有偶联剂,余同;
对比例2
与实施例1比,成分上不含有疏水增强剂,余同;
对比例3
与实施例1比,成分上不含有固化剂,余同;
性能测试:
将实施例1-3与对比例1-3的试样进行以下指标的检测,结果如下表1。
(1)导热性能测试:采用激光闪点法测试材料的面内和垂直两个方向的热导率,测试中面内和垂直方向,测试温度为25℃。
(2)磁性能测试:利用磁导率测试系统测量粘结磁性材料在0.6~1.2GHz频段范围内的相对磁导率;利用振动样品磁强计对样品的比饱和磁化强度及矫顽力进行测试。
(3)疏水性能检测:利用水接触角测试仪分别对实验组和对照组进行水接触角检测,当接触角大于90°时,说明具有疏水性。
(4)力学性能测试:依照GBT528-2009测试,拉伸速率为500mm/min,测定拉伸强度。
表1性能测试结果
Figure BDA0002561025840000061
从表1结果可知,本发明实施例1-3制备的一种疏水型导热粘结磁性复合材料热导率为14.1~14.5W/(m.K),接触角在128~135°之间,说明疏水性好;相对磁导率5.9~6.2、比饱和磁化强度为188.7~192.3(A.m2)/kg、矫顽力3.14~3.52×104A/m,以上各项性能说明本发明实施例制备的复合材料,性能优良。
对比例1考察了硅烷偶联剂KH550对导热性能的影响。与实施例比较,当未添加偶联剂时,制备的复合材料热导率和拉伸强度效果变差。
对比例2考察了疏水增强剂氧化锌的影响,与实施例比较,当未添加疏水增强剂时,接触角下降至102°,疏水性能下降。
对比例3考察了固化剂2-乙基-4-甲基咪唑(2E4MI)的影响,与实施例比较,当未添加固化剂时,拉伸强度下降至42.2MPa。

Claims (6)

1.一种疏水型导热粘结磁性复合材料,其特征在于,包括如下重量份组分:Sm-Co-Fe-Zr纳米复相永磁材料40~50份、粘结树脂20~30份、导热填料10~20份、助剂5~10份;所述粘结树脂由环氧树脂及三元氯醋树脂混合而成,所述环氧树脂与三元氯醋树脂的重量比为1:(0.2~0.4);所述导热填料由氮化铝及二硼化钛混合而成,所述氮化铝及二硼化钛的重量比为1:(0.1~0.3);所述助剂包括偶联剂、疏水增强剂和固化剂;所述的偶联剂为硅烷偶联剂;所述疏水增强剂为氧化锌;所述固化剂为2-乙基-4-甲基咪唑;所述助剂、偶联剂、疏水增强剂和固化剂的质量比例为(2%~6%):(1%~3%):(0.5%~3%),所述偶联剂包裹纳米复相永磁材料、在环氧树脂中添加氧化锌颗粒,环氧树脂构造微观粗糙结构,形成微乳突,复合材料表面出现荷叶效应。
2.根据权利要求1所述的疏水型导热粘结磁性复合材料,其特征在于,所述纳米复相永磁材料的粒径大小为0.1~10μm。
3.根据权利要求2所述的疏水型导热粘结磁性复合材料,其特征在于,所述氮化铝的粒径大小为50~100μm,二硼化钛的粒径大小为0.1~5μm。
4.一种制备权利要求1至3中的任意一项所述的疏水型导热粘结磁性复合材料的方法,包括如下步骤:
(1)按配方称取纳米复相永磁材料,真空干燥后,置于乙醇溶液中超声分散20~30min,再加入硅烷偶联剂,继续超声分散10~20min,静置60~80min后,真空干燥;所述乙醇溶液浓度,按质量百分比计为75%~95%;
(2)将经步骤1干燥后的纳米复相永磁材料,加入粘结树脂和疏水增强剂,搅拌混匀,再加入固化剂混匀后,置于球磨机中,以100~120r/min的转速球磨60~80min;
(3)将经步骤2球磨后的混合物置于双螺杆挤出机中挤出造粒,双螺杆挤出机挤出温度为180~200℃,挤出转速为250~350r/min,得共混样品;
(4)将步骤3得到的共混样品置于平板硫化机上模压成型,热压10~20min,排气保压5~10min,冷却后出模,即得复合材料。
5.根据权利要求4所述的疏水型导热粘结磁性复合材料的制备方法,其特征在于,所述步骤1中的真空干燥条件具体为在70~80℃温度条件下,干燥6~8h。
6.根据权利要求4所述的疏水型导热粘结磁性复合材料的制备方法,其特征在于,所述步骤3中双螺杆挤出机的加工条件具体为:第一区域为190℃,第二区域为210℃,第三区域为230℃,第四区域为200℃,第五区域为190℃。
CN202010611480.0A 2020-06-29 2020-06-29 一种疏水型导热粘结磁性复合材料及其制备方法 Active CN111584176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010611480.0A CN111584176B (zh) 2020-06-29 2020-06-29 一种疏水型导热粘结磁性复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010611480.0A CN111584176B (zh) 2020-06-29 2020-06-29 一种疏水型导热粘结磁性复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111584176A CN111584176A (zh) 2020-08-25
CN111584176B true CN111584176B (zh) 2021-08-24

