CN111551602A - 一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法 - Google Patents

一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法 Download PDF

Info

Publication number
CN111551602A
CN111551602A CN202010626017.3A CN202010626017A CN111551602A CN 111551602 A CN111551602 A CN 111551602A CN 202010626017 A CN202010626017 A CN 202010626017A CN 111551602 A CN111551602 A CN 111551602A
Authority
CN
China
Prior art keywords
preparation
electrochemical sensor
sulfadimethoxine
sulfamethoxydiazine
molecular imprinting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010626017.3A
Other languages
English (en)
Inventor
刘本志
金建祥
曹燕
马玉荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202010626017.3A priority Critical patent/CN111551602A/zh
Publication of CN111551602A publication Critical patent/CN111551602A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法,是以处理过的玻碳电极作为基底,采用石墨烯修饰玻碳电极,在亚甲基蓝和磺胺二甲氧嘧啶的磷酸盐缓冲溶液中电聚合形成分子印迹聚合物制得,并用乙醇/乙酸溶液去除模板,得到对磺胺二甲氧嘧啶选择性响应的分子印迹电化学传感器。这种方法制备出的分子印迹电化学传感器对磺胺二甲氧嘧啶的检出限为2.8×10‑7 mol/L,线性范围为6×10‑7mol/L‑9×10‑6 mol/L。本发明中提供的方法制备出的分子印迹电化学传感器具有良好的稳定性和选择性,而且制备方法简单实用。

Description

一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法
技术领域
本发明涉及的是电化学传感器领域,具体涉及的是磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法。
背景技术
磺胺二甲氧嘧啶是一种人工合成的广谱抗菌药,结构上类似对氨基苯甲酸。磺胺二甲氧嘧啶可与对氨基苯甲酸竞争性作用于细菌体内的二氢叶酸合成酶, 从而阻止以对氨基苯甲酸为原料合成细菌所需的四氢叶酸, 进而抑制细菌蛋白质的合成达到抑菌效果。该药物对细菌抑制效果明显、性质稳定、价格便宜,被广泛应用于畜牧业和水产品养殖业中。但是其滥用和误用现象十分严重,已造成环境中水体及土壤的污染。
用于磺胺二甲氧嘧啶检测的方法主要有色谱分析、质谱、免疫测定等。这些方法具有很高的精确度和灵敏度,可以根据所测对象的性质选择某一种方法进行测量。但是它们都不同程度存在着操作复杂、费时费力、成本高等缺点。例如,色谱法和质谱法存在着前处理繁琐、耗时长、试剂用量大等问题;酶免疫检测技术需要特制的进口试剂盒,并且生物酶的获取困难、成本较高,实验条件也较为苛刻等。研究快速、便捷、低成本的磺胺二甲氧嘧啶检测方法具有重要意义。
分子印迹技术是一种制备对模板分子具有识别性能的聚合物的技术。分子印迹聚合物(MIPs)对模板分子的识别具有特异识别性、构效预定性和广泛实用性等特点。分子印迹聚合物具有化学稳定性好、选择性高和容易制备等特点。分子印迹电化学传感器就是将电化学传感器检测快速、操作简单的优势与分子印迹技术相结合,可用于对磺胺二甲氧嘧啶的选择性检测。
发明内容
发明目的:本发明的目的是提供一种磺胺二甲氧嘧啶分子印迹电化学传感器简易的制备方法,这种方法可用于解决分子印迹电化学传感器的制备过程复杂,稳定性差等问题。
技术方案:本发明采用如下的技术方案。
这种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法是以处理过的玻碳电极作为基底,采用石墨烯修饰玻碳电极,亚甲基蓝和磺胺二甲氧嘧啶的磷酸盐缓冲溶液作为电解质,利用循环伏安法聚合形成分子印迹聚合物制得,这种方法制备出的分子印迹电化学传感器对磺胺二甲氧嘧啶的检出限为2.8×10-7 mol/L,线性范围为6×10-7mol/L-9×10-6 mol/L,具体制备方法包括以下步骤:
步骤一:将玻碳电极依次用0.5μm和0.05 μm Al2O3粉在麂皮上抛光后,于乙醇和去离子水中分别超声洗涤数分钟。然后将电极在K3Fe(CN)6中扫描,得到可逆的循环伏安峰(峰电流比为1:1,峰电位差小于70 mV),证明电极处理好。
步骤二:将石墨烯分散到混酸溶液(HNO3 : H2SO4=1:3)中回流完成对石墨烯表面的羧基化修饰;然后,过滤、洗涤、烘干;将获得的产物超声分散得到悬浮液;取5μL-15μL悬浮液滴涂到处理好的玻碳电极表面,形成均匀分散层,自然晾干,得到石墨烯修饰电极。
步骤三:将亚甲基蓝和磺胺二甲氧嘧啶溶解在磷酸盐缓冲溶液中,混合均匀,亚甲基蓝和磺胺二甲氧嘧啶的摩尔比为1:1-6:1。
步骤四:将步骤三中混合好的溶液作为电解质溶液,然后将石墨烯修饰的电极置于混合溶液中,采用循环伏安法进行电化学聚合形成分子印迹聚合物,用乙醇/乙酸溶液洗脱磺胺二甲氧嘧啶后,得到磺胺二甲氧嘧啶的分子印迹电化学传感器。
上述方案中,磷酸盐缓冲溶液的pH为3-6。
上述方案中电化学聚合方法为循环伏安法,电压范围:0.2V-1.2V,扫描速率:30mV/s-100mV/s,扫描周期: 20圈-50圈。
上述方案中乙醇/乙酸溶液浓度为1:1-8:1。
上述方法制备的磺胺二甲氧嘧啶分子印迹电化学传感器可用于水体中磺胺二甲氧嘧啶的定量检测。
具体实施方式
实施例1
玻碳电极预处理
将玻碳电极依次用0.5μm和0.05 μm Al2O3粉在麂皮上抛光后,于乙醇和去离子水中分别超声洗涤数分钟。然后将电极于K3Fe(CN)6中扫描,得到可逆的循环伏安峰(峰电流比为1:1,峰电位差小于70 mV),证明电极处理好。
实施例2
石墨烯修饰玻碳电极
将石墨烯分散到混酸溶液(HNO3 : H2SO4=1:3)中回流完成对石墨烯表面的羧基化修饰;然后,过滤、洗涤、烘干;将获得的产物超声分散得到悬浮液;取5μL-15μL悬浮液滴涂到处理好的玻碳电极表面,形成均匀分散层,自然晾干,得到石墨烯修饰电极。
实施例3
配制聚合溶液
以磺胺二甲氧嘧啶作为模板分子,亚甲基蓝作为功能单体,充分溶解在磷酸盐缓冲溶液中,亚甲基蓝和磺胺二甲氧嘧啶的摩尔比为1:1-6:1。
实施例4
电化学聚合
将石墨烯修饰的玻碳电极置于所制得的聚合溶液中,采用三电极体系进行电聚合,工作电极为石墨烯修饰的玻碳电极,参比电极为饱和甘汞电极,辅助电极为铂片电极;电压范围:0.2V-1.2V,扫描速率: 30mV/s-100mV/s,扫描周期: 20圈-50圈。
实施例5
将所制得的聚合物电极置于乙醇/乙酸溶液中洗脱60min,然后将洗脱后的电极用蒸馏水冲洗,在室温下晾干备用。
实施例6
工作曲线的绘制
采用方波伏安法进行磺胺二甲氧嘧啶的浓度测定实验。方波伏安法起止电位为-0.5V-0.7 V,电位增量0.005 V,方波频率 15Hz,方波幅度0.1V,检测底液为5.0 mM K3[Fe(CN)6]和0.1 M KCl。每次使用后,将电极浸在乙醇/乙酸溶液中,用磁力搅拌器洗脱30min,去除聚合膜中吸附的模板分子,以便重复使用。根据己知磺胺二甲氧嘧啶的浓度与方波伏安峰电流的差值绘制标准曲线,检出限为2.8×10-7 mol/L,线性范围为6×10-7mol/L-9×10-6 mol/L。

Claims (5)

1.一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法,其特征在于这种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法是以石墨烯修饰的玻碳电极作为基底,在亚甲基蓝和磺胺二甲氧嘧啶的磷酸盐缓冲溶液中电聚合形成分子印迹聚合物制得,这种方法制备出的分子印迹电化学传感器对磺胺二甲氧嘧啶的检出限为2.8×10-7 mol/L,线性范围为6×10-7mol/L-9×10-6 mol/L;制备方法包括以下步骤:(一)将玻碳电极依次用0.5μm和0.05μm Al2O3粉在麂皮上抛光后,于乙醇和去离子水中分别超声洗涤数分钟,然后将电极于K3Fe(CN)6中扫描,得到可逆的循环伏安峰(峰电流比为1:1,峰电位差小于70 mV),证明电极处理好;然后将分散好的石墨烯悬浮液滴加到玻碳电极上,形成均匀分散层,自然晾干,得到石墨烯修饰的电极;(二)将亚甲基蓝和磺胺二甲氧嘧啶溶解在磷酸盐缓冲溶液中,混合均匀,亚甲基蓝和磺胺二甲氧嘧啶的摩尔比为1:1-6:1;(三)将前面混合好的溶液作为电解质溶液,把石墨烯修饰的电极置于混合溶液中,采用循环伏安法进行电化学聚合形成分子印迹聚合物,用乙醇/乙酸溶液洗去磺胺二甲氧嘧啶模板分子,得到磺胺二甲氧嘧啶的分子印迹电化学传感器。
2.根据权利要求1所述的磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法,其特征在于,所述的制备方法中电解质溶液为磷酸盐缓冲溶液,pH为3-6。
3.根据权利要求1所述的磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法,其特征在于,所述的制备方法中滴加到玻碳电极上的石墨烯悬浮液的量为5μL-15μL。
4.根据权利要求1所述的磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法,其特征在于,所述的制备方法中电化学聚合方法为循环伏安法,电压范围:0.2V-1.2V,扫描速率:30mV/s-100mV/s,扫描周期: 20圈-50圈。
5.根据权利要求1所述的磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法,其特征在于,所述的制备方法中乙醇/乙酸溶液浓度为1:1-8:1。
CN202010626017.3A 2020-07-02 2020-07-02 一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法 Pending CN111551602A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010626017.3A CN111551602A (zh) 2020-07-02 2020-07-02 一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010626017.3A CN111551602A (zh) 2020-07-02 2020-07-02 一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法

Publications (1)

Publication Number Publication Date
CN111551602A true CN111551602A (zh) 2020-08-18

Family

ID=72000963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010626017.3A Pending CN111551602A (zh) 2020-07-02 2020-07-02 一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法

Country Status (1)

Country Link
CN (1) CN111551602A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899795A (zh) * 2021-09-23 2022-01-07 中国水产科学研究院黄海水产研究所 基于分子印迹的电化学传感器、制备方法以及磺胺二甲嘧啶的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872689A (zh) * 2017-01-10 2017-06-20 宁波大学 一种快速测定磺胺类抗生素残留的仿生酶联免疫检测方法
CN108982620A (zh) * 2018-08-14 2018-12-11 云南省烟草质量监督检测站 一种快速测定烟草中苯霜灵残留含量的方法
CN109342516A (zh) * 2018-11-05 2019-02-15 济南大学 一种磺胺类药物分子电化学传感器的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872689A (zh) * 2017-01-10 2017-06-20 宁波大学 一种快速测定磺胺类抗生素残留的仿生酶联免疫检测方法
CN108982620A (zh) * 2018-08-14 2018-12-11 云南省烟草质量监督检测站 一种快速测定烟草中苯霜灵残留含量的方法
CN109342516A (zh) * 2018-11-05 2019-02-15 济南大学 一种磺胺类药物分子电化学传感器的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGMEI ZHANG等: "Molecularly Imprinted Sensor based on o-phenylenediamine for Electrochemical Detection of Sulfamethoxazole", 《INT. J. ELECTROCHEM. SCI.》 *
邵义娟 等: "基于门控制效应的氯霉素分子印迹传感器研制", 《桂林理工大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899795A (zh) * 2021-09-23 2022-01-07 中国水产科学研究院黄海水产研究所 基于分子印迹的电化学传感器、制备方法以及磺胺二甲嘧啶的检测方法

Similar Documents

Publication Publication Date Title
CN103604849B (zh) 一种同时检测多巴胺、抗坏血酸和尿酸的电化学传感器
CN107490611B (zh) 一种手性mof-聚苯胺杂化材料及其制备方法和应用
CN105784822A (zh) 一种基于壳聚糖-石墨烯/金纳米颗粒复合膜的电化学dna传感器的制备及应用的方法
Li et al. A microbial electrode based on the co-electrodeposition of carboxyl graphene and Au nanoparticles for BOD rapid detection
CN109613083A (zh) 纳米金-原卟啉铜(ⅱ)高灵敏检测h2o2电化学传感器的构建及其应用
CN102392069B (zh) 基于功能化纳米金电极的快速检测菌落总数的方法
CN111551602A (zh) 一种磺胺二甲氧嘧啶分子印迹电化学传感器的制备方法
CN112114011B (zh) 一种磁控高通量电化学传感器及制备方法和应用
CN111551622A (zh) 一种高灵敏度的磺胺嘧啶分子印迹电化学传感器的制备方法
CN105866211A (zh) 一种氨苄西林分子印迹传感器的制备方法及应用
CN109254049A (zh) 一种氨苄西林传感器的制备方法及应用
Li et al. Sensitive voltammetric sensor for evaluation of trans-resveratrol levels in wines based on poly (L-lysine) modified electrode
CN113406179A (zh) 一种用于检测重金属铅离子的碳基电化学传感器及其应用
CN111551599A (zh) 一种磺胺甲恶唑分子印迹电化学传感器的制备方法
CN109254048B (zh) 一种基于钴镍氧化物的硝基呋喃类抗生素传感器的制备方法及应用
CN109254046A (zh) 一种硝基呋喃类抗生素传感器的制备方法及应用
CN111879833A (zh) 一种异丙甲草胺分子印迹电化学传感器的制备方法
CN106645324B (zh) 一种基于硼酸基团的印迹分子聚合物及分子印迹电化学传感器
CN111257383B (zh) 4-氯酚分子印迹电化学传感器及其制备方法
CN111551600A (zh) 一种烯酰吗啉分子印迹电化学传感器的制备方法
CN211122646U (zh) 一种基于分子印迹聚合膜修饰电极的l-谷氨酸检测传感器
CN111551601A (zh) 一种啶虫脒分子印迹电化学传感器的制备方法
CN109254050B (zh) 一种瘦肉精电致化学发光传感器及其制备方法
CN112345608A (zh) 一种基于叠氮炔环加成和电化学调控原子转移自由基聚合的卡那霉素电化学检测方法
CN111595915A (zh) 一种己烯雌酚分子印迹电化学传感器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200818