CN111575708A - 一种镍钼聚离子化合物混合相纳米棒阵列的制备方法 - Google Patents

一种镍钼聚离子化合物混合相纳米棒阵列的制备方法 Download PDF

Info

Publication number
CN111575708A
CN111575708A CN202010631161.6A CN202010631161A CN111575708A CN 111575708 A CN111575708 A CN 111575708A CN 202010631161 A CN202010631161 A CN 202010631161A CN 111575708 A CN111575708 A CN 111575708A
Authority
CN
China
Prior art keywords
nickel
nanorod array
molybdenum
phase
glass bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010631161.6A
Other languages
English (en)
Inventor
申士杰
钟文武
陈基根
林志萍
王宗鹏
赵钰燚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN202010631161.6A priority Critical patent/CN111575708A/zh
Publication of CN111575708A publication Critical patent/CN111575708A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开一种镍钼聚离子化合物混合相纳米棒阵列的制备方法,所述方法采用六水硝酸镍和仲钼酸铵作为原料,在镍片表面加热生长纳米棒阵列;所述纳米棒阵列的电催化析氢过电位为191.2mV,塔菲尔斜率为78.8mV/dec。

Description

一种镍钼聚离子化合物混合相纳米棒阵列的制备方法
技术领域
本发明涉及一种镍钼聚离子化合物混合相纳米棒阵列的制备方法。
技术背景
能源需求的持续增长和矿物燃料的快速消费有力地促进了清洁和可持续能源的发展。氢能被认为是最清洁、最有前途的可持续能源之一,是克服能源短缺挑战的关键解决方案。在现有技术中,电催化分解水制氢是大规模氢气生产中的一种有效的方法。
电解水需要用到电催化剂。从电催化剂的角度来看,贵金属Pt是电解水制氢效率最高的电催化剂。然而它的成本高、稀缺性和稳定性差,使它不能大规模地应用。因此目前的研究主要集中在开发高催化活性、稳定性好、低成本的电催化剂。
发明内容
本发明的目的在于提供一种高催化活性、低成本的镍钼聚离子化合物混合相纳米棒阵列电催化剂。
所述电催化剂的制备方法包括如下步骤:裁剪一块2cm×2cm×1.6mm的镍片,在6M的盐酸中超声处理3分钟,随后在丙酮中超声处理3分钟,再在去离子水中超声处理3分钟;将3克六水硝酸镍和0.2克仲钼酸铵置于20mL的玻璃瓶中,将玻璃瓶在125℃加热20分钟使得玻璃瓶中的盐熔化;再将前述处理过的镍片浸于玻璃瓶内的熔盐中,将玻璃瓶在125℃加热10小时;将镍片取出,用去离子水清洗镍片表面2次,再用酒精清洗镍片表面2次;获得的镍片表面附着有所需的镍钼聚离子化合物混合相纳米棒阵列。
与现有技术相比,本发明所述的样品具有以下的优点:制备的电催化剂呈长条形的纳米棒阵列结构,暴露的活性位点多,电催化析氢过电位和塔菲尔斜率较低。
附图说明
图1是实施例样品的XRD图谱。
图2是实施例样品和对比例样品的SEM图谱。
图3是实施例样品和对比例样品的线性伏安曲线和塔菲尔曲线。
图4是实施例样品和对比例样品的电化学双层电容拟合曲线。
具体实施方式
以下结合具体实施例对本发明的实现进行详细的描述。
所述电催化剂的制备方法包括如下步骤:裁剪一块2cm×2cm×1.6mm的镍片,在6M的盐酸中超声处理3分钟,随后在丙酮中超声处理3分钟,再在去离子水中超声处理3分钟;将3克六水硝酸镍和0.2克仲钼酸铵置于20mL的玻璃瓶中,将玻璃瓶在125℃加热20分钟使得玻璃瓶中的盐熔化;再将前述处理过的镍片浸于玻璃瓶内的熔盐中,将玻璃瓶在125℃加热10小时;将镍片取出,用去离子水清洗镍片表面2次,再用酒精清洗镍片表面2次;获得的镍片表面附着有所需的镍钼聚离子化合物混合相纳米棒阵列。
为了说明实施例的技术效果,按以下步骤作了对比例:裁剪一块2cm×2cm×1.6mm的镍片,在6M的盐酸中超声处理3分钟,随后在丙酮中超声处理3分钟,再在去离子水中超声处理3分钟;将3克六水硝酸镍置于20mL的玻璃瓶中,将玻璃瓶在125℃加热20分钟使得玻璃瓶中的盐熔化;再将前述处理过的镍片浸于玻璃瓶内的熔盐中,将玻璃瓶在125℃加热10小时;将镍片取出,用去离子水清洗镍片表面2次,再用酒精清洗镍片表面2次;获得的镍片表面附着有硝酸镍氢氧化物纳米棒阵列。
对实施例和对比例的样品进行了表征。图1是实施例样品的XRD图谱,可以看出样品的衍射峰与(NH4) Ni2Mo2O8(OH) (PDF#52-0168)和Ni2(OH)2(NO3)2 (PDF#27-0939,如图中箭头所示)的标准数据非常匹配,说明样品是上述两物相的混合物,称之为镍钼聚离子化合物混合相。图2a-b是实施例样品不同放大倍数下的SEM图谱,可以看出样品呈明显的纳米棒阵列结构,并且纳米棒的长度较长。而对比例样品(图2c-d)呈较短的纳米棒颗粒结构。这说明实施例的方法有助于纳米棒的生长。图3是实施例样品和对比例样品的线性伏安曲线和塔菲尔斜率曲线(测试溶液采用1M的KOH溶液)。实施例样品的电催化析氢过电位(100mA/cm2时)为191.2mV,塔菲尔斜率为78.8mV/dec。而对比例样品的电催化析氢过电位(100mA/cm2时)为252.6 mV,塔菲尔斜率为192.4mV/dec。这说明实施例样品具有更优异的电催化析氢性能。图4是电化学双层电容(正比于电化学活性面积)拟合曲线,从中可得到实施例样品的电化学双层电容为21.4 mF cm-2,而对比例样品的电化学双层电容为5.0 mF cm-2。这说明实施例样品的电化学活性面积更大,暴露的活性位点更多。
需要声明的是,以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的基本构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (3)

1.一种镍钼聚离子化合物混合相纳米棒阵列的制备方法,其特征在于包括如下步骤:裁剪一块2cm×2cm×1.6mm的镍片,在6M的盐酸中超声处理3分钟,随后在丙酮中超声处理3分钟,再在去离子水中超声处理3分钟;将3克六水硝酸镍和0.2克仲钼酸铵置于20mL的玻璃瓶中,将玻璃瓶在125℃加热20分钟使得玻璃瓶中的盐熔化;再将前述处理过的镍片浸于玻璃瓶内的熔盐中,将玻璃瓶在125℃加热10小时;将镍片取出,用去离子水清洗镍片表面2次,再用酒精清洗镍片表面2次;获得的镍片表面附着有所需的镍钼聚离子化合物混合相纳米棒阵列。
2.如权利要求1所述的方法制备的镍钼聚离子化合物混合相纳米棒阵列。
3.如权利要求2所述的镍钼聚离子化合物混合相纳米棒阵列在电催化领域的应用。
CN202010631161.6A 2020-07-03 2020-07-03 一种镍钼聚离子化合物混合相纳米棒阵列的制备方法 Withdrawn CN111575708A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010631161.6A CN111575708A (zh) 2020-07-03 2020-07-03 一种镍钼聚离子化合物混合相纳米棒阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010631161.6A CN111575708A (zh) 2020-07-03 2020-07-03 一种镍钼聚离子化合物混合相纳米棒阵列的制备方法

Publications (1)

Publication Number Publication Date
CN111575708A true CN111575708A (zh) 2020-08-25

Family

ID=72118481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010631161.6A Withdrawn CN111575708A (zh) 2020-07-03 2020-07-03 一种镍钼聚离子化合物混合相纳米棒阵列的制备方法

Country Status (1)