Family

ID=72111323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010611480.0A Active CN111584176B (zh) 2020-06-29 2020-06-29 一种疏水型导热粘结磁性复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111584176B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506815A (zh) * 1973-05-31 1975-01-24
CN1985338A (zh) * 2004-06-30 2007-06-20 代顿大学 各向异性的纳米复合稀土永磁体及其制造方法
CN101069461A (zh) * 2004-12-03 2007-11-07 新田股份有限公司 电磁干扰抑制体、天线装置及电子信息传输装置
CN101200564A (zh) * 2007-11-27 2008-06-18 西安交通大学 一种柔性无机/有机高频磁电复合材料及其制备方法
CN103203810A (zh) * 2013-01-10 2013-07-17 怡维怡材料研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶与橡胶制品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431862B2 (en) * 2004-04-30 2008-10-07 Coldwatt, Inc. Synthesis of magnetic, dielectric or phosphorescent NANO composites
JP2009130057A (ja) * 2007-11-21 2009-06-11 Tdk Corp SmCo系磁性微粒子、磁気記録媒体、及び磁気記録媒体の製造方法
CN103772988B (zh) * 2014-01-15 2016-04-13 中山市点石塑胶有限公司 高导热绝缘高分子复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506815A (zh) * 1973-05-31 1975-01-24
CN1985338A (zh) * 2004-06-30 2007-06-20 代顿大学 各向异性的纳米复合稀土永磁体及其制造方法
CN101069461A (zh) * 2004-12-03 2007-11-07 新田股份有限公司 电磁干扰抑制体、天线装置及电子信息传输装置
CN101200564A (zh) * 2007-11-27 2008-06-18 西安交通大学 一种柔性无机/有机高频磁电复合材料及其制备方法
CN103203810A (zh) * 2013-01-10 2013-07-17 怡维怡材料研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶与橡胶制品

Also Published As

Publication number Publication date
CN111584176A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN109265762B (zh) 一种核壳结构银基导热橡胶复合材料及其制备方法
CN113270605B (zh) 一种冷压复合双极板的制备方法
Alo et al. Development of graphite‐filled polymer blends for application in bipolar plates
CN112375380B (zh) 一种改性邻苯二甲腈树脂及制备方法
WO2019095497A1 (zh) 一种用于制备导电材料的组合物及其制备方法、质子交换膜燃料电池的双极板及其制备方法、质子交换膜燃料电池
JP2014207122A (ja) 双極板及びその製造方法
Zhang et al. Low effective content of reduced graphene oxide/silver nanowire hybrids in epoxy composites with enhanced conductive properties
CN110724320B (zh) 一种导热橡胶复合材料及其制备方法
CN111584176B (zh) 一种疏水型导热粘结磁性复合材料及其制备方法
CN107116210A (zh) 石墨片定向层状排列的铜基复合材料散热片及其制备方法
CN1776944A (zh) 一种提高导电复合材料双极板电导率的方法
CN113594487A (zh) 一种双极板及其制备方法
CN108342077A (zh) 一种三相双逾渗电磁屏蔽材料及其制备方法
CN110102757A (zh) 一种基于原位合成的石墨烯包覆铜导电粉的制备方法
CN115785864A (zh) 一种PI-Al2O3和PI-BN共掺杂高导热环氧树脂复合材料的制备方法
CN112961452B (zh) 一种微波通信用高导热系数低介电损耗聚合物基纳米复合材料的制备方法
CN109504085B (zh) 一种高导热树脂基复合材料及其制备方法
CN113667285A (zh) 一种高韧性塑料及其制备方法
CN110734724B (zh) 一种环氧树脂导热胶的制备方法
CN113150498B (zh) 一种高强度、导热绝缘环氧树脂复合材料及其制备方法
US10629916B2 (en) Preparation method for bipolar plate for redox flow battery
CN111393838A (zh) 一种高强导电导热尼龙复合材料及其制备方法
CN111393795B (zh) 一种三维导热绝缘环氧树脂复合材料及其制备方法
CN108962424B (zh) 一种石墨烯导电薄膜及其制备方法
CN114400124A (zh) 一种玻纤增强尼龙66/钐钴永磁复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant