CN111564487B - 基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法 - Google Patents

基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法 Download PDF

Info

Publication number
CN111564487B
CN111564487B CN202010423278.5A CN202010423278A CN111564487B CN 111564487 B CN111564487 B CN 111564487B CN 202010423278 A CN202010423278 A CN 202010423278A CN 111564487 B CN111564487 B CN 111564487B
Authority
CN
China
Prior art keywords
electrode
dielectric layer
gate dielectric
algan
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010423278.5A
Other languages
English (en)
Other versions
CN111564487A (zh
Inventor
程亮
陆海
徐尉宗
任芳芳
周东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010423278.5A priority Critical patent/CN111564487B/zh
Publication of CN111564487A publication Critical patent/CN111564487A/zh
Application granted granted Critical
Publication of CN111564487B publication Critical patent/CN111564487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种基于厚栅介质层电极一步成型的AlGaN/GaN MIS‑HEMT器件及其制备方法,基于厚栅介质层电极一步成型的AlGaN/GaN MIS‑HEMT器件,包括自下而上依次设置的衬底、AlN成核层、AlGaN或GaN缓冲层、GaN沟道层、AlGaN势垒层和厚绝缘栅介质层;厚绝缘栅介质层上刻蚀或腐蚀有源极区域和漏极区域,源极区域和漏极区域之间设有栅极区域,源极区域设有源电极,漏极区域设有漏电极,栅极区域设有栅电极,源电极、漏电极和栅电极一步成型,并一起经历欧姆电极的合金化退火工艺。本发明基于厚栅介质层电极一步成型的AlGaN/GaN MIS‑HEMT器件,源极、漏极、栅极同时蒸发同样的金属叠层,一步成型,大大简化了工艺制程,节省了成本,并且得到了高性能的AlGaN/GaN MIS‑HEMT器件;可以应用于高效功率开关以及射频器件中。

Description

基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及 其制备方法
技术领域
本发明涉及一种基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法,属于金属-氧化物-半导体场效应晶体管领域。
背景技术
GaN材料由于具有良好的半导体特性,使得基于该材料的AlGaN/GaN异质结高电子迁移率晶体管(HEMT)在功率与射频器件领域有着极大的应用前景。GaN材料的特性如下:(1)禁带宽度大:相比于Si(1.12eV)和GaAs(1.42eV)的禁带宽度,GaN的禁带宽度更大,为3.4eV,本征载流子浓度很低,使得器件可以在更高温的环境下工作;(2)临界击穿场强高:相比于Si(0.3MV/cm)和GaAs(0.4MV/cm)的临界击穿场强,GaN的临界击穿场强更大,为3.3MV/cm,使得相同材料厚度下,GaN器件能承受更大的电压;(3)电子迁移率高:相比于Si的电子迁移率1350cm2/V·s,AlGaN/GaN异质结界面处二维电子气(2DEG)的电子迁移率更高,为2000cm2/V·s,意味着器件具有较高的工作频率;(4)电子饱和漂移速度高:GaN的电子饱和漂移速度为2.5×107cm/s,是Si的2.5倍,GaAs的约2倍,有利于器件获得更大的电流密度;(5)热导率高:Si的热导率为1.5W/K·cm,GaAs的热导率为0.5W/K·cm,GaN达到1.3W/K·cm,良好的热导率有利于散热,提高器件的稳定性,从而降低系统对冷却设备的要求,进而提高整个系统的稳定性;(6)抗辐照能力强:宇宙中充满了高能的粒子,在这些高能粒子的辐照下,Si基器件的寿命会大大缩短,GaN材料抗辐照的这一优势,使其在航天工业应用中具很大的优势。
AlGaN/GaN异质结结构是GaN功率三极管最常用的结构之一,由于强烈的自发极化和压电极化,AlGaN/GaN异质结界面会形成1013cm-2量级的高浓度二维电子气(2DEG),2DEG具有很高的电子迁移率,非常适合高功率和射频应用。
相比于常规肖特基栅极AlGaN/GaN高电子迁移率晶体管(HEMT),在栅金属叠层和AlGaN势垒层之间插入一层栅介质形成的AlGaN/GaN MIS-HEMT器件具有栅极漏电低、栅压摆幅大、抗栅极浪涌电压能力强等优势,被广泛地研究和应用。
在常规的AlGaN/GaN MIS-HEMT器件的制备中,源漏区域一般采用Ti/Al/Ni/Au或Ti/Al/Ti/Au的金属叠层,并经过高温退火形成欧姆接触,然后在栅区域采用Ni/Au金属叠层形成栅电极,电极制备过程复杂,需要分步进行,成本较高。在整晶圆的流片中,每一步的光刻和金属沉积都意味着数百万人民币的成本,因此简化工艺,节约成本,成为企业长久的关切和研究工作的重点。
发明内容
本发明提供一种基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法,本发明简化了传统的两步法制备电极的工艺,极大的节省了生产成本,同时制备出高性能的AlGaN/GaN MIS-HEMT器件。
本发明所采用的技术方案如下:
一种基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件,包括自下而上依次设置的衬底、AlN成核层、AlGaN或GaN缓冲层、GaN沟道层、AlGaN势垒层和厚绝缘栅介质层;厚绝缘栅介质层上刻蚀或腐蚀出源极区域和漏极区域,源极区域和漏极区域之间设有栅极区域,源极区域设有源电极,漏极区域设有漏电极,栅极区域设有栅电极,源电极、漏电极和栅电极一步成型,并一起经历欧姆电极的合金化退火工艺。
上述基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件,性能高,厚栅介质层的设置可以有效阻挡高温退火过程中,栅极金属渗入对器件稳定性与可靠性的影响,同时源电极、漏电极和栅电极一步成型,大大简化了工艺制程,节省了成本。
为了进一步提高器件的使用性能,厚绝缘栅介质层的厚度不小于25nm。在一步成型过后,源漏区域需要高温退火以形成欧姆接触,通过对厚绝缘栅介质层的进一步优选,可以更好地阻挡高温过程中,栅极金属往沟道区域渗入,保证器件的正常工作。进一步优选,厚绝缘栅介质层的厚度不小于40nm,更优选为47±5nm。
上述衬底所用材料为Si、SiC或蓝宝石中的至少一种。
上述厚绝缘栅介质层为氮化硅、氧化铝、氧化镁、氮化铝、氧化铪、氧化钇、氧化硅、铪钛氧、氧化钪、氧化锆、氧化镓、氧化钽、氧化镧、或硅氮氧中的一种材料或多种材料的叠层结构。
上述源电极、漏电极和栅电极所用材质均为钛、铝、镍、金、铂、铱、钼、钽、铌、钴、锆、钨或氮化钛等中的至少一种,且源电极、漏电极和栅电极的金属成分均相同。这样既方便制备,又能兼顾器件的高性能。
上述基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件的制备方法,包括下述步骤:
1)、在衬底上依次生长AlN成核层、AlGaN或GaN缓冲层、GaN沟道层以及AlGaN势垒层;
2)、在AlGaN势垒层上原位生长或者非原位沉积厚绝缘栅介质层;
3)、利用刻蚀的方式或者离子注入的方式形成隔离区域,实现有源区的电学隔离;
4)、光刻出源、漏的电极接触窗口区域,干法刻蚀或者湿法腐蚀掉源、漏电极接触窗口区域中的厚绝缘栅介质层,光刻出源极区域和漏极区域,在源极区域和漏极区域之间光刻出栅极区域;
5)、在源极区域、漏极区域和栅极区域,同步用电子束蒸或磁控溅射发生长电极金属,通过剥离工艺形成电极,并在氮气氛围中对整个晶圆进行退火处理,在源漏形成欧姆接触。
上述方法中,源电极、漏电极和栅电极同步成型,大大简化了工艺制程,节省了成本。
为了方便制备,步骤2)中,厚绝缘栅介质层的淀积方式为金属有机化合物化学气相沉积(MOCVD)、低压化学气相沉积(LPCVD)、等离子体增强化学气相沉积(PECVD)或原子层沉积(ALD)中的至少一种。
为了确保器件的高性能,作为一种优选的实现方案,步骤2)为在AlGaN势垒层上原位生长厚绝缘栅介质层;厚绝缘栅介质层为SiNx层,厚绝缘栅介质层的淀积方式为金属有机化合物化学气相沉积(MOCVD),沉积温度为1150±50℃,压力为120±20mTorr,反应气体SiH4和NH3的流量比为(4±2)×10-6,SiNx的生长速率约为
Figure BDA0002497757680000031
也即步骤1)和步骤2)均为采用MOCVD生长,生长过程中无需取出腔体,避免了污染,申请人经研究发现,这样相比于厚绝缘栅介质层的非原位生长方式,能更好地确保材料的厚度和致密性,保证器件的质量。
在现有的MIS-HEMT的制备中,源漏一般需要高温的退火来形成良好的欧姆接触,但是如果要实现源漏极和栅极的同步成型,栅极的金属叠层需要和源漏一样,这样用于欧姆接触的金属叠层在欧姆退火的过程中,会向栅介质层中扩散,导致器件栅极对沟道控制能力下降,甚至失效,因此需要将栅极分步制备,而本申请通过质量良好的厚绝缘栅介质层阻止了金属的高温扩散,所得器件具有优异的高性能。
为了进一步提高器件的性能,步骤3)中的隔离区域采用双次氮离子注入平面隔离,注入能量分别为45keV和135keV。
为了方便制造,同时确保器件的性能,步骤4)中,源、漏电极刻蚀区域的厚绝缘栅介质层通过ICP(离子束辅助自由基刻蚀)或者RIE(反应离子刻蚀)干法刻蚀去掉。
为了确保器件的使用性能,步骤5)为在源极区域、漏极区域和栅极区域,同步用电子束蒸发生长电极金属叠层Ti/Al/Ni/Au,通过剥离工艺形成电极,并在500℃~950℃之间氮气氛围中退火,在源漏形成欧姆接触。
本发明未提及的技术均参照现有技术。
本发明基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件,源极、漏极、栅极同时蒸发同样的金属叠层,一步成型,大大简化了工艺制程,节省了成本,并且得到了高性能的AlGaN/GaN MIS-HEMT器件;可以应用于高效功率开关以及射频器件中。
附图说明
图1为本发明基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件的横截面示意图。
图2为图1的俯视示意图。
图3为本发明基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件制备的工艺流程示意图。
图4为本发明基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件的转移特性曲线。
图5为本发明基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件的输出特性曲线。
图6为本发明基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件的关态击穿特性曲线。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
如图1-2所示,一种基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件,其特征在于:包括自下而上依次设置的衬底、AlN成核层、AlGaN或GaN缓冲层、GaN沟道层、AlGaN势垒层和厚绝缘栅介质层;厚绝缘栅介质层上刻蚀或腐蚀有源极区域和漏极区域,源极区域和漏极区域之间设有栅极区域,源极区域设有源电极,漏极区域设有漏电极,栅极区域设有栅电极,源电极、漏电极和栅电极同步成型。
如图3所示,基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件的制备:包括下述步骤:
1)、如图3中a所示,用金属有机化合物化学气相沉积MOCVD在Si衬底上生长一层AlN成核层,再生长一层GaN缓冲层,然后再生长一层300nm厚的GaN沟道层,接着再生长一层28nm厚的AlGaN势垒层,其中,沉积温度为1150℃,压力为120mTorr;
2)、在AlGaN势垒层上用金MOCVD原位沉积一层47nm厚的厚绝缘栅介质层,厚绝缘栅介质层为SiNx层,其中,沉积温度为1150℃,压力为120mTorr,反应气体SiH4和NH3的流量比为4×10-6,SiNx的生长速率约为
Figure BDA0002497757680000051
3)、如图2和图3中b所示,通过离子注入的方式,对有源区进行电学隔离、形成隔离区域,实现有源区的电学隔离;离子注入隔离采用双次氮离子注入平面隔离,注入能量分别为45keV和135keV;
4)、如图3中c所示,光刻定义出源漏欧姆接触的窗口区域,用反应离子刻蚀(RIE)的方法,用氟(F)基气体干法刻蚀掉欧姆接触窗口区域中的47nm厚的厚绝缘栅介质层,如图3中d所示,光刻出源极区域、漏极区域和栅极区域;
5)、在源极区域、漏极区域和栅极区域,用电子束同步蒸发生长Ti/Al/Ni/Au金属叠层,各层厚度依次为Ti层40nm、Al层80nm、Ni层40nm、Au层100nm,通过剥离工艺形成电极,并对整个晶圆进行退火处理,在源漏形成欧姆接触;其中,退火条件为氮气氛围,温度为850℃,时间为30秒。
上述基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件,与传统的源漏极和栅极分两次蒸发的AlGaN/GaN MIS-HEMT器件相比,源漏极和栅极一步成型,同时经历欧姆退火,大大简化了工艺流程,降低了生产成本,并且实现了高性能的AlGaN/GaN MIS-HEMT器件;如图4-6所示,制备的器件阈值电压为-12.2V,开关电流比高达4.5×109,最大漏源饱和电流密度达到510mA/mm,关态击穿电压达到1282V,由此可见,本发明基于厚栅介质层的电极一步成型的制备方法是完全可行的,简化了工艺,使成本得到显著的降低,同时提高了器件的性能,具有很大的实用价值和社会意义。

Claims (6)

1.一种基于高温化学气相沉积原位制备厚栅介质层和电极一步成型的AlGaN/GaNMIS-HEMT器件,其特征在于:包括自下而上依次设置的衬底、AlN成核层、AlGaN或GaN缓冲层、GaN沟道层、AlGaN势垒层和厚绝缘栅介质层;厚绝缘栅介质层上刻蚀或腐蚀出源极区域和漏极区域,源极区域和漏极区域之间设有栅极区域,源极区域设有源电极,漏极区域设有漏电极,栅极区域设有栅电极,源电极、漏电极和栅电极一步成型,源电极、漏电极和栅电极的结构相同、厚度相同;厚绝缘栅介质层的厚度为47±5nm;
上述基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件的制备方法,包括下述步骤:
1)、用金属有机化合物化学气相沉积,在衬底上依次生长AlN成核层、AlGaN或GaN缓冲层、GaN沟道层以及AlGaN势垒层;
2)、在AlGaN势垒层上用金属有机化合物化学气相沉积原位生长厚绝缘栅介质层,沉积温度为1150±50℃;
3)、利用刻蚀的方式或者离子注入的方式形成隔离区域,实现有源区的电学隔离;
4)、光刻出源、漏的接触窗口区域,干法刻蚀或者湿法腐蚀掉接触窗口区域的厚绝缘栅介质层,光刻出源、漏电极接触区域,在源极区域和漏极区域之间光刻出栅极区域;
5)、在源极区域、漏极区域和栅极区域,同步用电子束蒸发或磁控溅射生长电极金属,通过剥离工艺形成电极,并在氮气氛围中对整个晶圆进行退火处理,在源漏形成欧姆接触,退火温度为850℃~950℃。
2.如权利要求1所述的基于高温化学气相沉积原位制备厚栅介质层和电极一步成型的AlGaN/GaN MIS-HEMT器件,其特征在于:衬底所用材料为Si、SiC或蓝宝石中的至少一种;厚绝缘栅介质层为氮化硅、氧化铝、氧化镁、氮化铝、氧化铪、氧化钇、氧化硅、铪钛氧、氧化钪、氧化锆、氧化镓、氧化钽、氧化镧、或硅氮氧中的一种材料或多种材料的叠层结构。
3.如权利要求1或2所述的基于高温化学气相沉积原位制备厚栅介质层和电极一步成型的AlGaN/GaN MIS-HEMT器件,其特征在于:源电极、漏电极和栅电极所用材质均为钛、铝、镍、金、铂、铱、钼、钽、铌、钴、锆、钨或氮化钛中的至少一种;源电极、漏电极和栅电极的结构相同。
4.如权利要求1或2所述的基于高温化学气相沉积原位制备厚栅介质层和电极一步成型的AlGaN/GaN MIS-HEMT器件,其特征在于:厚绝缘栅介质层为SiNx层,厚绝缘栅介质层的淀积方式为金属有机化合物化学气相沉积,压力为120±20mTorr,反应气体SiH4和NH3的流量比为(4±2)×10-6,SiNx的生长速率为
Figure FDA0003487174500000021
5.如权利要求1或2所述的基于高温化学气相沉积原位制备厚栅介质层和电极一步成型的AlGaN/GaN MIS-HEMT器件,其特征在于:步骤3)中的隔离区域采用双次氮离子注入平面隔离,注入能量分别为45keV和135keV;步骤4)中,源、漏电极刻蚀区域的厚绝缘栅介质层通过ICP或者RIE干法刻蚀去掉。
6.如权利要求1或2所述的基于高温化学气相沉积原位制备厚栅介质层和电极一步成型的AlGaN/GaN MIS-HEMT器件,其特征在于:步骤5)为在源极区域、漏极区域和栅极区域,同步用电子束蒸发生长电极金属叠层Ti/Al/Ni/Au,通过剥离工艺形成电极,并在850℃~950℃之间氮气氛围中退火,在源漏形成欧姆接触。
CN202010423278.5A 2020-05-19 2020-05-19 基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法 Active CN111564487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010423278.5A CN111564487B (zh) 2020-05-19 2020-05-19 基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010423278.5A CN111564487B (zh) 2020-05-19 2020-05-19 基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法

Publications (2)

Publication Number Publication Date
CN111564487A CN111564487A (zh) 2020-08-21
CN111564487B true CN111564487B (zh) 2022-06-21

Family

ID=72073538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010423278.5A Active CN111564487B (zh) 2020-05-19 2020-05-19 基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法

Country Status (1)

Country Link
CN (1) CN111564487B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428409A (zh) * 2014-09-16 2016-03-23 株式会社东芝 半导体装置及其制造方法
CN109712888A (zh) * 2018-12-28 2019-05-03 张家港意发功率半导体有限公司 GaNHEMT器件及其制造方法
CN110571273A (zh) * 2019-07-19 2019-12-13 华南理工大学 源、漏和栅极同步制备的GaN HEMT器件及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179539B2 (ja) * 2003-01-15 2008-11-12 富士通株式会社 化合物半導体装置及びその製造方法
JP5678485B2 (ja) * 2009-08-03 2015-03-04 ソニー株式会社 半導体装置
WO2014154120A1 (zh) * 2013-03-25 2014-10-02 复旦大学 一种采用先栅工艺的高电子迁移率器件及其制造方法
JP2014222724A (ja) * 2013-05-14 2014-11-27 三菱電機株式会社 窒化物半導体を用いたトランジスタおよびその製造方法
JP6136573B2 (ja) * 2013-05-27 2017-05-31 富士通株式会社 半導体装置及び半導体装置の製造方法
CN106229345A (zh) * 2016-09-08 2016-12-14 西安电子科技大学 叠层栅介质GaN基绝缘栅高电子迁移率晶体管及制作方法
CN110676166B (zh) * 2018-07-02 2020-12-22 西安电子科技大学 P-GaN帽层的FinFET增强型器件及制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428409A (zh) * 2014-09-16 2016-03-23 株式会社东芝 半导体装置及其制造方法
CN109712888A (zh) * 2018-12-28 2019-05-03 张家港意发功率半导体有限公司 GaNHEMT器件及其制造方法
CN110571273A (zh) * 2019-07-19 2019-12-13 华南理工大学 源、漏和栅极同步制备的GaN HEMT器件及方法

Also Published As

Publication number Publication date
CN111564487A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
US11362205B2 (en) Group III nitride enhancement-mode HEMT based on composite barrier layer structure and manufacturing method thereof
US8900939B2 (en) Transistor with enhanced channel charge inducing material layer and threshold voltage control
US11888052B2 (en) Semiconductor device and manufacturing method thereof employing an etching transition layer
CN102097483B (zh) GaN基异质结构增强型绝缘栅场效应晶体管及制备方法
CN108305834B (zh) 一种增强型氮化镓场效应器件的制备方法
TW200524086A (en) Field effect transistor with enhanced insulator structure
CN104952938A (zh) 一种氮化镓异质结mis栅控功率二极管及其制造方法
CN102945859A (zh) 一种GaN异质结HEMT器件
CN102082176A (zh) GaN增强型MISFET器件及其制备方法
CN104332504A (zh) 一种GaN基异质结肖特基二极管器件及其制作方法
CN108258043A (zh) 一种GaN基增强型MOS高电子迁移率晶体管器件及其制备方法
WO2020107754A1 (zh) 一种提高GaN增强型MOSFET阈值电压的外延层结构及器件制备
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN111370470B (zh) 氮化镓mis栅控混合沟道功率场效应晶体管及其制造方法
CN110100313A (zh) 一种增强型开关器件及其制造方法
JP5100002B2 (ja) 窒化物半導体装置
CN201820759U (zh) 一种场效应晶体管
CN111223777A (zh) GaN基HEMT器件及其制作方法
CN210897283U (zh) 一种半导体器件
CN109742144B (zh) 一种槽栅增强型mishemt器件及其制作方法
CN101924129B (zh) 一种场效应晶体管
CN109273527B (zh) 一种半导体结构及其形成方法
CN111564487B (zh) 基于厚栅介质层电极一步成型的AlGaN/GaN MIS-HEMT器件及其制备方法
CN113972263B (zh) 一种增强型AlGaN/GaN HEMT器件及其制备方法
CN113394096B (zh) Hemt器件及其自隔离方法、制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant