CN111552314A - 多无人机自适应编队跟踪控制方法 - Google Patents

多无人机自适应编队跟踪控制方法 Download PDF

Info

Publication number
CN111552314A
CN111552314A CN202010387444.0A CN202010387444A CN111552314A CN 111552314 A CN111552314 A CN 111552314A CN 202010387444 A CN202010387444 A CN 202010387444A CN 111552314 A CN111552314 A CN 111552314A
Authority
CN
China
Prior art keywords
unmanned aerial
follower
aerial vehicle
leader
drone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010387444.0A
Other languages
English (en)
Other versions
CN111552314B (zh
Inventor
韩亮
谢雨欣
任章
董希旺
李清东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202010387444.0A priority Critical patent/CN111552314B/zh
Publication of CN111552314A publication Critical patent/CN111552314A/zh
Application granted granted Critical
Publication of CN111552314B publication Critical patent/CN111552314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本公开实施例公开了一种多无人机自适应编队跟踪控制方法,包括:将无人机集群中的多个无人机分为领导者和跟随者;构建领导者和跟随者的无人机模型;构建领导者和跟随者之间的通信拓扑关系;判决所述无人机集群是否符合编队跟踪条件;基于所述无人机模型、通信拓扑关系和编队跟踪条件的参数构建符合编队跟踪条件的无人机集群的控制模型;基于控制模型对符合编队跟踪条件的无人机集群进行编队跟踪控制。根据领导者和跟随者的状态信息,动态的调整控制器参数,达到动态的调整控制参数,且在多无人机间存在切换拓扑和领导者有未知有界输入时,能控制多无人机系统达到编队跟踪控制的目的。

Description

多无人机自适应编队跟踪控制方法
技术领域
本公开属于无人机控制技术领域,更具体地,涉及一种多无人机自适应编队跟踪控制方法。
背景技术
近几十年来,群体智能受到科学家的广泛关注。在自然界中,存在多种生物群体,它们的个体不具有高级智能,但群体却通过个体合作表现出惊人的智慧,如鸟群、鱼群、蚂蚁群体和蜜蜂群体等。科研学者从这些群体当中获得灵感,分析生物群体的行为特点,并为解决复杂问题提供新的思路。灰狼群体就是群体智能的典型研究对象。灰狼群体内部存在严格的社会等级制度,依据等级决定每匹狼的分工;灰狼群体的捕猎、侦查等活动均通过分工合作完成;灰狼群体依据一定的竞选机制和淘汰机制来更新狼的等级。而群体智能的许多研究成果也已经应用于多无人机集群的协同控制。
多无人机编队跟踪控制是多无人机协同控制的一个重要分支,是当前无人机集群系统研究的热点问题,它指多个无人机组成的集群中,无人机相互之间形成并保持预定的几何形态,同时实现对目标的跟踪。多无人机编队跟踪控制具有良好的应用前景。无人机以其无人驾驶的特点,可以在危险环境下,通过编队跟踪控制,执行诸如跟踪、拦截、围捕等军事任务,从而最大可能的保证人员安全。然而,面对复杂的作战环境和任务需求,单架无人机执行任务的能力体现出一定的局限性,例如:单架无人机感知任务环境的能力通常有限;持续飞行的能力通常受到燃料储存的限制;易受环境干扰和机械故障的影响。如果多个无人机形成集群系统,采用一定的控制方法对其进行控制,就能实现无人机之间的信息交流,从而提高执行任务的效率,降低因故障、干扰而任务失败的风险,打破单架无人机执行任务的局限性。多无人机协同完成任务,不但可降低系统成本,提高系统的可靠性和生存能力,而且能丰富无人机系统的功能性,达到同步完成多项任务的目的。而多无人机协同的实现,依赖于多无人机的协同控制方法,其中编队跟踪控制技术是是基于一致性编队的重要控制方法之一。多无人机一致性编队控制已有多种成熟的控制方法,与基于领导者-跟随者、基于行为以及基于虚拟结构的方法相比,基于一致性的编队控制方法具有更好的鲁棒性和扩展性,并且易于设计,因此当前受到国内外研究人员的广泛关注,并取得了一些应用。但现有的多无人机编队跟踪控制存在不能动态的调整控制参数,且在多无人机间存在切换拓扑和领导者有未知有界输入时,不能控制多无人机系统达到编队跟踪控制的问题。
发明内容
有鉴于此,本公开实施例提供了一种多无人机自适应编队跟踪控制方法,至少解决现有技术中不能动态的调整控制参数,且在多无人机间存在切换拓扑和领导者有未知有界输入时,不能控制多无人机系统达到编队跟踪控制的问题。
本公开实施例提供了一种多无人机自适应编队跟踪控制方法,包括:
将无人机集群中的多个无人机分为领导者和跟随者;
构建领导者和跟随者的无人机模型;
构建领导者和跟随者之间的通信拓扑关系;
判决所述无人机集群是否符合编队跟踪条件;
基于所述无人机模型、通信拓扑关系和编队跟踪条件的参数构建符合编队跟踪条件的无人机集群的控制模型;
基于控制模型对符合编队跟踪条件的无人机集群进行编队跟踪控制。
可选的,所述将无人机集群中的多个无人机分为领导者和跟随者,包括:
基于灰狼的社会等级制度,将所述多无人机集群中的无人机分为领导者和跟随者,所述领导者为多个,多个所述领导者分为多个等级;
基于灰狼的捕猎模式,使所述无人机集群中的领导者的综合状态信息被视为跟踪目标的状态信息,使得跟随者跟踪领导者的运动;
基于灰狼捕猎中对猎物形成包围的捕猎策略,控制所述无人机集群的队形。
可选的,所述构建领导者和跟随者的无人机模型,包括:
所述跟随者无人机模型为:
Figure BDA0002484580040000031
其中,t表示时间,A和B为无人机的常数系统参数矩阵,xi(t)为第i个跟随者无人机在t时刻的状态,ui(t)为第i个跟随者无人机的控制输入,S(·)为函数;
和\或
所述领导者无人机模型为:
Figure BDA0002484580040000032
其中,t表示时间,A和B为无人机的常数系统参数矩阵,xl(t)为第l个领导者无人机在t时刻的状态,ul(t)为第l个领导者无人机的控制输入。
可选的,所述构建领导者和跟随者之间的通信拓扑关系,包括:
将无人机集群中的每个无人机用节点表示;
将节点间的通信连接用节点连线构成的边来表示;
将无人机集群的通信关系用无向代数拓扑图表示,所述无向代数拓扑图包含节点、边和边的权重值。
可选的,所述构建领导者和跟随者之间的通信拓扑关系,包括:
获取保存边的权重值的邻接矩阵A=[aij],aij为跟随者无人机i和跟随者无人机j之间的连接权重;
基于所述边的权重值获取入度矩阵,所述入度矩阵为D=diag{d1,d2,…,dN},
Figure BDA0002484580040000041
基于所述邻接矩阵和入度矩阵得到无向代数拓扑图的拉普拉斯矩阵L,所述拉普拉斯矩阵L=D-A。
可选的,所述构建领导者和跟随者之间的通信拓扑关系,包括:
若无人机集群中的通信拓扑关系是连通和切换的;
切换拓扑图的拉普拉斯矩阵为
Figure BDA0002484580040000042
其中,
Figure BDA0002484580040000043
为描述跟随者无人机间通信关系的矩阵,
Figure BDA0002484580040000044
为描述跟随者无人机和领导者无人机间通信关系的矩阵,σ(t)=s,σ(t)为在t时刻通信连接关系用第s个拓扑图表示,σ为切换信号用函数,NE为领导者无人机数目,NF为跟随者无人机数量,
Figure BDA0002484580040000045
Figure BDA0002484580040000046
均为零矩阵。
可选的,所述判决所述无人机集群是否符合编队跟踪条件,包括:
获取跟随者无人机的时变编队向量hi(t),
判断是否存在满足第一设定条件的常数组;
判断所述时变编队向量hi(t)和常数组是否满足第二设定条件。
可选的,所述第一设定条件为:
存在一组δ∈R,0<δ1<1,使得
Figure BDA0002484580040000051
其中,NF为跟随者无人机的个数,N为无人机总数;
和\或
所述第二设定条件为:
Figure BDA0002484580040000052
xi(t)为第i个跟随者无人机在t时刻的状态,hi(t)为第i个跟随者无人机的时变编队向量,NF为跟随者无人机的个数,δl为系数,xl(t)为第l个领导者无人机在时刻t的状态。
可选的,所述基于所述无人机模型、通信拓扑关系和编队跟踪条件的参数构建符合编队跟踪条件的无人机集群的控制模型,包括:
获取编队跟踪条件中的跟随者无人机的编队向量、通信拓扑关系中切换拓扑图的跟随者无人机间的连接权重、通信拓扑关系中切换拓扑图的跟随者无人机和领导者无人机之间的连接权重,得到相关参数;
基于所述相关参数得到跟随者无人机的控制模型。
可选的,所述控制模型为:
Figure BDA0002484580040000061
其中,xi(t)为第i个跟随者无人机在t时刻的状态,xj(t)为第j个跟随者无人机在t时刻的状态,hi(t)为第i个跟随者无人机的时变编队向量,hj(t)为第j个跟随者无人机的时变编队向量,NF为跟随者无人机的个数,
Figure BDA0002484580040000062
为切换拓扑图的跟随者无人机间的连接权重,
Figure BDA0002484580040000063
为切换拓扑图的跟随者无人机和领导者无人机之间的连接权重,K为可配置的增益矩阵,T为可配置的自适应控制矩阵,ci(t)为第i架跟随者无人机的耦合权重,f(t)是一个正函数,ξi(t)为编队跟踪误差,
Figure BDA0002484580040000064
为ξi(t)的转置。
本公开通过将无人机集群中的多个无人机分为领导者和跟随者,构建领导者和跟随者的无人机模型和通信拓扑关系;并对编队跟踪进行判断,从而构建符合编队跟踪条件的无人机集群的控制模型。根据领导者和跟随者的状态信息,动态的调整控制器参数,达到动态的调整控制参数,且在多无人机间存在切换拓扑和领导者有未知有界输入时,能控制多无人机系统达到编队跟踪控制的目的。
本公开基于灰狼捕猎策略,设计了多无人机的编队跟踪策略:多无人机系统采用领导者-跟随者模型,多个领导者的综合状态信息被视为跟踪目标的状态信息,跟随者跟踪领导者的运动,多无人机系统能形成并保持一定的队形。
基于多无人机编队跟踪策略,设计了自适应编队跟踪控制协议,该协议仅使用邻居无人机状态信息,能动态调整控制器参数,并且能在多无人机间存在切换拓扑和领导者有未知有界输入时,控制多无人机系统达到编队跟踪控制。
使得多无人机集群具有智慧的编队跟踪策略,并能实现切换拓扑和领导者未知有界输入下的多无人机自适应编队跟踪控制,有效的提升了多无人机集群控制的功能性、效率性、实用性。
本公开的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本公开示例性实施方式进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施方式中,相同的参考标号通常代表相同部件。
图1示出了根据本公开的一个实施例的多无人机自适应编队跟踪控制方法的流程图;
图2示出了根据本公开的一个实施例的基于灰狼捕猎策略的多无人机编队跟踪策略示意图;
图3a至图3c示出了根据本公开的一个实施例的多无人机系统的多个通信拓扑图的示意图;
图4示出了根据本公开的一个实施例的多无人机系统通信拓扑的切换信号变化的示意图;
图5a示出了根据本公开的一个实施例的0s时刻多无人机系统位置示意图;
图5b示出了根据本公开的一个实施例的5s时刻多无人机系统位置示意图;
图5c示出了根据本公开的一个实施例的10s时刻多无人机系统位置示意图;
图5d示出了根据本公开的一个实施例的15s时刻多无人机系统位置示意图;
图6示出了根据本公开的一个实施例的0s-15s多无人机系统编队跟踪误差变化曲线示意图。
具体实施方式
下面将更详细地描述本公开的优选实施方式。虽然以下描述了本公开的优选实施方式,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。
如图1所示,一种多无人机自适应编队跟踪控制方法,包括:
步骤S101:将无人机集群中的多个无人机分为领导者和跟随者;
步骤S102:构建领导者和跟随者的无人机模型;
步骤S103:构建领导者和跟随者之间的通信拓扑关系;
步骤S104:判决所述无人机集群是否符合编队跟踪条件;
步骤S105:基于所述无人机模型、通信拓扑关系和编队跟踪条件的参数构建符合编队跟踪条件的无人机集群的控制模型;
步骤S106:基于控制模型对符合编队跟踪条件的无人机集群进行编队跟踪控制。
可选的,步骤S101所述将无人机集群中的多个无人机分为领导者和跟随者,包括:
基于灰狼的社会等级制度,将所述多无人机集群中的无人机分为领导者和跟随者,所述领导者为多个,多个所述领导者分为多个等级;
基于灰狼的捕猎模式,使所述无人机集群中的领导者的综合状态信息被视为跟踪目标的状态信息,使得跟随者跟踪领导者的运动;
基于灰狼捕猎中对猎物形成包围的捕猎策略,控制所述无人机集群的队形。
如图2所示,灰狼群体在捕猎活动中,通过严密的组织和紧密的合作,展现了非凡的智慧。在自然界中,灰狼是一种顶级食肉动物,其生活方式大多以群居为主,通常每个群体中平均有5-12只狼。灰狼群体内部存在严格的等级制度,灰狼被分为四个等级,由上至下依次为:α、β、δ和ω。其中α狼是头狼,为狼群中的领导者,主要负责对捕食的行动、作息的时间地点、食物的分配等事情做出决策;β狼是头狼的协助者,可协助α狼做出决策,辅助命令的传达,并将任务执行情况给α狼以反馈。δ狼负责侦查、看护、捕猎等各项事物,包含年老和年幼的狼。ω狼是种群中底层的狼,主要负责平衡内部关系,保持狼群结构,有时负责照看年幼的狼。灰狼捕猎的行为以种群为单位有组织的高效进行,种群的等级制度在此过程中起到重要的作用。
在捕猎时,前三个等级能更好的感知到猎物的位置信息,因此它们均作为ω狼的领导者,引导ω狼跟随领导者的运动。最终ω狼在领导者的带领下,对猎物形成包围。灰狼的群体智能值得分析和借鉴,其捕猎策略,可赋予多无人机构成的集群系统以群体的智能,使多无人机协同合作,通过编队跟踪控制的方法执行目标跟踪的任务。受灰狼捕猎策略的启发,提出以下多无人机编队跟踪策略:
(1)引入灰狼的社会等级制度,使得无人机系统采用领导者-跟随者模型;
(2)引入灰狼捕猎中,前三个等级的领导狼感知猎物位置,最低等级的狼跟踪领导狼的捕猎模式,使无人机系统中的多个领导者的综合状态信息被视为跟踪目标的状态信息,使得跟随者跟踪领导者的运动;
(3)引入灰狼捕猎中,最低等级的狼对猎物形成包围的捕猎策略,使得无人机系统能形成并保持一定的队形。
可选的,步骤S102所述构建领导者和跟随者的无人机模型,包括:
所述跟随者无人机模型为:
Figure BDA0002484580040000101
其中,t表示时间,A和B为无人机的常数系统参数矩阵,xi(t)为第i个跟随者无人机在t时刻的状态,ui(t)为第i个跟随者无人机的控制输入,S(·)为函数;
和\或
所述领导者无人机模型为:
Figure BDA0002484580040000102
其中,t表示时间,A和B为无人机的常数系统参数矩阵,xl(t)为第l个领导者无人机在t时刻的状态,ul(t)为第l个领导者无人机的控制输入。
构建单架无人机模型具体为:
无人机系统由N个无人机组成,包括NF个跟随者无人机和NE个领导者无人机。对于任意i∈{1,2,…,NF}第i个跟随者无人机模型为
Figure BDA0002484580040000103
对于任意l∈{NF+1,NF+2,…,N},第l个领导者无人机模型为
Figure BDA0002484580040000111
其中t表示时间,A∈Rn×n和B∈Rn×m表示无人机的常数系统参数矩阵。xi(t)∈Rn和xl(t)∈Rn分别表示第i个跟随者无人机和第l个领导者无人机在t时刻的状态,ui(t)∈Rm和ul(t)∈Rm分别表示第i个跟随者无人机和第l个领导者无人机的控制输入,其中ul(t)是有界的未知向量,S(·):Rn→Rm是用来表示函数,R为实数。
可选的,步骤S103所述构建领导者和跟随者之间的通信拓扑关系,包括:
将无人机集群中的每个无人机用节点表示;
将节点间的通信连接用节点连线构成的边来表示;
将无人机集群的通信关系用无向代数拓扑图表示,所述无向代数拓扑图包含节点、边和边的权重值。
可选的,步骤S103所述构建领导者和跟随者之间的通信拓扑关系,包括:
获取保存边的权重值的邻接矩阵A=[aij],aij为跟随者无人机i和跟随者无人机j之间的连接权重;
基于所述边的权重值获取入度矩阵,所述入度矩阵为D=diag{d1,d2,…,dN},
Figure BDA0002484580040000112
基于所述邻接矩阵和入度矩阵得到无向代数拓扑图的拉普拉斯矩阵L,所述拉普拉斯矩阵L=D-A。
可选的,步骤S103所述构建领导者和跟随者之间的通信拓扑关系,包括:
若无人机集群中的通信拓扑关系是连通和切换的;