Country Link
CN (1) CN111575708A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107199040A (zh) * 2017-07-06 2017-09-26 中国科学院福建物质结构研究所 钼酸盐纳米阵列及其制备方法和应用
CN107685150A (zh) * 2017-08-24 2018-02-13 武汉理工大学 一种氮掺杂碳包覆的Ni&MoO2超细纳米线及其制备方法和应用
CN108671944A (zh) * 2018-05-29 2018-10-19 武汉工程大学 一种镍钼氧化物@镍钼硫化物@泡沫镍复合纳米材料及其制备方法与应用
CN109628951A (zh) * 2018-10-31 2019-04-16 中山大学 一种硫化镍析氢电催化剂及其制备方法与应用
CN110586116A (zh) * 2019-09-25 2019-12-20 广西师范大学 一种析氢电催化剂的MoO2-Ni/CC复合材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107199040A (zh) * 2017-07-06 2017-09-26 中国科学院福建物质结构研究所 钼酸盐纳米阵列及其制备方法和应用
CN107685150A (zh) * 2017-08-24 2018-02-13 武汉理工大学 一种氮掺杂碳包覆的Ni&MoO2超细纳米线及其制备方法和应用
CN108671944A (zh) * 2018-05-29 2018-10-19 武汉工程大学 一种镍钼氧化物@镍钼硫化物@泡沫镍复合纳米材料及其制备方法与应用
CN109628951A (zh) * 2018-10-31 2019-04-16 中山大学 一种硫化镍析氢电催化剂及其制备方法与应用
CN110586116A (zh) * 2019-09-25 2019-12-20 广西师范大学 一种析氢电催化剂的MoO2-Ni/CC复合材料及制备方法

Similar Documents

Publication Publication Date Title
US9255335B2 (en) Catalysts for low temperature electrolytic CO2 reduction
Xia et al. In situ growth of porous ultrathin Ni (OH) 2 nanostructures on nickel foam: an efficient and durable catalysts for urea electrolysis
Patil et al. Enhancing the performance of Ni-Mo alkaline hydrogen evolution electrocatalysts with carbon supports
Maric et al. Proton exchange membrane water electrolysis as a promising technology for hydrogen production and energy storage
CN109055972A (zh) Mn掺杂Ni3S2纳米阵列析氢催化剂及其制备方法和应用
CN110124673B (zh) 一种硼诱导非晶层状双氢氧化物电催化剂及其制备与应用
CN113604838A (zh) 一种镍钴双金属硒化物异质结构电催化剂的制备方法及其应用
CN109628951A (zh) 一种硫化镍析氢电催化剂及其制备方法与应用
Duan et al. Manipulating the electrocatalytic performance of NiCoP nanowires by V doping under acidic and basic conditions for hydrogen and oxygen evolution reactions
Dan et al. Substitutional doping engineering toward W2N nanorod for hydrogen evolution reaction at high current density
CN110586116A (zh) 一种析氢电催化剂的MoO2-Ni/CC复合材料及制备方法
Medany et al. Nickel–cobalt oxides decorated Chitosan electrocatalyst for ethylene glycol oxidation
JP2023133304A (ja) 触媒及びその使用方法
CN102616739A (zh) 一种光催化水分解的装置及应用
CN112921351B (zh) 一种自支撑型催化电极的制备方法和应用
Zhang et al. Surface Ligand Modification on Ultrathin Ni (OH) 2 Nanosheets Enabling Enhanced Alkaline Ethanol Oxidation Kinetics
Xiao et al. Electrochemical formation of multilayered NiO film/Ni foam as a high-efficient anode for methanol electrolysis
CN111575708A (zh) 一种镍钼聚离子化合物混合相纳米棒阵列的制备方法
Dessources et al. Non-noble metal as catalysts for alcohol electro-oxidation reaction
CN113832489A (zh) 泡沫镍负载镍铜锰金属纳米电催化剂及其制备方法
CN110420649B (zh) 一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用
CN112708904A (zh) 一种碳纤维负载纳米钴钼合金催化剂的制备方法及应用
Shen et al. Highly Selective Electrooxidation of Urea to Nitrogen on Copper/Nickel Boride Interface under Alkaline Condition
CN104073840B (zh) 一种镍-锌-铝/碳纤维复合材料的制备方法
Vijayarangan et al. A Self-Supporting Electrode Material (NiS/NF) as a Stable and Efficient Electrocatalyst for Oxygen Evolution: In Situ Surface Activation of Nickel Sulfide to Nickel Oxide/(Oxy) hydroxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200825

WW01 Invention patent application withdrawn after publication