CN111554778A - 一种利用激光旋切进行晶硅太阳能电池表面制绒的方法 - Google Patents

一种利用激光旋切进行晶硅太阳能电池表面制绒的方法 Download PDF

Info

Publication number
CN111554778A
CN111554778A CN202010405756.XA CN202010405756A CN111554778A CN 111554778 A CN111554778 A CN 111554778A CN 202010405756 A CN202010405756 A CN 202010405756A CN 111554778 A CN111554778 A CN 111554778A
Authority
CN
China
Prior art keywords
suede
reflectivity
crystalline silicon
laser rotary
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010405756.XA
Other languages
English (en)
Other versions
CN111554778B (zh
Inventor
刘文文
蒲唐阳
梁龙
曹宇
张健
朱德华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN202010405756.XA priority Critical patent/CN111554778B/zh
Publication of CN111554778A publication Critical patent/CN111554778A/zh
Application granted granted Critical
Publication of CN111554778B publication Critical patent/CN111554778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Energy (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种利用激光旋切加工进行晶硅太阳能电池表面制绒的方法,通过一系列工艺实验和测试验证,获得激光旋切工艺参数、晶硅绒面微孔结构参数、晶硅绒面反射率三者之间的控制规律,从而可以从预设的晶硅绒面反射率目标值出发,选择优化的激光旋切工艺参数数值,使得晶硅绒面反射率实测值大于等于预设目标值,并从满足预设绒面反射率的晶硅样品中找到不影响后续减反膜沉积质量的所有样品所对应的绒面微孔结构参数,最后确定这些绒面微孔结构参数所对应的激光旋切工艺参数。本发明是基于激光旋切加工的表面制绒技术,绿色安全、对环境无污染,且表面微结构单元高度可控,可大幅度降低绒面反射率,提高太阳能电池转换效率。

Description

一种利用激光旋切进行晶硅太阳能电池表面制绒的方法
技术领域
本发明属于太阳能电池制备领域,具体涉及一种利用激光旋切加工进行晶硅太阳能电池表面制绒的方法。
背景技术
随着以煤炭、石油为主的不可再生能源日益短缺,“雾霾”问题日益加剧,人类对清洁的可再生能源的需求愈加迫切,寻求可替代传统化石燃料的清洁能源已成为必然趋势。从1839年光电效应被发现,太阳能光伏发电已成为诸多太阳能利用方式中最重要和最具应用前景的技术之一,是20世纪材料革命和能源革命的重要内容,预计到2030年,在全球能源消耗总量中,可再生能源将占据三分之一的份额,而太阳能光伏发电在全球总电力供应中的占比也将达到10%以上,而晶硅电池目前占了太阳能市场的近90%,产额巨大。
我国作为能源消耗大国,虽然有太阳能资源丰富的有利条件,但我国光伏产业的发展面临着对外原料进口依赖性严重、生产消耗大、核心技术严重不足、效率20%以上的高端产品占有率小等诸多问题。核心技术的研发和科技成果的转化,已成为制约我国光伏产业发展和全球竞争力的瓶颈,特别是直接决定晶硅太阳能电池光电转换效率的表面织构化(制绒)技术。高质量、高效率、低成本的制备低反射率表面织构,尽可能提高对太阳光能量的吸收已成为当前晶硅太阳能电池技术升级和科技成果成功转化的主要任务。
目前工业上最成熟、最常用的硅表面制绒技术为湿式化学织构法。湿法化学制绒技术虽然成本较低,工艺较成熟,但化学反应过程较为复杂,反应的中间产物众多,同时伴有气体产生,并且所制备的微结构单元随机分布,单元大小不易控制,不能进行工艺的高度定制,因此绒面反射率一般偏高,单晶硅正金字塔绒面300~1100nm波长的反射率一般在10%以上,多晶硅多孔绒面一般在15%以上。随着激光制造技术不断发展,作为一种非接触、高精度、高效率的加工技术,激光在制备晶硅减反射表面微结构方面愈发受到人们的关注。
发明内容
本发明针对上述现有技术的不足,提供了一种利用激光旋切加工进行晶硅太阳能电池表面制绒的方法。
本发明是通过如下技术方案实现的:
一种利用激光旋切加工进行晶硅太阳能电池表面制绒的方法,包括如下步骤:
步骤1、准备样品,将硅片按照RCA标准清洗法进行清洗;
步骤2、通过一系列工艺实验,获得激光旋切工艺参数对晶硅绒面微孔结构参数的控制关系,即任意一个激光旋切工艺参数对每一个晶硅绒面微孔结构参数的变化曲线;
步骤3、通过扫描电子显微镜、原子力显微镜和聚焦离子束、分光光度计的检测,获得晶硅绒面微孔结构参数对晶硅绒面反射率的控制规律,即任意一个晶硅绒面微孔结构参数对其晶硅绒面反射率的变化曲线;
步骤4、预设一个晶硅绒面反射率目标值R0
步骤5、通过第3步获得的变化曲线,找到能够实现目标值R0的晶硅绒面微孔结构参数预设目标数值组合;
步骤6、通过第2步获得的变化曲线,找到能够实现第5步晶硅绒面微孔结构参数预设目标数值组合的激光旋切工艺参数数值组合;
步骤7、根据第6步中确定的激光旋切工艺参数数值组合,完成所有实验,并测试所有样品的绒面反射率Ri,获得满足晶硅绒面反射率目标值Ri≤R0的样品;
步骤8、在第7步满足晶硅绒面反射率目标值的样品表面,按相同制备工艺沉积氮化硅减反膜;
步骤9、通过分光光度计测量第8步中所有覆盖有减反膜的绒面反射率,找到其中最低的反射率样品,获得其对应的激光旋切工艺参数数值组合;
步骤10、采用第9步获得的工艺参数数值组合,批量制备不影响氮化硅薄膜减反效果的低反射率晶硅绒面产品。
本发明具有如下有益效果:
1、本发明能够利用超快激光旋切加工技术在晶硅表面制备高质量减反射微结构,相比现有技术中的其它激光制绒手段,可通过对旋切角度、离焦量、旋切速度、旋切圈数等关键参数的调节,制备各种类型的微孔阵列(正锥、圆柱、倒锥等)。结合有限差分时域法(FDTD)建立晶硅表面微单元模型,模拟计算制绒微结构对光吸收的效应,可研究制绒结构对反射率的影响机理,并对工艺参数和制绒结构的调整和优化提供理论指导。
2、本发明所述方法对晶硅类型、型号、形状没有限制,如单晶硅和多晶硅均可兼容。
3、本发明所述方法不受太阳能电池晶硅尺寸限制,对大尺寸晶硅样品同样适用,为大尺寸一体化太阳能电池的制备提供了理论指导和可行性实验方案。
4、相比目前工业上常用的为湿式化学织构法,基于激光旋切加工的表面制绒技术,绿色安全、对环境无污染,且表面微结构单元高度可控,可大幅度降低绒面反射率,提高太阳能电池转换效率。
5、本发明所述的利用激光旋切加工进行晶硅太阳能电池表面制绒的方法,实现简单、可靠,适用性广泛。
具体实施方式
下面结合具体实施方式对本发明做进一步详细的说明。
本发明提供了一种利用激光旋切加工进行晶硅太阳能电池表面制绒的方法,本专利本质上是通过一系列工艺实验和测试验证(反复优化),获得激光旋切工艺参数、晶硅绒面微孔结构参数、晶硅绒面反射率三者之间的控制规律(激光旋切工艺参数决定晶硅绒面微孔结构参数,晶硅绒面微孔结构参数决定晶硅绒面反射率,进而可以通过激光旋切工艺参数决定晶硅绒面反射率),从而可以从预设的晶硅绒面反射率目标值出发,选择优化的激光旋切工艺参数数值以获得对应的晶硅绒面微孔结构参数,使得晶硅绒面反射率实测值大于等于预设目标值,并从满足预设绒面反射率的晶硅样品中找到不影响后续减反膜沉积质量的所有样品所对应的绒面微孔结构参数,最后确定这些绒面微孔结构参数所对应的激光旋切工艺参数。
所述激光旋切工艺参数是指采用激光旋切法加工硅片时所采用的工艺参数,其包括以旋切路径、旋切角度、离焦量、旋切速度、旋切圈数为主的旋切参数和以激光能流密度、重复频率、光斑直径和扫描间距为主的激光参数两部分。
所述晶硅绒面微孔结构参数是指在硅片表面加工出的微孔的结构参数,其包括微孔类型(正锥、圆柱、倒锥)、最大孔径值、深宽比、孔间距、圆锥角。
所述晶硅绒面反射率是指采用分光光度计测量硅片的制绒面反射率值。
具体的讲,本发明包括如下步骤:
1、准备样品,将硅片(单晶硅或多晶硅)按照RCA标准清洗法进行清洗,以去除硅片表面的氧化膜、有机物等分子型杂质、钠离子等离子型杂质和金等重金属原子型杂质。
2、通过一系列工艺实验,获得激光旋切工艺参数对晶硅绒面微孔结构参数的控制关系,即任意一个激光旋切工艺参数对每一个晶硅绒面微孔结构参数的变化曲线。
具体实验方法可以采用:首先,通过改变旋切路径、旋切角度、离焦量、旋切速度和旋切圈数等旋切参数,在硅片表面加工出形状为正锥、圆柱和倒锥三种类型的微孔,并要求三种微孔的最大孔径均为Dmax(Dmax为预先设定的最大孔径值,其范围为100μm~1000μm,间隔为100μm);然后,通过固定其它旋切参数,通过只改变一个参数的方式,获得每个旋切参数分别对每种类型微孔结构参数(Dmax、深宽比、圆锥角)的变化曲线;最后,固定微孔类型,通过改变激光能流密度、重复频率、光斑直径、扫描间距等激光参数中的某一个参数而固定其它的参数的方式,获得每一个激光参数对晶硅绒面微孔结构参数的变化曲线(Dmax、深宽比、孔间距、圆锥角)。其中,晶硅绒面微孔结构参数均由光学显微镜(OM)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和聚焦离子束(FIB)等检测设备测试获得。
3、通过扫描电子显微镜(SEM)、原子力显微镜(AFM)和聚焦离子束(FIB)、分光光度计等的检测,获得晶硅绒面微孔结构参数(Dmax、深宽比、孔间距、圆锥角)对晶硅绒面反射率的控制规律,即任意一个晶硅绒面微孔结构参数对其晶硅绒面反射率的变化曲线。
还可以采用有限差分时域法(FDTD)建立各制绒面对应的几何模型,定义材料为单晶硅或多晶硅,设置光源为350nm~1050nm波长范围内的平面光源,添加场监视器、反射率监视器和透射率监视器,运行软件并得到制绒面的电场分布和反射率、透射率曲线,与各制绒面反射率分光光度计测量结果进行比较,验证FDTD方法的置信度。
4、预设一个晶硅绒面反射率目标值R0
5、通过第3步获得的变化曲线,找到可以实现目标值R0的晶硅绒面微孔结构参数预设目标数值组合(可能不止一组,是多组)。
6、通过第2步获得的变化曲线,找到可以实现第5步晶硅绒面微孔结构参数预设目标数值组合的激光旋切工艺参数数值组合(可能不止一组,是多组)。
7、根据第6步中确定的激光旋切工艺参数数值组合,完成所有实验,并测试所有样品的绒面反射率Ri,获得满足晶硅绒面反射率目标值(Ri≤R0)的样品。
8、在第7步满足晶硅绒面反射率目标值的样品表面,按相同制备工艺沉积氮化硅(SiNxHy)减反膜。
9、通过分光光度计测量第8步中所有覆盖有减反膜的绒面反射率,找到其中最低的反射率样品,获得其对应的激光旋切工艺参数数值组合。
10、采用第9步获得的工艺参数数值组合,批量制备不影响氮化硅薄膜减反效果的低反射率晶硅绒面产品。

Claims (1)

1.一种利用激光旋切进行晶硅太阳能电池表面制绒的方法,其特征在于,包括如下步骤:
步骤1、准备样品,将硅片按照RCA标准清洗法进行清洗;
步骤2、通过一系列工艺实验,获得激光旋切工艺参数对晶硅绒面微孔结构参数的控制关系,即任意一个激光旋切工艺参数对每一个晶硅绒面微孔结构参数的变化曲线;
步骤3、通过扫描电子显微镜、原子力显微镜和聚焦离子束、分光光度计的检测,获得晶硅绒面微孔结构参数对晶硅绒面反射率的控制规律,即任意一个晶硅绒面微孔结构参数对其晶硅绒面反射率的变化曲线;
步骤4、预设一个晶硅绒面反射率目标值R0
步骤5、通过第3步获得的变化曲线,找到能够实现目标值R0的晶硅绒面微孔结构参数预设目标数值组合;
步骤6、通过第2步获得的变化曲线,找到能够实现第5步晶硅绒面微孔结构参数预设目标数值组合的激光旋切工艺参数数值组合;
步骤7、根据第6步中确定的激光旋切工艺参数数值组合,完成所有实验,并测试所有样品的绒面反射率Ri,获得满足晶硅绒面反射率目标值Ri≤R0的样品;
步骤8、在第7步满足晶硅绒面反射率目标值的样品表面,按相同制备工艺沉积氮化硅减反膜;
步骤9、通过分光光度计测量第8步中所有覆盖有减反膜的绒面反射率,找到其中最低的反射率样品,获得其对应的激光旋切工艺参数数值组合;
步骤10、采用第9步获得的工艺参数数值组合,批量制备不影响氮化硅薄膜减反效果的低反射率晶硅绒面产品。
CN202010405756.XA 2020-05-13 2020-05-13 一种利用激光旋切进行晶硅太阳能电池表面制绒的方法 Active CN111554778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010405756.XA CN111554778B (zh) 2020-05-13 2020-05-13 一种利用激光旋切进行晶硅太阳能电池表面制绒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010405756.XA CN111554778B (zh) 2020-05-13 2020-05-13 一种利用激光旋切进行晶硅太阳能电池表面制绒的方法

Publications (2)

Publication Number Publication Date
CN111554778A true CN111554778A (zh) 2020-08-18
CN111554778B CN111554778B (zh) 2021-07-27

Family

ID=72002806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010405756.XA Active CN111554778B (zh) 2020-05-13 2020-05-13 一种利用激光旋切进行晶硅太阳能电池表面制绒的方法

Country Status (1)

Country Link
CN (1) CN111554778B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937172A (zh) * 2021-10-19 2022-01-14 温州大学 一种晶硅太阳能电池新型复合绒面结构制备方法
CN115272498A (zh) * 2022-08-02 2022-11-01 新源劲吾(北京)科技有限公司 一种彩色光伏板表面制绒方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267247A (ja) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp 光起電力装置の製造方法およびレーザ加工装置
KR20100081491A (ko) * 2009-01-06 2010-07-15 주식회사 엘티에스 태양전지의 전극패턴 형성장치
JP2013232581A (ja) * 2012-05-01 2013-11-14 Mitsubishi Electric Corp 光起電力装置の製造方法および光起電力装置
EP3343640A1 (en) * 2016-12-29 2018-07-04 Yerci, Selcuk Method of surface texturing using a laser heating step that contributes to small-sized texture morphology
CN110722272A (zh) * 2019-10-18 2020-01-24 深圳信息职业技术学院 超快激光微纳切割钻孔设备及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267247A (ja) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp 光起電力装置の製造方法およびレーザ加工装置
KR20100081491A (ko) * 2009-01-06 2010-07-15 주식회사 엘티에스 태양전지의 전극패턴 형성장치
JP2013232581A (ja) * 2012-05-01 2013-11-14 Mitsubishi Electric Corp 光起電力装置の製造方法および光起電力装置
EP3343640A1 (en) * 2016-12-29 2018-07-04 Yerci, Selcuk Method of surface texturing using a laser heating step that contributes to small-sized texture morphology
CN110722272A (zh) * 2019-10-18 2020-01-24 深圳信息职业技术学院 超快激光微纳切割钻孔设备及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937172A (zh) * 2021-10-19 2022-01-14 温州大学 一种晶硅太阳能电池新型复合绒面结构制备方法
CN113937172B (zh) * 2021-10-19 2023-10-10 温州大学 一种晶硅太阳能电池新型复合绒面结构制备方法
CN115272498A (zh) * 2022-08-02 2022-11-01 新源劲吾(北京)科技有限公司 一种彩色光伏板表面制绒方法及相关设备

Also Published As

Publication number Publication date
CN111554778B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
CN111554778B (zh) 一种利用激光旋切进行晶硅太阳能电池表面制绒的方法
Sheng et al. Design and non‐lithographic fabrication of light trapping structures for thin film silicon solar cells
Benagli et al. High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor
Han et al. Formation of various pyramidal structures on monocrystalline silicon surface and their influence on the solar cells
US7611977B2 (en) Process of phosphorus diffusion for manufacturing solar cell
CN103022267B (zh) 一种ZnO球形空壳结构纳米颗粒阵列的制备方法
CN103112816A (zh) 一种在单晶硅衬底上制备金字塔阵列的方法
CN102145602A (zh) 一种晶体硅选择性发射极电池的印刷对位方法
CN110707178A (zh) N型太阳能电池硼扩se结构的制备方法
CN109913927A (zh) 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法
Zhang et al. Thin-film silicon solar cells on dry etched textured glass
Drygała et al. Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon
CN102117843A (zh) 一种太阳能电池用透明导电减反射薄膜及其制备方法
Wang et al. Etch-back silicon texturing for light-trapping in electron beam evaporated thin-film polycrystalline silicon solar cells
JP2013542317A (ja) 太陽電池を製造するための基板をコーティングする方法
CN104393116B (zh) 一种纳米硅薄膜太阳能电池椭圆偏振光谱实时监控制备方法
CN102646751A (zh) 具有超低纳米减反结构准黑硅高效太阳能电池的制备方法
CN106711288B (zh) 一种纳米晶硅薄膜太阳能电池的制备方法
CN105304737A (zh) 一种可控阵列纳米线太阳能电池及其制备方法
CN110165020A (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN1760405A (zh) 太阳能电池纳米晶硅薄膜的物理气相沉积装置及其方法
CN202013888U (zh) 一种太阳能电池用透明导电减反射薄膜
Liu The applications of plasma immersion ion implantation to crystalline silicon solar cells
CN113571597A (zh) 砷化镓纳米结构太阳能电池制备方法
JP2002280590A (ja) 多接合型薄膜太陽電池及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200818

Assignee: Gehong (Beijing) Photoelectric Technology Co.,Ltd.

Assignor: Wenzhou University

Contract record no.: X2023330000102

Denomination of invention: A method for fabricating the surface of crystalline silicon solar cells using laser spin cutting

Granted publication date: 20210727

License type: Common License

Record date: 20230311