切换拓扑图的拉普拉斯矩阵为
Figure BDA0002484580040000121
其中,
Figure BDA0002484580040000122
为描述跟随者无人机间通信关系的矩阵,
Figure BDA0002484580040000123
为描述跟随者无人机和领导者无人机间通信关系的矩阵,σ(t)=s,σ(t)为在t时刻通信连接关系用第s个拓扑图表示,σ为切换信号用函数,NE为领导者无人机数目,NF为跟随者无人机数量,
Figure BDA0002484580040000124
Figure BDA0002484580040000125
均为零矩阵,
Figure BDA0002484580040000126
为尺寸为NE×NF的零矩阵,
Figure BDA0002484580040000127
为尺寸为NE×NE的零矩阵。
具体的构建多无人机集群系统通信拓扑关系为:
多无人机集群系统通过无人机之间的互相通信来获取其它无人机的状态量,这种通信关系可以用无向代数拓扑图G来表示。每个无人机分别用一个节点来表示,构成点的集合
Figure BDA0002484580040000128
其中前NF个节点表示跟随者无人机,后NE个节点表示领导者无人机。节点间的通信连接用节点连线构成的边来表示,构成边的集合
Figure BDA0002484580040000129
边的权重值存放于邻接矩阵
Figure BDA00024845800400001210
定义跟随者无人机i和j之间的连接权重aij=aji,跟随者无人机i和领导者无人机l的连接权重为ail,领导者无人机l和跟随者无人机i的连接权重为ali,ali≡0,连接权重为零表示不存在连接,为正数表示存在连接。节点i的入度定义为
Figure BDA0002484580040000131
定义入度矩阵为D=diag{d1,d2,…,dN}。通信拓扑图G的拉普拉斯矩阵=[wij]∈RN×N定义为L=D-A。
假设多无人机通信拓扑是连通和切换的。用tk来表示第k次切换,每两次切换的间隔时间不小于τ0,在两次切换的间隔时间内,拓扑被认为是固定的。切换信号用函数
Figure BDA0002484580040000132
来表示,σ(t)=s表示在t时刻通信连接关系可用第s个拓扑图表示。切换的拓扑图可用Gσ(t)来表示,对应的拉普拉斯矩阵表示为
Figure BDA0002484580040000133
根据权重定义和拉普拉斯矩阵定义,
Figure BDA0002484580040000134
是对称矩阵,描述跟随者无人机间通信关系,
Figure BDA0002484580040000135
描述跟随者无人机和领导者无人机间通信关系。假设拉普拉斯矩阵Lσ(t)满足任意行的行和为零。
可选的,步骤S104所述判决所述无人机集群是否符合编队跟踪条件,包括:
获取跟随者无人机的时变编队向量hi(t),
判断是否存在满足第一设定条件的常数组;
判断所述时变编队向量hi(t)和常数组是否满足第二设定条件。
可选的,所述第一设定条件为:
存在一组δ∈R,0<δ1<1,使得
Figure BDA0002484580040000141
其中,NF为跟随者无人机的个数,N为无人机总数;
和\或
所述第二设定条件为:
Figure BDA0002484580040000142
xi(t)为第i个跟随者无人机在t时刻的状态,hi(t)为第i个跟随者无人机的时变编队向量,NF为跟随者无人机的个数,δl为系数,xl(t)为第l个领导者无人机在时刻的状态。
存在一组δ∈R,0<δ1<1,使得
Figure BDA0002484580040000143
具体的无人机编队跟踪为:
设对于任意i∈{1,2,…,NF},第i个跟随者无人机的时变编队向量
Figure BDA0002484580040000144
对于任意给定有界初始条件,如果存在一组常数
Figure BDA0002484580040000145
满足
Figure BDA0002484580040000146
使得下述条件成立:
Figure BDA0002484580040000151
如有此极限值零,则称达成无人机集群编队跟踪,表达领导者无人机状态信息的加权平均值。
可选的,步骤S106所述基于所述无人机模型、通信拓扑关系和编队跟踪条件的参数构建符合编队跟踪条件的无人机集群的控制模型,包括:
获取编队跟踪条件中的跟随者无人机的编队向量、通信拓扑关系中切换拓扑图的跟随者无人机间的连接权重、通信拓扑关系中切换拓扑图的跟随者无人机和领导者无人机之间的连接权重,得到相关参数;
基于所述相关参数得到跟随者无人机的控制模型。
可选的,所述控制模型为:
Figure BDA0002484580040000152
其中,xi(t)为第i个跟随者无人机在t时刻的状态,xj(t)为第j个跟随者无人机在t时刻的状态,hi(t)为第i个跟随者无人机的时变编队向量,hj(t)为第j个跟随者无人机的时变编队向量,NF为跟随者无人机的个数,
Figure BDA0002484580040000153
为切换拓扑图的跟随者无人机间的连接权重,
Figure BDA0002484580040000154
为切换拓扑图的跟随者无人机和领导者无人机之间的连接权重,K∈Rm×n为可配置的增益矩阵,T∈Rn×n为可配置的自适应控制矩阵,ci(t)为第i架跟随者无人机的耦合权重,用来动态调整连接权重,ci(t)是临界矩阵,f(t)是一个正函数,ξi(t)为编队跟踪误差,
Figure BDA0002484580040000161
为ξi(t)的转置矩阵,T表示矩阵(向量)的转置。
f(t)>||ul(t)||+||ε(t)||
其中ε(t)定义为
Figure BDA0002484580040000163
Figure BDA0002484580040000162
ul(t)表示第l架领导者无人机的控制输入。
在本实施例的控制方法中,无人机通过与邻居无人机的通信,获取其它无人机的状态信息,然后通过这些信息生成自身的控制指令,从而使得多无人机集群系统最后形成编队。在此基础之上,编队跟踪控制在通信中除了传递邻居无人机状态信息外,还传递跟踪目标的状态信息,可使多无人机集群系统保持一定的队形的同时跟踪目标。例如,在执行跟踪敌方无人机的任务时,多无人机集群系统可通过分布式网络进行在邻机间传递己方和敌方无人机的状态信息,从而保证形成特定的队形,并以此队形跟踪敌方无人机。在多无人机系统执行任务时,现场局势往往瞬息万变。自适应控制可使无人机根据任务具体情况和自身状态进行动态调整。自适应控制方法可与多无人机编队跟踪控制结合,从而根据具体任务形势,动态地调整编队跟踪控制器。
基于本实施的多无人机自适应编队跟踪控制方法的具体仿真如下:
如包含四架跟随者无人机和三架领导者无人机的多无人机系统,在二维平面直角坐标系下描述其运动。其通信拓扑图在三个拓扑图G1,G2,G3中切换,连接权重为0或1,0表示不连接,1表示连接,最短切换间隔时间τ0=5s。每架无人机状态由xi(t)=[pix(t),vix(t),piy(t),viy(t)]T,其中pix(t)和piy(t)分别是x和y方向的位置分量,vix(t)和viy(t)分别是x和y方向的速度分量。跟随者无人机的控制输入ui(t)(i∈{1,2,3,4})由控制模型给出,领导者无人机的控制输入设置为ul(t)=t(l∈{5,6,7})。系统参数矩阵
Figure BDA0002484580040000171
Figure BDA0002484580040000172
结构不确定性的控制误差
Figure BDA0002484580040000173
控制模型中的f(t)=30,在0-15s内,满足f(t)>||ul(t)||+||ε(t)||的条件,增益矩阵选择为K=[-10 -17.3205],自适应控制矩阵选择为
Figure BDA0002484580040000174
选择跟随者无人机的期望编队向量为hi(t)=[hipx(t),hivx(t),hipy(t),hivy(t)]T,向量内各项为
Figure BDA0002484580040000175
Figure BDA0002484580040000176
Figure BDA0002484580040000177
Figure BDA0002484580040000178
各无人机初始状态信息选择为:
x1(0)=[0 0.1 1 0.1]T
x2(0)=[1 0.1 2 0.1]T
x3(0)=[3 0.1 0 0.1]T
x4(0)=[4 0.1 1 0.1]T
x5(0)=[1 0.1 1 0.1]T
x6(0)=[3 0.1 1 0.1]T
x7(0)=[3 0.1 2 0.1]T
通过仿真得到多无人机系统0-15s内的运动过程,如图3a至3b所示为多无人机系统的拓扑图G1,G2,G3,如图4所示描述了拓扑图的切换信号变化,如图5a至图5d所示,描述了在t=0s,t=5s,t=10s和t=15s四个时刻,跟随者无人机、领导者无人机和跟踪目标的位置。如图6所示为0-15s内集群编队跟踪误差变化曲线。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

1.一种多无人机自适应编队跟踪控制方法,其特征在于,包括:
将无人机集群中的多个无人机分为领导者和跟随者;
构建领导者和跟随者的无人机模型;
构建领导者和跟随者之间的通信拓扑关系;
判决所述无人机集群是否符合编队跟踪条件;
基于所述无人机模型、通信拓扑关系和编队跟踪条件的参数构建符合编队跟踪条件的无人机集群的控制模型;
基于控制模型对符合编队跟踪条件的无人机集群进行编队跟踪控制。
2.根据权利要求1所述的多无人机自适应编队跟踪控制方法,其特征在于,所述将无人机集群中的多个无人机分为领导者和跟随者,包括:
基于灰狼的社会等级制度,将所述多无人机集群中的无人机分为领导者和跟随者,所述领导者为多个,多个所述领导者分为多个等级;
基于灰狼的捕猎模式,使所述无人机集群中的领导者的综合状态信息被视为跟踪目标的状态信息,使得跟随者跟踪领导者的运动;
基于灰狼捕猎中对猎物形成包围的捕猎策略,控制所述无人机集群的队形。
3.根据权利要求1所述的多无人机自适应编队跟踪控制方法,其特征在于,所述构建领导者和跟随者的无人机模型,包括:
所述跟随者无人机模型为:
Figure FDA0002484580030000011
其中,t表示时间,A和B为无人机的常数系统参数矩阵,xi(t)为第i个跟随者无人机在t时刻的状态,ui(t)为第i个跟随者无人机的控制输入,S(·)为函数;
和\或
所述领导者无人机模型为:
Figure FDA0002484580030000021
其中,t表示时间,A和B为无人机的常数系统参数矩阵,xl(t)为第l个领导者无人机在t时刻的状态,ul(t)为第l个领导者无人机的控制输入。
4.根据权利要求1所述的多无人机自适应编队跟踪控制方法,其特征在于,所述构建领导者和跟随者之间的通信拓扑关系,包括:
将无人机集群中的每个无人机用节点表示;
将节点间的通信连接用节点连线构成的边来表示;
将无人机集群的通信关系用无向代数拓扑图表示,所述无向代数拓扑图包含节点、边和边的权重值。
5.根据权利要求4所述的多无人机自适应编队跟踪控制方法,其特征在于,所述构建领导者和跟随者之间的通信拓扑关系,包括:
获取保存边的权重值的邻接矩阵A=[aij],aij为跟随者无人机i和跟随者无人机j之间的连接权重;
基于所述边的权重值获取入度矩阵,所述入度矩阵为D=diag{d1,d2,…,dN},
Figure FDA0002484580030000022
基于所述邻接矩阵和入度矩阵得到无向代数拓扑图的拉普拉斯矩阵L,所述拉普拉斯矩阵L=D-A。
6.根据权利要求5所述的多无人机自适应编队跟踪控制方法,其特征在于,所述构建领导者和跟随者之间的通信拓扑关系,包括:
若无人机集群中的通信拓扑关系是连通和切换的;
切换拓扑图的拉普拉斯矩阵为
Figure FDA0002484580030000031
其中,
Figure FDA0002484580030000032
为描述跟随者无人机间通信关系的矩阵,
Figure FDA0002484580030000033
为描述跟随者无人机和领导者无人机间通信关系的矩阵,σ(t)=s,σ(t)为在t时刻通信连接关系用第s个拓扑图表示,σ为切换信号用函数,NE为领导者无人机数目,NF为跟随者无人机数量,
Figure FDA0002484580030000034
Figure FDA0002484580030000035
均为零矩阵。
7.根据权利要求1所述的多无人机自适应编队跟踪控制方法,其特征在于,所述判决所述无人机集群是否符合编队跟踪条件,包括:
获取跟随者无人机的时变编队向量hi(t),
判断是否存在满足第一设定条件的常数组;
判断所述时变编队向量hi(t)和常数组是否满足第二设定条件。
8.根据权利要求7所述的多无人机自适应编队跟踪控制方法,其特征在于,所述第一设定条件为:
存在一组δ∈R,0<δ1<1,使得
Figure FDA0002484580030000036
其中,NF为跟随者无人机的个数,N为无人机总数;
和\或
所述第二设定条件为:
Figure FDA0002484580030000041
xi(t)为第i个跟随者无人机在t时刻的状态,hi(t)为第i个跟随者无人机的时变编队向量,NF为跟随者无人机的个数,δl为系数,xl(t)为第l个领导者无人机在时刻t的状态。
9.根据权利要求1所述的多无人机自适应编队跟踪控制方法,其特征在于,所述基于所述无人机模型、通信拓扑关系和编队跟踪条件的参数构建符合编队跟踪条件的无人机集群的控制模型,包括:
获取编队跟踪条件中的跟随者无人机的编队向量、通信拓扑关系中切换拓扑图的跟随者无人机间的连接权重、通信拓扑关系中切换拓扑图的跟随者无人机和领导者无人机之间的连接权重,得到相关参数;
基于所述相关参数得到跟随者无人机的控制模型。
10.根据权利要求9所述的多无人机自适应编队跟踪控制方法,其特征在于,所述控制模型为:
Figure FDA0002484580030000042
其中,xi(t)为第i个跟随者无人机在t时刻的状态,xj(t)为第j个跟随者无人机在t时刻的状态,hi(t)为第i个跟随者无人机的时变编队向量,hj(t)为第j个跟随者无人机的时变编队向量,NF为跟随者无人机的个数,
Figure FDA0002484580030000051
为切换拓扑图的跟随者无人机间的连接权重,
Figure FDA0002484580030000052
为切换拓扑图的跟随者无人机和领导者无人机之间的连接权重,K为可配置的增益矩阵,T为可配置的自适应控制矩阵,ci(t)为第i架跟随者无人机的耦合权重,f(t)是一个正函数,ξi(t)为编队跟踪误差,
Figure FDA0002484580030000053
为ξi(t)的转置。
CN202010387444.0A 2020-05-09 2020-05-09 多无人机自适应编队跟踪控制方法 Active CN111552314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010387444.0A CN111552314B (zh) 2020-05-09 2020-05-09 多无人机自适应编队跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010387444.0A CN111552314B (zh) 2020-05-09 2020-05-09 多无人机自适应编队跟踪控制方法

Publications (2)

Publication Number Publication Date
CN111552314A true CN111552314A (zh) 2020-08-18
CN111552314B CN111552314B (zh) 2021-05-18

Family

ID=72001523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010387444.0A Active CN111552314B (zh) 2020-05-09 2020-05-09 多无人机自适应编队跟踪控制方法

Country Status (1)

Country Link
CN (1) CN111552314B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114594A (zh) * 2020-10-13 2020-12-22 湖南大学 一种基于视觉与性能约束的多无人机协同控制方法及系统
CN112650299A (zh) * 2021-01-06 2021-04-13 西安爱生技术集团公司 一种考虑时变编队的分组一致性无人机编队控制方法
CN112836356A (zh) * 2021-01-14 2021-05-25 北京科技大学 基于随机噪声的局部自组织大规模群体动态目标跟踪方法
CN112882385A (zh) * 2021-01-12 2021-06-01 南京航空航天大学 基于隔离/移除故障个体的蜂群无人机可重构性评估方法
CN113253764A (zh) * 2021-07-14 2021-08-13 北京大学 一种基于降维观测器的无人集群仿射编队控制方法
CN114020042A (zh) * 2021-12-14 2022-02-08 北京航空航天大学 一种异构无人集群编队合围跟踪控制方法及系统
CN115047892A (zh) * 2022-06-13 2022-09-13 西北工业大学 一种基于群体智能的水下无人集群编队关键节点识别方法
CN116300474A (zh) * 2023-05-10 2023-06-23 西北工业大学 一种无人机编队性能评估方法
CN114115002B (zh) * 2021-11-11 2023-08-11 西北工业大学 一种基于二阶通讯拓扑的大型集群控制方法
CN117608318A (zh) * 2024-01-23 2024-02-27 北京航空航天大学 基于仿鸟类趋光性的无人机编队避障控制方法及系统
CN117762166A (zh) * 2024-02-22 2024-03-26 杭州牧星科技有限公司 多无人机集群编队协同控制方法及其系统
CN112836356B (zh) * 2021-01-14 2024-05-28 北京科技大学 基于随机噪声的局部自组织大规模群体动态目标跟踪方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797564A (zh) * 2017-07-04 2018-03-13 合肥工业大学 多无人机协同编队中信息交互拓扑启发式优化方法及装置
CN107992090A (zh) * 2018-01-25 2018-05-04 西北工业大学深圳研究院 一种应用于网络化集群智能体系统的自适应编队方法
CN108983825A (zh) * 2018-09-30 2018-12-11 北京航空航天大学 一种无人机时变编队的跟踪方法及系统
CN109116868A (zh) * 2018-10-31 2019-01-01 中国人民解放军32181部队 分布式无人机编队协同控制方法
CN109445447A (zh) * 2019-01-14 2019-03-08 北京航空航天大学 一种多智能体编队跟踪控制方法及系统
CN110069076A (zh) * 2019-04-23 2019-07-30 北京航空航天大学 一种基于猛狼围捕行为的无人机集群空战方法
CN110162065A (zh) * 2019-06-18 2019-08-23 东北大学 一种基于有向跟随的自适应多智能体编队控制方法
CN110286694A (zh) * 2019-08-05 2019-09-27 重庆邮电大学 一种多领导者的无人机编队协同控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797564A (zh) * 2017-07-04 2018-03-13 合肥工业大学 多无人机协同编队中信息交互拓扑启发式优化方法及装置
CN107992090A (zh) * 2018-01-25 2018-05-04 西北工业大学深圳研究院 一种应用于网络化集群智能体系统的自适应编队方法
CN108983825A (zh) * 2018-09-30 2018-12-11 北京航空航天大学 一种无人机时变编队的跟踪方法及系统
CN109116868A (zh) * 2018-10-31 2019-01-01 中国人民解放军32181部队 分布式无人机编队协同控制方法
CN109445447A (zh) * 2019-01-14 2019-03-08 北京航空航天大学 一种多智能体编队跟踪控制方法及系统
CN110069076A (zh) * 2019-04-23 2019-07-30 北京航空航天大学 一种基于猛狼围捕行为的无人机集群空战方法
CN110162065A (zh) * 2019-06-18 2019-08-23 东北大学 一种基于有向跟随的自适应多智能体编队控制方法
CN110286694A (zh) * 2019-08-05 2019-09-27 重庆邮电大学 一种多领导者的无人机编队协同控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANGLONG YU 等: "Practical Time-Varying Formation Tracking for Second-Order Nonlinear Multiagent Systems With Multiple Leaders Using Adaptive Neural Networks", 《IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS》 *
JIANGLONG YU 等: "Time-varying formation tracking for high-order multi-agent systems with switching topologies and a lesder of bounded unknown input", 《JOURNAL OF THE FRANKLIN INSTITUTE》 *
田磊 等: "拓扑切换的集群系统分布式分组时变编队跟踪控制", 《中国科学》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114594B (zh) * 2020-10-13 2021-07-16 湖南大学 一种基于视觉与性能约束的多无人机协同控制方法及系统
CN112114594A (zh) * 2020-10-13 2020-12-22 湖南大学 一种基于视觉与性能约束的多无人机协同控制方法及系统
CN112650299A (zh) * 2021-01-06 2021-04-13 西安爱生技术集团公司 一种考虑时变编队的分组一致性无人机编队控制方法
CN112882385A (zh) * 2021-01-12 2021-06-01 南京航空航天大学 基于隔离/移除故障个体的蜂群无人机可重构性评估方法
CN112836356A (zh) * 2021-01-14 2021-05-25 北京科技大学 基于随机噪声的局部自组织大规模群体动态目标跟踪方法
CN112836356B (zh) * 2021-01-14 2024-05-28 北京科技大学 基于随机噪声的局部自组织大规模群体动态目标跟踪方法
CN113253764A (zh) * 2021-07-14 2021-08-13 北京大学 一种基于降维观测器的无人集群仿射编队控制方法
CN114115002B (zh) * 2021-11-11 2023-08-11 西北工业大学 一种基于二阶通讯拓扑的大型集群控制方法
CN114020042A (zh) * 2021-12-14 2022-02-08 北京航空航天大学 一种异构无人集群编队合围跟踪控制方法及系统
CN115047892B (zh) * 2022-06-13 2024-05-03 西北工业大学 一种基于群体智能的水下无人集群编队关键节点识别方法
CN115047892A (zh) * 2022-06-13 2022-09-13 西北工业大学 一种基于群体智能的水下无人集群编队关键节点识别方法
CN116300474A (zh) * 2023-05-10 2023-06-23 西北工业大学 一种无人机编队性能评估方法
CN116300474B (zh) * 2023-05-10 2023-08-22 西北工业大学 一种无人机编队性能评估方法
CN117608318B (zh) * 2024-01-23 2024-04-09 北京航空航天大学 基于仿鸟类趋光性的无人机编队避障控制方法及系统
CN117608318A (zh) * 2024-01-23 2024-02-27 北京航空航天大学 基于仿鸟类趋光性的无人机编队避障控制方法及系统
CN117762166A (zh) * 2024-02-22 2024-03-26 杭州牧星科技有限公司 多无人机集群编队协同控制方法及其系统

Also Published As

Publication number Publication date
CN111552314B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN111552314B (zh) 多无人机自适应编队跟踪控制方法
Wu et al. Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm
US6904335B2 (en) System, method and apparatus for organizing groups of self-configurable mobile robotic agents in a multi-robotic system
CN105302153B (zh) 异构多无人机协同察打任务的规划方法
CN110286694B (zh) 一种多领导者的无人机编队协同控制方法
CN111522258B (zh) 多无人机协同控制仿真系统及其构建方法、仿真方法
CN107479380A (zh) 基于演化博弈理论的多智能体协调控制方法
Jinqiang et al. Self-organized search-attack mission planning for UAV swarm based on wolf pack hunting behavior
Chang et al. Coactive design of explainable agent-based task planning and deep reinforcement learning for human-UAVs teamwork
CN111240356B (zh) 一种基于深度强化学习的无人机集群会合方法
CN113359437B (zh) 基于演化博弈的多智能体编队的分层模型预测控制方法
CN115291625A (zh) 基于多智能体分层强化学习的多无人机空战决策方法
CN113312172B (zh) 基于适变网络的多无人机集群动态任务调度模型
CN116560409A (zh) 基于maddpg-r的无人机集群路径规划仿真方法
CN113985915A (zh) 一种高阶群系统多领导者分簇编队跟踪控制方法
Hexmoor et al. Swarm Control in Unmanned Aerial Vehicles.
Ma et al. A survey of research on the distributed cooperation method of the uav swarm based on swarm intelligence
CN113759935A (zh) 基于模糊逻辑的智能群体编队移动控制方法
Huang et al. A deep reinforcement learning approach to preserve connectivity for multi-robot systems
Munnangi et al. Improving Wildlife Monitoring using a Multi-criteria Cooperative Target Observation Approach.
CN116009573A (zh) 异构无人机集群自组织运行控制方法、系统和设备
CN115657722A (zh) 一种基于事件触发脉冲控制的智能无人集群系统一致性编队控制方法
CN115617039A (zh) 一种基于事件触发的分布式仿射无人艇编队控制器构建方法和无人艇编队控制方法
Li et al. Fault-tolerant and self-adaptive market-based coordination using hoplites framework for multi-robot patrolling tasks
CN111830916A (zh) 一种面向多目标追踪的群机器人分布式竞争协同方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant