CN111564490B - 一种P-GaN增强型HEMT器件及其制备方法 - Google Patents

一种P-GaN增强型HEMT器件及其制备方法 Download PDF

Info

Publication number
CN111564490B
CN111564490B CN202010465882.4A CN202010465882A CN111564490B CN 111564490 B CN111564490 B CN 111564490B CN 202010465882 A CN202010465882 A CN 202010465882A CN 111564490 B CN111564490 B CN 111564490B
Authority
CN
China
Prior art keywords
gan
layer
thickness
growing
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010465882.4A
Other languages
English (en)
Other versions
CN111564490A (zh
Inventor
吴勇
陆俊
王东
陈兴
汪琼
葛林男
严伟伟
何滇
曾文秀
王俊杰
操焰
崔傲
袁珂
陈军飞
张进成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Research Institute of Xidian University
Original Assignee
Wuhu Research Institute of Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Research Institute of Xidian University filed Critical Wuhu Research Institute of Xidian University
Priority to CN202010465882.4A priority Critical patent/CN111564490B/zh
Publication of CN111564490A publication Critical patent/CN111564490A/zh
Application granted granted Critical
Publication of CN111564490B publication Critical patent/CN111564490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种P‑GaN增强型HEMT器件及其制备方法,属于半导体技术领域,包括从下至上依次层叠设置的衬底、ALN成核层、ALGaN缓冲层、GaN沟道层、ALN插入层、ALGaN势垒层、低温饱和P型GaN、P‑GaN、钝化层、源极(110)、漏极、栅极。在P‑GaN层和势垒层之间生长一层低温饱和P型GaN(LTPGaN层),该层的生长阻止了P‑GaN层的mg扩散至沟道层,从而降低器件的导通电阻,提升HEMT器件的工作效率。

Description

一种P-GaN增强型HEMT器件及其制备方法
技术领域
本发明属于微电子技术领域,涉及半导体器件的外延制备,一种P-GaN增强型HEMT器件及其制备方法,具体涉及通过低温饱和P型层阻挡P-GaN的mg扩散到沟道层,从而降低器件的导通电阻,改善HEMT的器件工作效率。
背景技术
ALGaN/GaN HEMT 在高温、高压、高频大功率方面的潜在优势,使其受到广泛关注,并取得巨大进展。但是常规的ALGaN/GaN HEMT器件均为耗尽型,需要施加一个负的栅极电压才能使器件关断,芯片设计时增加了设计成本,因此如何实现增强型GaN HEMT一直是该领域研究的难点,目前几种主要用来制备增强型器件的方案包括:p型栅、凹槽栅、F处理和Cascode结构。其中,p型栅的方案已经被很多著名的研究机构和公司采用,如IMEC、FBH、Panasonic、EPC和Samsung等。
在P-GaN增强型HEMT中,P-GaN的mg容易扩散至沟道层中,从而使器件的比导通电阻增大。为了改善此问题,一般将势垒层的厚度增加,但是势垒层的增加会增加异质结极化作用,从而导致阈值电压变小。
发明内容
本发明的目的在于克服目前氮化镓HEMT器件晶格质量较差的问题,提供了一种HEMT外延结构及其制备方法,能够提高HEMT器件的质量。
一种P-GaN增强型HEMT器件,包括从下至上依次排布的衬底、ALN成核层、ALGaN缓冲层、GaN沟道层、ALN插入层、ALGaN势垒层、低温饱和P型GaN、P-GaN以及栅极,P-GaN的两侧还设有钝化层,钝化层分别设有源极和漏极,GaN沟道层与ALN插入层之间还形成有二维电子气沟道。
一种P-GaN增强型HEMT器件的制备方法,包括如下步骤:
(1)在衬底生长成核层ALN,厚度为80-150nm;
(2)在前述步骤上生长ALGaN缓冲层,厚度为500-1200nm;
(3)在前述步骤上生长GaN沟道层,厚度为1-3um;
(4)在前述步骤上生长ALN插入层,厚度为1-3nm;
(5)在前述步骤上生长ALGaN势垒层,厚度为15-20nm;
(6)在前述步骤上生长低温饱和P型GaN,厚度为20-40nm;
(7)在前述步骤上生长P-GAN,厚度为30-150nm;
(8)在前述步骤基础上采用电子束蒸镀技术进行金属沉积,依次沉积Ti/Al/Ti/Au金属,形成源极和漏极,并进行退火处理形成欧姆接触;
(9)在前述步骤上采用电子束蒸镀技术进行金属沉积,依次沉积Ni/Au,形成栅极;
(10)在前述步骤上使用蚀刻技术将除栅极下方的P-GaN和低温饱和P型GaN的部分去除,只保留栅极下方才有的P-GaN层和低温饱和P型GaN层;
(11)在前述步骤上利用PECVD的方法沉积钝化层。
优选的,所述衬底为蓝宝石、SiC、Si其中任何一种材料,尺寸为2-8inch。
优选的,所述ALN成核层、ALGaN缓冲层、GaN沟道层厚度依次为100nm、600nm、2um。
优选的,所述步骤(7)中Ti、Al、Ti、Au金属的厚度分别为20nm、100nm、30nm、120nm。
优选的,所述ALN插入层、ALGaN势垒层、低温饱和P型GaN、P-GaN厚度依次为2nm、20nm、20-40nm、100nm。
优选的,所述步骤(8)中栅极中Ni、Au的厚度分别为45nm和100nm。
优选的,所述钝化层为Si3N4钝化层。
优选的,所述步骤(11)中沉积钝化层的工艺参数为:气体流量比为SiH4:NH3=2:1,压强为600mTorr,温度为280℃,功率22W,厚度为250nm。
与现有技术相比,本发明具有如下优点:
在P-GaN层和势垒层之间生长一层低温饱和P型GaN(LTPGaN层),低温P型GaN中mg处于过饱和状态,当P-GaN的mg向下扩散时被该层阻止了,降低了P-GaN层的mg扩散至沟道层(mg扩散至沟道层会形成缺陷,增加散射,会增加器件的导通电阻),从而降低器件的导通电阻,提升HEMT器件的工作效率。
附图说明
图1为本发明的结构示意图。
图2为按照实施例1/2/3所得实验结果。
其中:101-衬底,102-ALN成核层,103-ALGaN缓冲层,104-GaN沟道层,105-ALN插入层,106-ALGaN势垒层,107-低温饱和P型GaN,108-P-GaN,109-钝化层,110-源极,111-漏极,112-栅极。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明的一种P-GaN增强型HEMT器件,包括从下至上依次排布的衬底101、ALN成核层102、ALGaN缓冲层103、GaN沟道层104、ALN插入层105、ALGaN势垒层106、低温饱和P型GaN107、P-GaN108以及栅极112,P-GaN108的两侧还设有钝化层109,钝化层109分别设有源极110和漏极111,GaN沟道层104与ALN插入层105之间还形成有二维电子气沟道,具体采用以下方法制得:
实施例1
(1)在一块SiC衬底101生长成核层ALN102,厚度为100nm;
(2)在前述步骤上生长ALGaN缓冲层103,厚度为600nm;
(3)在前述步骤上生长GaN沟道层104,厚度为2um;
(4)在前述步骤上生长ALN插入层105,厚度为2nm;
(5)在前述步骤上生长ALGaN势垒层106,厚度为20nm;
(6)在前述步骤上生长低温饱和P型GaN107,厚度为20nm;
(7)在前述步骤上生长P-GAN108,厚度为100nm;
(8)在前述步骤基础上采用电子束蒸镀技术进行金属沉积。依次沉积Ti/Al/Ti/Au金属,厚度分别为20nm/100nm/30nm/120nm,形成源极110和漏极111,并进行退火处理形成欧姆接触;
(9)在前述步骤上采用电子束蒸镀技术进行金属沉积。依次沉积Ni/Au,形成栅极112,厚度分别为45nm和100nm;
(10)在前述步骤上使用蚀刻技术将除栅极下方的P-GaN和低温饱和P型GaN107去除,只保留栅极下方才有的P-GaN层108和低温饱和P型GaN107;
(11)在前述步骤上利用PECVD的方法沉积Si3N4钝化层109,气体流量比为SiH4:NH3=2:1,压强为600mTorr,温度为280℃,功率22W,厚度为250nm;
实施例2:
(1)在一块SiC衬底101生长成核层ALN102,厚度为100nm;
(2)在前述步骤上生长ALGaN缓冲层103,厚度为600nm;
(3)在前述步骤上生长GaN沟道层104,厚度为2um;
(4)在前述步骤上生长ALN插入层105,厚度为2nm;
(5)在前述步骤上生长ALGaN势垒层106,厚度为20nm;
(6)在前述步骤上生长低温饱和P型GaN107,厚度为30nm;
(7)在前述步骤上生长P-GAN108,厚度为100nm;
(8)在前述步骤基础上采用电子束蒸镀技术进行金属沉积。依次沉积Ti/Al/Ti/Au金属,厚度分别为20nm/100nm/30nm/120nm,形成源极110和漏极111,并进行退火处理形成欧姆接触;
(9)在前述步骤上采用电子束蒸镀技术进行金属沉积。依次沉积Ni/Au,形成栅极112,厚度分别为45nm和100nm;
(10)在前述步骤上使用蚀刻技术将除栅极下方的P-GaN和低温饱和P型GaN107去除,只保留栅极下方才有的P-GaN层108和低温饱和P型GaN107;
(11)在前述步骤上利用PECVD的方法沉积Si3N4钝化层109,气体流量比为SiH4:NH3=2:1,压强为600mTorr,温度为280℃,功率22W,厚度为250nm;
实施例3:
(1)在一块SiC衬底101生长成核层ALN102,厚度为100nm;
(2)在前述步骤上生长ALGaN缓冲层103,厚度为600nm;
(3)在前述步骤上生长GaN沟道层104,厚度为2um;
(4)在前述步骤上生长ALN插入层105,厚度为2nm;
(5)在前述步骤上生长ALGaN势垒层106,厚度为20nm;
(6)在前述步骤上生长低温饱和P型GaN107,厚度为40nm;
(7)在前述步骤上生长P-GAN108,厚度为100nm;
(8)在前述步骤基础上采用电子束蒸镀技术进行金属沉积。依次沉积Ti/Al/Ti/Au金属,厚度分别为20nm/100nm/30nm/120nm,形成源极110和漏极111,并进行退火处理形成欧姆接触;
(9)在前述步骤上采用电子束蒸镀技术进行金属沉积。依次沉积Ni/Au,形成栅极112,厚度分别为45nm和100nm;
(10)在前述步骤上使用蚀刻技术将除栅极下方的P-GaN和低温饱和P型GaN107去除,只保留栅极下方才有的P-GaN层108和低温饱和P型GaN107;
(11)在前述步骤上利用PECVD的方法沉积Si3N4钝化层109,气体流量比为SiH4:NH3=2:1,压强为600mTorr,温度为280℃,功率22W,厚度为250nm。
将上述实施例的方法获得的产品进行性能测试,数据结果如图2所示,表明低温饱和P型GaN(LTPGaN层)能有效降低比导通电阻,均值约33%。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (8)

1.一种P-GaN增强型HEMT器件,其特征在于,包括从下至上依次排布的衬底(101)、ALN成核层(102)、ALGaN缓冲层(103)、GaN沟道层(104)、ALN插入层(105)、ALGaN势垒层(106)、低温饱和P型GaN(107)、P-GaN(108)以及栅极(112),P-GaN(108)的两侧还设有钝化层(109),钝化层(109)分别设有源极(110)和漏极(111),GaN沟道层(104)与ALN插入层(105)之间还形成有二维电子气沟道,低温P型GaN中mg处于过饱和状态。
2.一种根据权利要求1所述的P-GaN增强型HEMT器件的制备方法,其特征在于,包括如下步骤:
(1)在衬底(101)生长成核层ALN(102),厚度为80-150nm;
(2)在前述步骤上生长ALGaN缓冲层(103),厚度为500-1200nm;
(3)在前述步骤上生长GaN沟道层(104),厚度为1-3um;
(4)在前述步骤上生长ALN插入层(105),厚度为1-3nm;
(5)在前述步骤上生长ALGaN势垒层(106),厚度为15-20nm;
(6)在前述步骤上生长低温饱和P型GaN(107),厚度为20-40nm;
(7)在前述步骤上生长P-GAN(108),厚度为30-150nm;
(8)在前述步骤基础上采用电子束蒸镀技术进行金属沉积,依次沉积Ti/Al/Ti/Au金属,形成源极(110)和漏极(111),并进行退火处理形成欧姆接触;
(9)在前述步骤上采用电子束蒸镀技术进行金属沉积,依次沉积Ni/Au,形成栅极(112);
(10)在前述步骤上使用蚀刻技术将除栅极(112)下方的P-GaN(108)和低温饱和P型GaN(107)的部分去除,只保留栅极(112)下方才有的P-GaN层(108)和低温饱和P型GaN(107);
(11)在前述步骤上利用PECVD的方法沉积钝化层(109)。
3.根据权利要求2所述的一种P-GaN增强型HEMT器件的制备方法,其特征在于,所述衬底(101)为蓝宝石、SiC、Si其中任何一种材料,尺寸为2-8inch。
4.根据权利要求2所述的一种P-GaN增强型HEMT器件的制备方法,其特征在于,所述ALN成核层(102)、ALGaN缓冲层(103)、GaN沟道层(104)厚度依次为100nm、600nm、2um。
5.根据权利要求2所述的一种P-GaN增强型HEMT器件的制备方法,其特征在于,所述步骤(7)中Ti、Al、Ti、Au金属的厚度分别为20nm、100nm、30nm、120nm。
6.根据权利要求2所述的一种P-GaN增强型HEMT器件的制备方法,其特征在于,所述步骤(8)中栅极(112)中Ni、Au的厚度分别为45nm和100nm。
7.根据权利要求2所述的一种P-GaN增强型HEMT器件的制备方法,其特征在于,所述钝化层(109)为Si3N4钝化层。
8.根据权利要求7所述的一种P-GaN增强型HEMT器件的制备方法,其特征在于,所述步骤(11)中沉积钝化层的工艺参数为:气体流量比为SiH4:NH3=2:1,压强为600mTorr,温度为280℃,功率22W,厚度为250nm。
CN202010465882.4A 2020-05-28 2020-05-28 一种P-GaN增强型HEMT器件及其制备方法 Active CN111564490B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010465882.4A CN111564490B (zh) 2020-05-28 2020-05-28 一种P-GaN增强型HEMT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010465882.4A CN111564490B (zh) 2020-05-28 2020-05-28 一种P-GaN增强型HEMT器件及其制备方法

Publications (2)

Publication Number Publication Date
CN111564490A CN111564490A (zh) 2020-08-21
CN111564490B true CN111564490B (zh) 2022-07-01

Family

ID=72071266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010465882.4A Active CN111564490B (zh) 2020-05-28 2020-05-28 一种P-GaN增强型HEMT器件及其制备方法

Country Status (1)

Country Link
CN (1) CN111564490B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022116915A1 (zh) * 2020-12-01 2022-06-09 深圳市晶相技术有限公司 一种半导体器件及其应用与制造方法
CN112510088B (zh) * 2020-12-01 2023-08-29 晶能光电股份有限公司 沟槽栅增强型GaN基HEMT器件及其制备方法
CN113782600B (zh) * 2021-08-27 2023-07-28 聚能晶源(青岛)半导体材料有限公司 增强型GaN基HEMT器件、器件外延及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167889B2 (ja) * 2012-12-21 2017-07-26 日亜化学工業株式会社 電界効果トランジスタとその製造方法
JP6174874B2 (ja) * 2013-03-15 2017-08-02 ルネサスエレクトロニクス株式会社 半導体装置
WO2014188715A1 (ja) * 2013-05-24 2014-11-27 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
CN111033752B (zh) * 2017-08-25 2024-02-09 苏州晶湛半导体有限公司 p型半导体的制造方法、增强型器件及其制造方法
CN107611174B (zh) * 2017-09-06 2020-12-18 英诺赛科(珠海)科技有限公司 氮化镓基半导体器件及其制作方法
CN109244130A (zh) * 2018-08-17 2019-01-18 西安电子科技大学 基于p-GaN和SiN层的自对准栅结构GaN MIS-HEMT器件及其制作方法

Also Published As

Publication number Publication date
CN111564490A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
CN111564490B (zh) 一种P-GaN增强型HEMT器件及其制备方法
US7709859B2 (en) Cap layers including aluminum nitride for nitride-based transistors
US7592647B2 (en) Semiconductor device and manufacturing method thereof
KR101124937B1 (ko) 질화물계 트랜지스터를 위한 캡층 및/또는 패시베이션층,트랜지스터 구조 및 그 제조방법
JP6035721B2 (ja) 半導体装置の製造方法
US10707322B2 (en) Semiconductor devices and methods for fabricating the same
JP2010522434A (ja) 高電圧GaNベースヘテロ接合トランジスタのための終端およびコンタクト構造
US8754419B2 (en) Semiconductor device
JP2010522435A (ja) 高電圧GaNベースヘテロ接合トランジスタ構造およびそれを形成する方法
CN112133749A (zh) 一种p型帽层增强型hemt器件及其制备方法
CN111223777B (zh) GaN基HEMT器件及其制作方法
CN108807500B (zh) 一种具有高阈值电压的增强型高电子迁移率晶体管
JP2011210780A (ja) GaN−MISトランジスタ、GaN−IGBT、およびこれらの製造方法
CN114121655B (zh) 一种基于增强型器件的自终止刻蚀方法及器件
CN116053306A (zh) 基于氮化镓的高电子迁移率晶体管器件及其制备方法
JP2012230991A (ja) 半導体装置
CN113972263B (zh) 一种增强型AlGaN/GaN HEMT器件及其制备方法
CN212542443U (zh) 一种氮化镓晶体管结构及氮化镓基外延结构
CN114725186A (zh) 一种增强型GaN基HEMT器件及其制备方法和应用
CN110459472B (zh) 增强型GaN场效应晶体管及其制造方法
CN113745333A (zh) 一种含δ掺杂势垒层的常关型氧化镓基MIS-HEMT器件及其制备方法
CN113628962A (zh) Ⅲ族氮化物增强型hemt器件及其制造方法
CN107046053B (zh) 半导体结构及其制造方法
CN114530375B (zh) 一种基于硅衬底的新型非平面沟道氮化镓hemt的制备方法
CN112490287B (zh) 具有双工作模式的氮化镓集成场效应晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant