CN110420649B - 一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用 - Google Patents

一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN110420649B
CN110420649B CN201910766447.2A CN201910766447A CN110420649B CN 110420649 B CN110420649 B CN 110420649B CN 201910766447 A CN201910766447 A CN 201910766447A CN 110420649 B CN110420649 B CN 110420649B
Authority
CN
China
Prior art keywords
mos
coni
metal phase
carbon paper
phase mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910766447.2A
Other languages
English (en)
Other versions
CN110420649A (zh
Inventor
罗志敏
沈琦
张颖
邵周伟
汪联辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201910766447.2A priority Critical patent/CN110420649B/zh
Publication of CN110420649A publication Critical patent/CN110420649A/zh
Application granted granted Critical
Publication of CN110420649B publication Critical patent/CN110420649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开一种金属相MoS2‑CoNi(OH)2纳米复合材料及其制备方法和应用,该制备包括:将(NH4)2MoS4加入N,N‑二甲基甲酰胺中,加入水合肼得到反应液;将碳纸浸入反应液内进行水热反应,得到生长有金属相MoS2的碳纸作为工作电极浸入电解质溶液中,在恒电位下进行电化学沉积,在生长有金属相MoS2的碳纸的表面沉积出CoNi(OH)2纳米片。本发明通过溶剂热法在碳纸上生长金属相的MoS2纳米片,然后将CoNi(OH)2纳米片电沉积在碳纸/MoS2上,形成二维金属相MoS2‑CoNi(OH)2纳米复合材料可以作为一种新型的双功能催化剂,在低电位下用于碱性电解液中电解水。

Description

一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和 应用
技术领域
本发明属于电催化材料技术领域,具体涉及一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用。
背景技术
电催化分解水生成氢气作为一种新型的清洁能源先进技术具有重要意义。贵金属或贵金属基催化剂,例如Pt和Pt合金对析氢反应(HER)在酸性条件下具有很高的催化活性,然而它们在燃料电池中的实际应用受到其稀缺性和高成本的限制,而且铂类催化剂在碱性条件下的电化学析氢反应动力学不够快速,开发用于 HER的高效且耐用的非贵金属催化剂(例如含过渡金属的电催化剂)近年来引起了极大的关注。二维过渡金属硫化物纳米材料含有的过渡金属元素在自然界中来源丰富、价格低廉,其作为电解水催化剂研究受到了重视。据报道,二硫化钼 (MoS2)是昂贵的Pt材料在酸性溶液中HER的替代物,但其在碱性电解液中电化学析氢的动力学过于缓慢,这限制了其在碱性电解水中的广泛应用。MoS2在碱性溶液中的缓慢HER动力学可归因于其在电催化反应过程中的缓慢电子转移、初始水解离过程的高能垒以及MoS2表面上形成的-OH的强吸附。
发明内容
发明目的:针对现有技术存在的问题,本发明提供了一种金属相 MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用。本发明制备的 MoS2-CoNi(OH)2纳米复合材料可以作为一种新型的双功能催化剂,在低电位下用于碱性电解液中电解水。
技术方案:为了实现上述目的,如本发明所述一种金属相MoS2-CoNi(OH)2纳米复合材料的制备方法,包括如下步骤:
(1)将(NH4)2MoS4加入N,N-二甲基甲酰胺中,超声处理后,加入水合肼,混匀,得到反应液;
(2)将反应液转入水热釜中,将碳纸浸入反应液内,进行水热反应,得到生长有金属相MoS2的碳纸;
(3)将生长有金属相MoS2的碳纸作为工作电极浸入含有Co3+和Ni3+的电解质溶液中,以铂线作为对电极、饱和甘汞电极作为参比电极,在恒电位下进行电化学沉积,在生长有金属相MoS2的碳纸的表面沉积出CoNi(OH)2纳米片,得到双金属纳米催化材料,即为金属相MoS2-CoNi(OH)2纳米复合材料。
作为优选,步骤(2)所述将反应液转入内衬有特氟龙涂层的水热釜中,将碳纸浸入反应液内,在180~220℃下进行水热反应。
其中,步骤(2)所述碳纸的长度为2~3cm、宽度为0.2~0.3cm。作为优选,碳纸的长度为2.5cm、宽度为0.25cm。
其中,步骤(3)所述Co3+和Ni3+在电解质溶液中的浓度均为1~2mM。作为优选,所述Co3+和Ni3+在电解质溶液中的浓度均为1.5mM。
其中,步骤(3)所述恒电位的电压为-1.5~-0.5V(Vs.SCE)。作为优选,所述恒电位的电压为-1.0V(Vs.SCE)。
进一步地,步骤(3)所述电化学沉积的时间为250~350s。
本发明所述的金属相MoS2-CoNi(OH)2纳米复合材料的制备方法所制备的金属相MoS2-CoNi(OH)2纳米复合材料。
本发明所述的金属相MoS2-CoNi(OH)2纳米复合材料的制备方法所制备的金属相MoS2-CoNi(OH)2纳米复合材料在在电催化析氢反应中的应用。
本发明所述的金属相MoS2-CoNi(OH)2纳米复合材料的制备方法所制备的金属相MoS2-CoNi(OH)2纳米复合材料在在电催化析氧反应中的应用。
本发明中的原料均市售可得。
本发明中相比较二硫化钼(MoS2),金属相MoS2具有更高的电催化效率,因为它具有良好的导电性和更多的活性氢吸附位点;掺杂到MoS2中的杂原子 (Co,Ni)具有更强的与-OH结合的能力从而降低对在MoS2上形成的-OH的吸附,进而提高析氢能力。因此,制备金属相MoS2和Ni,Co基化合物的纳米复合材料将有效的促进其中碱性溶液中的HER动力学。
有益效果:与现有技术相比,本发明具有如下优点:
本发明通过溶剂热法在碳纸上生长金属相的MoS2纳米片,然后将 CoNi(OH)2纳米片电沉积在碳纸/MoS2上,在碳纸上形成二维金属相 MoS2-CoNi(OH)2纳米复合材料,用于电化学分解水。本发明发现CoNi(OH)2可以极大地促进金属相MoS2在0.1M KOH水溶液中的电化学析氢能力。本发明制备的金属相MoS2-CoNi(OH)2纳米复合材料在10mA/cm2的电流密度下显示出 178mV的低过电位,Tafel斜率为60.9mV/dec。在超过0.190V的过电位下,金属相MoS2-CoNi(OH)2纳米复合材料的析氢电流密度甚至高于商业Pt/C催化剂。此外,金属相MoS2-CoNi(OH)2复合材料还在0.1M KOH水溶液中显示出高效的产氧性能。这种金属相MoS2-CoNi(OH)2复合材料可以作为一种新型的双功能催化剂,在低电位下用于碱性电解液中电解水。
附图说明
图1为本发明中实施例1制备的生长有金属相MoS2的碳纸的高分辨率透射电镜照片;
图2为本发明中实施例1制备的生长有金属相MoS2的碳纸的扫描电镜照片;
图3为本发明中实施例1制备的生长有金属相MoS2的碳纸的XRD图谱;
图4为本发明中实施例1制备的生长有金属相MoS2的拉曼图谱;
图5为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料的扫描电镜照片;
图6为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料的高分辨率透射电镜照片;
图7为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料中 Mo 3d的高分辨率XPS图谱;
图8为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料中S 2p的高分辨率XPS图谱;
图9为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料中Co 2p的高分辨率XPS图谱;
图10为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料中 Ni 2p的高分辨率XPS图谱;
图11为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料和其他化合物在N2饱和的0.1M KOH水溶液中的极化曲线(80%IR校正后);
图12为图11中各条极化曲线的Tafel斜率图;
图13为CP/CoNi(OH)2,CP/MoS2,CP/MoS2-CoNi(OH)2在-0.484V(vs.RHE) 下的EIS-能斯特图;
图14为CP/MoS2-CoNi(OH)2在N2饱和的0.1M KOH水溶液中的电催化稳定性示意图;
图15为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料和其他化合物在0.1M KOH水溶液中的析氧极化曲线示意图;
图16为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料和其他化合物在0.1M KOH水溶液中的过电势曲线示意图;
图17为图15中各条极化曲线的Tafel斜率图;
图18为本发明中实施例1制备的金属相MoS2-CoNi(OH)2纳米复合材料和其他化合物在0.1M KOH水溶液中、在1.765V工作电势下的过电势曲线示意图;
图19为计算出的金属相MoS2和MoS2-CoNi(OH)2复合物在碱性水溶液中析氢的自由能图。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
实施例1
本实施例提供了一种金属相MoS2-CoNi(OH)2纳米复合材料的制备方法,具体包括如下步骤:
将2.6mg(NH4)2MoS4加入10mL DMF中,超声处理10分钟,得到澄清均匀的(NH4)2MoS4溶液;
取10mL(NH4)2MoS4溶液,另取100μL水合肼,混合成反应液加入体积 20mL内衬有特氟龙涂层的水热釜中,然后将长度为2.5cm、宽度为0.25cm的碳纸浸入反应液中,将水热釜在200℃下加热12小时,得到生长有金属相MoS2的碳纸,去离子水洗涤后备用;
将所述生长有金属相MoS2的碳纸作为工作电极浸入含有1.5mM Co(NO3)3和1.5mMNi(NO3)3的10mL电解质溶液中(溶剂为水),以铂线作为对电极、饱和甘汞电极作为参比电极,通过-1.0V(vs.SCE)的恒电位电沉积300s,在生长有金属相MoS2的碳纸的表面沉积出CoNi(OH)2纳米片,得到金属相 MoS2-CoNi(OH)2纳米复合材料。
将本实施例中制备的生长有金属相MoS2的碳纸进行表征,X射线能谱分析和元素成像分析结果证实了Mo和S元素的存在;高分辨率透射电镜照片如图1 所示,出现了典型的MoS2层间距(0.635nm),证实了在碳纸上成功形成了MoS2纳米片;扫描电镜照片如图2所示,薄层状的MoS2生长在碳纸上。X射线衍射照片如图3所示,在9.0°处的XRD峰归因于由于形成层状结构而引入氧的MoS2的(002)面,在18.0°处的衍射峰归因于MoS2的(004)面,在32.2°和56.7°处的衍射峰对应于MoS2的(100)和(110)晶面,(100)和(110)的宽衍射峰表明制备的MoS2的弱结晶度。没有高指数衍射峰表明产物的短程无序,这意味着产物中存在更多的催化活性位点。通过拉曼光谱表征制备的MoS2的结构和组成,如图4所示,144(J1)cm-1,219(J2)cm-1和247(J3)cm-1是金属相 MoS2的典型拉曼峰,在289cm-1处的E1g振动模式由金属八面体配位的MoS2产生,193cm-1处的拉曼峰来自不同的MoS2层,产物在371cm-1和401cm-1处的两个峰对应于2H MoS2的E2g 1和A1g模式,拉曼表征证实了产物中1T和2H相的共存,XPS分析表明该产物主要是金属相的。
将本实施例中制备的金属相MoS2-CoNi(OH)2纳米复合材料进行表征,如图 5所示,电沉积后,碳/金属相MoS2的表面变厚,表明CoNi(OH)2在其表面生长。通过高分辨率透射电镜和能谱分析表征在碳纸上形成金属相MoS2-CoNi(OH)2复合材料,如图6所示,可以清楚地观察到含有Mo,S,Co和Ni元素的纳米片,分析Co和Ni的比例为1:1。通过XPS进一步表征金属相MoS2-CoNi(OH)2复合材料的结构和组成,如图7、8、9、10所示,金属相MoS2的结构不变,金属相 MoS2中1T相的百分比在其上电沉积CoNi(OH)2后保持恒定,在796.6和781.0eV 处的两个XPS峰,分别归因于Co2+的Co 2p3/2和Co 2p1/2。高分辨率Ni 2p光谱显示在855.7和873.7eV处的两个峰,对应于Ni 2p3/2和Ni 2p1/2,表明Ni2+氧化态。
MoS2在碱性电解液中的电催化活性差,限制了其在电解水中的实际应用,然而MoS2的Ni掺杂和相调控可以有效地改善其析氢性能。在本发明中,在碳纸上制备的金属相MoS2-CoNi(OH)2由高导电性能的金属相MoS2和CoNi(OH)2片组成。由于金属相MoS2有利于HER过程中的电子转移,并且过渡金属氢氧化物能够促进水的离解并增强Pt催化剂的析氢,因此碳纸固载金属相 MoS2-CoNi(OH)2有望成为高效的工作电极,用于增强碱性电解质中的HER。
本发明对于单独的CoNi(OH)2和单独的金属相MoS2以及本实施例的金属相 MoS2-CoNi(OH)2纳米复合材料进行对比。
CP(碳纸),CP/CoNi(OH)2,CP/MoS2,CP/MoS2-CoNi(OH)2,CP/Pt-C的极化曲线在N2饱和的0.1M KOH水溶液中以5mV/s的扫描速率进行。结果如图 11、12、13、14所示,单独的CoNi(OH)2和单独的金属相MoS2分别在10mA/cm2的电流密度下显示出586mV和350mV的过电势。然而,金属相MoS2-CoNi(OH)2纳米复合材料在10mA/cm2的电流密度下具有178mV的过电位,远低于单独的金属相MoS2和单独的CoNi(OH)2,表明金属相MoS2和CoNi(OH)2在碱性溶液 HER中具有协同增强效应,本发明制备的金属相MoS2-CoNi(OH)2纳米复合材料比金属相MoS2和单独的CoNi(OH)2的电催化产氢效果显著提高。当工作电位低于-0.190V(vs.RHE)时,金属相MoS2-CoNi(OH)2甚至显示出比商业10%Pt/C 催化剂更高的电流密度。金属相MoS2-CoNi(OH)2的Tafel斜率(60.9mV/dec) 远低于CoNi(OH)2(335.5mV/dec)和金属相MoS2(143.0mV/dec),并且接近于商业Pt/C催化剂(52.4mV/dec),表明HER在金属相MoS2-CoNi(OH)2的碱性溶液中的快速动力学。测量CoNi(OH)2,金属相MoS2和金属相MoS2-CoNi(OH)2在-0.484V(vs.RHE)的工作电位下的电化学阻抗谱(EIS)以证实它们的电催化活性。金属相MoS2-CoNi(OH)2在0.1M KOH水溶液中具有明显小于 CoNi(OH)2、金属MoS2、甚至商业Pt/C催化剂的电荷转移电阻,表明两者的协同作用提高了金属相MoS2-CoNi(OH)2的HER动力学。金属相MoS2-CoNi(OH)2的优良HER电催化活性归因于金属相MoS2的高导电性,以及金属相MoS2和CoNi(OH)2的协同作用。金属相MoS2促进电子转移,CoNi(OH)2与OH-中间体的结合加速了HER过程中的水解离。金属相MoS2-CoNi(OH)2在碱性溶液中作为HER催化剂的耐久性试验显示它在10000个线性伏安循环后具有与初始催化剂相似的极化曲线,表明金属相MoS2-CoNi(OH)2具有优异的电催化稳定性。
除了在碱性溶液中HER的优异性能外,金属相MoS2-CoNi(OH)2还具有作为阳极催化剂产氧的潜在应用。如图15、16、17、18所示,金属相MoS2-CoNi(OH)2在10mA/cm2的电流密度和46.8mV/decade的Tafel斜率下显示出0.294V的过电位,这低于CoNi(OH)2,金属相MoS2和IrO2。金属相MoS2-CoNi(OH)2的低过电位和Tafel斜率表明其在碱性溶液中的高效产氧活性。EIS测量结果表明,在1.765V(vs.RHE)下金属相MoS2-CoNi(OH)2的电荷转移电阻明显小于在0.1M KOH水溶液中的CoNi(OH)2、金属相MoS2和IrO2,证实金属相MoS2-CoNi(OH)2在碱性水溶液中有更快的OER动力学。
本发明的金属相MoS2-CoNi(OH)2纳米复合材料在碱性溶液中对HER的协同增强机制。碱性电解液中的HER包括三个步骤:(1)Volmer步骤(H2O+e- →H*+OH-)(120mV/decade),(2)Heyrovsky步骤(H2O+e-+H*→H2+ OH-)(40mV/decade),(3)Tafel步骤(H*+H*→H2)(30mV/decade)(7,15)。 Tafel斜率为60.9mV/decade表明金属相MoS2-CoNi(OH)2上的HER遵循 Volmer-Heyrovsky机制。金属相MoS2-CoNi(OH)2表面上的水解离是限速步骤。在Volmer步骤中,H2O分子在金属MoS2-CoNi(OH)2的表面上电化学解离成H* 和OH-。吸附的H*结合在金属相MoS2的活性位点上,同时CoNi(OH)2吸附产生的OH-可以促进水解离和析氢。采用密度泛函理论(DFT)计算以评估吸附原子氢的吉布斯自由能(ΔGH)。如图19所示,纯金属相MoS2的ΔGH为-1.02eV,远低于热中性要求(ΔGH≈0),表明其对碱性溶液中析氢的电催化活性低。在 CoNi(OH)2电沉积在金属相MoS2的表面上之后,对于金属相MoS2,ΔGH从-1.02eV降低至-0.03eV,对于金属相MoS2-CoNi(OH)2,其几乎是热中性的,表明金属相MoS2和CoNi(OH)2的协同作用导致碱性溶液中HER的金属相 MoS2-CoNi(OH)2的活性增强。上述关于金属相MoS2-CoNi(OH)2,金属相MoS2和CoNi(OH)2在碱性溶液中产氢的实验结果验证了DFT计算的结果。
实施例2
本实施例提供了一种金属相MoS2-CoNi(OH)2纳米复合材料的制备方法,具体包括如下步骤:
将2.6mg(NH4)2MoS4加入10mL DMF中,超声处理10min,得到澄清均匀的(NH4)2MoS4溶液;
取10mL(NH4)2MoS4溶液,另取100μL水合肼,混合成反应液加入20mL 内衬有特氟龙涂层的水热釜中,然后将长度为2cm、宽度为0.2cm的碳纸浸入反应液中,将水热釜在220℃下加热10h,得到生长有金属相MoS2的碳纸,去离子水洗涤后备用;
将所述生长有金属相MoS2的碳纸作为工作电极浸入含有1mM Co(NO3)3和 1mM Ni(NO3)3的10mL电解质溶液中,以铂线作为对电极、饱和甘汞电极作为参比电极,通过-1.5V(vs.SCE)的恒电位电沉积350s,在生长有金属相MoS2的碳纸的表面沉积出CoNi(OH)2纳米片,得到所述金属相MoS2-CoNi(OH)2纳米复合材料。
实施例3
本实施例提供了一种金属相MoS2-CoNi(OH)2纳米复合材料的制备方法,具体包括如下步骤:
将2.6mg(NH4)2MoS4加入10mL DMF中,超声处理10min,得到澄清均匀的(NH4)2MoS4溶液;
取10mL(NH4)2MoS4溶液,另取100μL水合肼,混合成反应液加入20mL 内衬有特氟龙涂层的水热釜中,然后将长度为3cm、宽度为0.3cm的碳纸浸入反应液中,将水热釜在180℃下加热20h,得到生长有金属相MoS2的碳纸,去离子水洗涤后备用;
将所述生长有金属相MoS2的碳纸作为工作电极浸入含有2mM Co(NO3)3和 2mM Ni(NO3)3的10mL电解质溶液中,以铂线作为对电极、饱和甘汞电极作为参比电极,通过-0.5V(vs.SCE)的恒电位电沉积250s,在生长有金属相MoS2的碳纸的表面沉积出CoNi(OH)2纳米片,得到所述金属相MoS2-CoNi(OH)2纳米复合材料。

Claims (4)

1.一种金属相MoS2-CoNi(OH)2纳米复合材料在电催化析氧反应中的应用,所述金属相MoS2-CoNi(OH)2纳米复合材料的制备方法,包括如下步骤:
(1)将 (NH4)2MoS4加入N,N-二甲基甲酰胺中,超声处理后,加入水合肼,混匀,得到反应液;
(2)将反应液转入水热釜中,将碳纸浸入反应液内,进行水热反应,得到生长有金属相MoS2的碳纸;
(3)将生长有金属相MoS2的碳纸作为工作电极浸入含有 Co3+和Ni3+的电解质溶液中,以铂线作为对电极、饱和甘汞电极作为参比电极,在恒电位下进行电化学沉积,在生长有金属相MoS2的碳纸的表面沉积出CoNi(OH)2纳米片,得到所述金属相MoS2-CoNi(OH)2纳米复合材料;
步骤(2)将反应液转入内衬有特氟龙涂层的水热釜中,将碳纸浸入反应液内,在180~220 ℃下进行水热反应10~20 h;
步骤(3)所述恒电位的电压为-1.5~-0.5 V。
2.根据权利要求1所述的应用,其特征在于,步骤(2)所述碳纸的长度为2~3cm、宽度为0.2~0.3 cm。
3.根据权利要求1所述的应用,其特征在于,步骤(3)所述 Co3+和Ni3+在电解质溶液中的浓度均为1~2 mM。
4.根据权利要求1所述的应用,其特征在于,步骤(3)所述电化学沉积的时间为250~350s。
CN201910766447.2A 2019-08-19 2019-08-19 一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用 Active CN110420649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910766447.2A CN110420649B (zh) 2019-08-19 2019-08-19 一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910766447.2A CN110420649B (zh) 2019-08-19 2019-08-19 一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110420649A CN110420649A (zh) 2019-11-08
CN110420649B true CN110420649B (zh) 2022-05-10

Family

ID=68416987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910766447.2A Active CN110420649B (zh) 2019-08-19 2019-08-19 一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110420649B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114457369B (zh) * 2022-01-28 2023-06-20 南京邮电大学 一种CP@MoS2-PtNi催化剂的制备方法及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805823A (zh) * 2017-10-31 2018-03-16 哈尔滨工业大学 一种自支撑的过渡金属化合物基多级结构电极材料的制备方法及其应用
CN108118362A (zh) * 2018-01-09 2018-06-05 国家纳米科学中心 一种二硫化钼电催化产氢电极及其制备方法和用途
CN109455774A (zh) * 2018-12-27 2019-03-12 西安交通大学 一种Ni-Fe-OH/MoS2/Ni3S2的复合纳米片/碳纤维布、制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805823A (zh) * 2017-10-31 2018-03-16 哈尔滨工业大学 一种自支撑的过渡金属化合物基多级结构电极材料的制备方法及其应用
CN108118362A (zh) * 2018-01-09 2018-06-05 国家纳米科学中心 一种二硫化钼电催化产氢电极及其制备方法和用途
CN109455774A (zh) * 2018-12-27 2019-03-12 西安交通大学 一种Ni-Fe-OH/MoS2/Ni3S2的复合纳米片/碳纤维布、制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nanohybridization of MoS2 with Layered Double Hydroxides Efficiently Synergizes the Hydrogen Evolution in Alkaline Media;Jue Hu等;《Joule》;20171017;第1卷;383-393 *
非晶态镍钴配合物与1T相二硫化钼复合材料的合成及其电化学全解水性能研究;张志成等;《物理化学学报》;20171031;第33卷(第10期);1923-1924 *

Also Published As

Publication number Publication date
CN110420649A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
Wang et al. Engineering NiF3/Ni2P heterojunction as efficient electrocatalysts for urea oxidation and splitting
Huang et al. Defect engineering of cobalt-based materials for electrocatalytic water splitting
Chen et al. Study of cobalt boride-derived electrocatalysts for overall water splitting
Wang et al. Layered bimetallic iron–nickel alkoxide microspheres as high-performance electrocatalysts for oxygen evolution reaction in alkaline media
Darband et al. Hydrazine-assisted electrochemical hydrogen production by efficient and self-supported electrodeposited Ni-Cu-P@ Ni-Cu nano-micro dendrite catalyst
Shang et al. In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
Zhang et al. Coaxial Ni–S@ N-doped carbon nanofibers derived hierarchical electrodes for efficient H2 production via urea electrolysis
Zhang et al. Ruthenium composited NiCo2O4 spinel nanocones with oxygen vacancies as a high-efficient bifunctional catalyst for overall water splitting
Zhang et al. Hierarchically constructed silver nanowire@ nickel–iron layered double hydroxide nanostructures for electrocatalytic water splitting
Mondal et al. Pdδ+-mediated surface engineering of AgMnO4 nanorods as advanced bifunctional electrocatalysts for highly efficient water electrolysis
CN110983361B (zh) 一种限域生长钴纳米颗粒的氮化钽碳纳米薄膜一体化电极及其制备方法和应用
Jayabalan et al. NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production
Li et al. NiCo-BDC nanosheets coated with amorphous Ni-S thin film for high-efficiency oxygen evolution reaction and urea oxidation reaction
CN113957456A (zh) 共掺杂结合异质结构的镍基碱性电解水催化剂及制备方法
Nourmohammadi Khiarak et al. Efficient electrocatalytic overall water splitting on a copper-rich alloy: an electrochemical study
JP2023133304A (ja) 触媒及びその使用方法
Taherinia et al. Comparison of hydrothermal and electrodeposition methods for the synthesis of CoSe2/CeO2 nanocomposites as electrocatalysts toward oxygen evolution reaction
Tang et al. Interfacial heterojunction-engineered Fe2O3/CoFe-Layered Double Hydroxide catalyst for the electrocatalytic oxygen evolution reaction
Lin et al. Nickel–Cobalt Selenide Electrocatalytic Electrode toward Glucose Oxidation Coupling with Alkaline Hydrogen Production
Wang et al. Porphyrin coordination polymer supported transition-metal sulfides as precious-metal-free electrocatalysts for efficient overall water splitting
Zabihinezhad et al. Bi-functional Ni-Co-P/rGO/NF flower-like structure as an electrocatalyst for hydrogen production assisted by urea oxidation reaction
CN110420649B (zh) 一种金属相MoS2-CoNi(OH)2纳米复合材料及其制备方法和应用
Tamboli et al. Boosting oxygen evolution reaction activity with Mo incorporated NiFe-LDH electrocatalyst for efficient water electrolysis
CN108855139B (zh) 一种表面修饰硫掺杂二氧化钛纳米片的钛片、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant