CN111539050A - 一种双向非均质饱和土中实体桩水平振动分析方法 - Google Patents

一种双向非均质饱和土中实体桩水平振动分析方法 Download PDF

Info

Publication number
CN111539050A
CN111539050A CN202010093557.XA CN202010093557A CN111539050A CN 111539050 A CN111539050 A CN 111539050A CN 202010093557 A CN202010093557 A CN 202010093557A CN 111539050 A CN111539050 A CN 111539050A
Authority
CN
China
Prior art keywords
pile
soil
section
around
circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010093557.XA
Other languages
English (en)
Other versions
CN111539050B (zh
Inventor
崔春义
梁志孟
辛宇
许民泽
王本龙
孟坤
姚怡亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202010093557.XA priority Critical patent/CN111539050B/zh
Publication of CN111539050A publication Critical patent/CN111539050A/zh
Application granted granted Critical
Publication of CN111539050B publication Critical patent/CN111539050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

本发明公开了一种双向非均质饱和土中实体桩水平振动分析方法,将桩‑土耦合振动模型沿纵向划分,同时假定实体桩均为均质圆形弹性体,采用Bernoulli‑Euler梁模型;假定桩周土体分为内部区域和外部区域,内部区域划分n圈,且各圈桩周土体为均质、各向同性的两相饱和弹性介质;桩周土层上表面是自由边界,无正应力和剪应力,桩底端处采用固定支承;桩土模型振动时为小变形。根据Biot两相介质波动理论建立饱和土体水平运动方程、根据Euler‑Bernoulli杆件理论,建立桩身水平振动方程,使用拉普拉斯变换,求解上述控制方程,以双向非均质饱和土中实体桩水平振动进行分析。本发明较单相介质更加接近实际工况,能够简单处理比较复杂的实际工程问题。

Description

一种双向非均质饱和土中实体桩水平振动分析方法
技术领域
本发明涉及土建领域,更具体地,涉及一种双向非均质饱和土中实体桩水平振动分析方法。
背景技术
在打桩过程中,工程分析人员需要对桩体的振动进行分析,以确定打桩时桩体和桩周土壤的工作状态,由于桩体和桩周土壤是紧密接触的,因此其水平振动相互耦合,成为土-桩水平耦合振动问题。进一步的,当土体为饱和土体时,就需要分析饱和土-桩水平耦合振动问题。
目前关于饱和土-桩水平耦合振动问题的研究均基于均质饱和土介质模型开展,该模型把桩周土体视为均质或纵向成层性,而在天然土体因自然沉积导致的纵向不均匀性,以及桩基施工过程中由于挤土、松弛及其他因素的影响,在桩周不同范围内,土体的性质和参数都会发生不同程度的改变,即径向非均质效应。此时采用双向非均质饱和土体模型更为合适。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,提供一种双向非均质饱和土中实体桩水平振动分析方法,采用Biot多孔介质理论模型模拟双向非均质饱和土体模型,采用Bernoulli-Euler梁模型模拟桩体。
为实现上述目的,本发明的技术方案如下:
一种双向非均质饱和土中实体桩水平振动分析方法,其特征在于,包括以下步骤:
S1:引入如下假定条件,以建立双向非均质饱和土中实体桩水平振动分析模型,所述假定条件包括:
将桩-土耦合振动模型沿纵向划分成m段;
假定实体桩为均质、圆形等截面弹性体,采用Bernoulli-Euler梁模型模拟每一层实体桩桩身,桩底端处采用固定支承;
假定桩周土体分为内部区域和外部区域,内部区域划分n圈,且各圈桩周土体为均质、各向同性的两相饱和弹性介质;
桩-土耦合振动模型振动为小变形,桩-土界面完全接触,无脱开和滑移现象,且桩土接触面不透水,各圈土界面两侧的位移连续、应力平衡;
忽略土骨架及土中流体的竖向位移;
S2:根据Biot两相介质波动理论建立饱和土体水平运动方程:
Figure RE-GDA0002553185030000021
Figure RE-GDA0002553185030000022
Figure RE-GDA0002553185030000023
Figure RE-GDA0002553185030000024
并根据Euler-Bernoulli杆件理论,建立桩身水平振动方程:
Figure RE-GDA0002553185030000025
同时根据步骤S1中的假定条件,建立桩-土耦合振动模型边界条件,所述桩 -土耦合振动模型边界条件至少包括下述边界条件:
实体桩桩顶边界条件
Figure RE-GDA0002553185030000031
实体桩桩底边界条件
Figure RE-GDA0002553185030000032
桩身分层界面连续条件
Figure RE-GDA0002553185030000033
桩土完全接触条件
Figure RE-GDA0002553185030000034
桩土界面不透水条件
Figure RE-GDA0002553185030000035
土体分圈界面连续条件
Figure RE-GDA0002553185030000036
在饱和土体水平运动方程、桩身水平振动方程和桩-土模型边界条件中,定义以下符号:
本案采用柱坐标系,r为轴向坐标,轴向坐标零点位于桩截面圆心,θ为幅角坐标,z为纵向坐标,纵向坐标零点位于自由表面,自地面向下为正,t为时间坐标;
m是桩-土耦合振动模型的纵向划分段数,i是自顶部至底层对应的各段数编号,且i=1~m,底层与地面接触的段编号为1;第i段高度为hi,桩-土耦合振动模型的总厚度为H;
n是桩-土耦合振动模型中桩周土内部区域的水平划分圈数,每一圈均为圆环,j=1~n是层数编号,自模型中心向外,与实体桩接触处的圈编号为1;第j 圈的内径为rij,第j圈的外径为ri(j+1),内部区域的内径为ri1,外径为ri(n+1);g为重力加速度;
第i段桩中,桩身半径为ri1
Figure RE-GDA0002553185030000041
为惯性矩,
Figure RE-GDA0002553185030000042
为横截面积、
Figure RE-GDA0002553185030000043
为弹性模量,
Figure RE-GDA0002553185030000044
为单位长度质量;Fi为第i段桩周土体对第i段桩身的横向作用力;
Figure RE-GDA0002553185030000045
为第i段第j圈的桩周土的土骨架径向位移,
Figure RE-GDA0002553185030000046
为第i段第j圈的桩周土的土骨架环向位移,
Figure RE-GDA0002553185030000047
为第i段第j圈的桩周土的流体相对于土骨架的径向位移,
Figure RE-GDA0002553185030000048
为第i段第j圈的桩周土的流体相对于土骨架的环向位移;
Figure RE-GDA0002553185030000049
是第i段第j圈的桩周土的流体密度,
Figure RE-GDA00025531850300000410
是第i段第j圈的桩周土的土颗粒密度,nij是第i段第j圈的桩周土的孔隙率;ρij为饱和土体密度,且
Figure RE-GDA00025531850300000411
mij是第i段第j圈的桩周土的土骨架的粘性耦合系数,且 mij=ρij/nij;bij是第i段第j圈的桩周土的流体的粘性耦合系数,且
Figure RE-GDA00025531850300000412
Figure RE-GDA00025531850300000413
是第i段第j圈的桩周土的土体达西定律渗透系数;
λij是第i段第j圈的桩周土的拉梅常数,Gij是第i段第j圈的桩周土的土体剪切模量,υs是桩周土的泊松比;
Figure RE-GDA00025531850300000414
是第i段第j圈的桩周土的土颗粒的体积压缩模量,
Figure RE-GDA00025531850300000415
是第i段第j圈的桩周土的流体的体积压缩模量,
Figure RE-GDA00025531850300000416
是第i段第j圈的桩周土的土骨架的体积压缩模量,且
Figure RE-GDA00025531850300000417
αij是表征土颗粒及流体压缩性的常数,且
Figure RE-GDA00025531850300000418
Mij是表征土颗粒及流体压缩性的另一常数,
Figure RE-GDA00025531850300000419
Figure RE-GDA00025531850300000420
其中,
Figure RE-GDA00025531850300000421
S3:基于桩-土系统边界条件,使用Laplace变换求解步骤S2中所述的饱和土体水平运动方程,得到桩周土对桩身的作用力表达式后,再求解桩身水平振动方程以得到实体桩桩顶水平动力阻抗,进而完成对双向非均质饱和土中实体桩水平振动进行分析。
进一步的,所述步骤S3中,求解包括以下步骤
步骤S31:对第i段第j圈的桩周土的土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移引入势函数,对应的表达式为:
Figure RE-GDA0002553185030000051
步骤S32:将第i段第j圈的桩周土的土骨架与流体的势函数进行Laplace 变换,得到Laplace变换后的饱和土体水平运动方程,所述饱和土体水平运动方程为:
Figure RE-GDA0002553185030000052
步骤S33:通过分离变量法求解得到土骨架与流体的势函数,所述势函数的表达式为
Figure RE-GDA0002553185030000053
步骤S34:利用土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移与势函数之间的关系,求得Laplace变换后的土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移,对应的表达式分别为
Figure RE-GDA0002553185030000054
Figure RE-GDA0002553185030000055
Figure RE-GDA0002553185030000056
Figure RE-GDA0002553185030000061
步骤S35:根据土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移,求得径向应力
Figure RE-GDA0002553185030000062
和切向应力
Figure RE-GDA0002553185030000063
对应的计算公式分别为:
Figure RE-GDA0002553185030000064
Figure RE-GDA0002553185030000065
步骤S36:使用边界条件,求解方程组RΛ=U以获得Λ对应的各个待定系数值,其中
Figure RE-GDA0002553185030000066
Figure RE-GDA0002553185030000067
R=[Rij](6n+3)×(6n+3);获得上述待定系数值后,带入步骤S34和S35的表达式中,以获得得到土骨架径向位移、土骨架环向位移、流体径向位移、流体环向位移、径向应力和切向应力;
步骤S37:确定第i段处桩周土对第i段桩身的横向作用力,对应的表达式为
Figure RE-GDA0002553185030000071
步骤S38:基于所述i段处桩周土对第i段桩身的横向作用力,确定经Laplace 变换后的所述桩身水平振动方程,对应的表达式为
Figure RE-GDA0002553185030000072
其位移通解为
Figure RE-GDA0002553185030000073
转角通解为
Figure RE-GDA0002553185030000074
弯矩通解为
Figure RE-GDA0002553185030000075
剪力通解为
Figure RE-GDA0002553185030000076
步骤S39:基于所述边界条件,求解方程组NX=Ω以确定X中对应的待定系数;其中
Figure RE-GDA0002553185030000077
Figure RE-GDA0002553185030000078
N=[Nij]4m×4m,其具体的表达式为N12=η1,N14=η1,
Figure RE-GDA0002553185030000079
则当i=1,2,...,m-1
N(4i-1)×(4i-3)=cos(ηihi) N(4i-1)×(4i-2)=sin(ηihi) N(4i-1)×(4i-1)=cosh(ηihi)
N(4i-1)×(4i)=cosh(ηihi) N(4i-1)×(4i+1)=-1 N(4i-1)×(4i+3)=-1
N(4i)×(4i-3)=-ηisin(ηihi) N(4i)×(4i-2)=ηicos(ηihi) N(4i)×(4i-1)=ηisinh(ηihi)
N(4i)×(4i)=ηicosh(ηihi) N(4i)×(4i+2)=-ηi N(4i)×(4i+4)=-ηi
Figure RE-GDA0002553185030000081
Figure RE-GDA0002553185030000082
Figure RE-GDA0002553185030000083
Figure RE-GDA0002553185030000084
Figure RE-GDA0002553185030000085
则当i=m时,
N(4m-1)×(4m-3)=cos(ηmhm) N(4m-1)×(4m-2)=sin(ηmhm)
N(4m-1)×(4m-1)=cosh(ηmhm) N(4m-1)×(4m)=sinh(ηmhm)
N(4m)×(4m-3)=-ηmsin(ηmhm) N(4m)×(4m-2)=ηmcos(ηmhm)
N(4m)×(4m-1)=ηmsinh(ηmhm) N(4m)×(4m)=ηmcosh(ηmhm)
需要说明的是:矩阵N=[Nij]4m×4m中未说明的元素均为0;
步骤S310:获取实体桩桩顶水平动力阻抗,所述实体桩桩顶水平动力阻抗的表达式为
Figure RE-GDA0002553185030000086
其中Kr为桩顶动刚度,Ki为桩顶动阻尼;
在以上步骤中,涉及以下符号定义
本案采用柱坐标系,r为轴向坐标,轴向坐标零点位于桩截面圆心,θ为幅角坐标,z为纵向坐标,纵向坐标零点位于自由表面,自地面向下为正,t为时间坐标;
m是桩-土耦合振动模型的纵向划分段数,i是自顶部至底层对应的各段数编号,且i=1~m,底层与地面接触的段编号为1;第i段高度为hi,桩-土耦合振动模型的总厚度为H;
n是桩-土耦合振动模型中桩周土内部区域的水平划分圈数,每一圈均为圆环,j=1~n是层数编号,自模型中心向外,与实体桩接触处的圈编号为1;第j 圈的内径为rij,第j圈的外径为ri(j+1),内部区域的内径为ri1,外径为ri(n+1);g为重力加速度;
第i段桩中,桩身半径为ri1
Figure RE-GDA0002553185030000091
为惯性矩,
Figure RE-GDA0002553185030000092
为横截面积、
Figure RE-GDA0002553185030000093
为弹性模量,
Figure RE-GDA0002553185030000094
为单位长度质量;Fi为第i段桩周土体对第i段桩身的横向作用力;
Figure RE-GDA0002553185030000095
为第i段桩桩身水平位移,
Figure RE-GDA0002553185030000096
Figure RE-GDA0002553185030000097
的Laplace变换形式;
Figure RE-GDA0002553185030000098
为第i段第j圈的桩周土的土骨架径向位移,
Figure RE-GDA0002553185030000099
为第i段第j圈的桩周土的土骨架环向位移,
Figure RE-GDA00025531850300000910
为第i段第j圈的桩周土的流体相对于土骨架的径向位移,
Figure RE-GDA00025531850300000911
为第i段第j圈的桩周土的流体相对于土骨架的环向位移;
Figure RE-GDA00025531850300000912
为第i段第j圈的桩周土的土骨架位移势函数,
Figure RE-GDA00025531850300000913
为第i段第j圈的桩周土的土骨架位移的另一势函数,
Figure RE-GDA00025531850300000914
为第i段第j圈的桩周土的流体相对于土骨架的位移的势函数,
Figure RE-GDA00025531850300000915
为第i段第j圈的桩周土的流体相对于土骨架的位移的另一势函数;
Figure RE-GDA00025531850300000916
Figure RE-GDA00025531850300000917
的Laplace变换形式,
Figure RE-GDA00025531850300000918
Figure RE-GDA00025531850300000919
的Laplace变换形式,
Figure RE-GDA00025531850300000920
Figure RE-GDA00025531850300000921
的 Laplace变换形式,
Figure RE-GDA00025531850300000922
Figure RE-GDA00025531850300000923
的Laplace变换形式;
Figure RE-GDA00025531850300000924
是第i段第j圈的桩周土的流体密度,
Figure RE-GDA00025531850300000925
是第i段第j圈的桩周土的土颗粒密度,nij是第i段第j圈的桩周土的孔隙率;ρij为饱和土体密度,且
Figure RE-GDA00025531850300000926
mij是第i段第j圈的桩周土的土骨架的粘性耦合系数,且 mij=ρij/nij;bij是第i段第j圈的桩周土的流体的粘性耦合系数,且
Figure RE-GDA00025531850300000927
Figure RE-GDA00025531850300000928
是第i段第j圈的桩周土的土体达西定律渗透系数;
λij是第i段第j圈的桩周土的拉梅常数,Gij是第i段第j圈的桩周土的土体剪切模量,υs是桩周土的泊松比;
Figure RE-GDA00025531850300000929
是第i段第j圈的桩周土的土颗粒的体积压缩模量,
Figure RE-GDA00025531850300000930
是第i段第j圈的桩周土的流体的体积压缩模量,
Figure RE-GDA00025531850300000931
是第i段第j圈的桩周土的土骨架的体积压缩模量,且
Figure RE-GDA00025531850300000932
αij是表征土颗粒及流体压缩性的常数,且
Figure RE-GDA00025531850300000933
Mij是表征土颗粒及流体压缩性的另一常数,
Figure RE-GDA00025531850300000934
Figure RE-GDA00025531850300000935
Figure RE-GDA00025531850300000936
为h1阶第一类变形贝塞尔函数,
Figure RE-GDA00025531850300000937
阶第二类变形贝塞尔函数;
[·]′表示方括号中表达式对r取一次导数;[·]″表示方括号中表达式对r取二次导数;
文中各个算符和中间变量的含义是:
Figure RE-GDA00025531850300000938
Figure RE-GDA0002553185030000101
Figure RE-GDA0002553185030000102
Figure RE-GDA0002553185030000103
Figure RE-GDA0002553185030000104
Figure RE-GDA0002553185030000105
Figure RE-GDA0002553185030000106
Figure RE-GDA0002553185030000107
Figure RE-GDA0002553185030000108
进一步的,所述步骤S1中,所述假定条件还包括给定第i段第j圈土体的剪切模量,对应的公式为
Figure RE-GDA0002553185030000109
其中,
Figure RE-GDA00025531850300001010
分别为第i层第1圈桩周土土体剪切模量;
Figure RE-GDA00025531850300001011
分别为第i层内外区域界面处土体的剪切模量;
f(r)是土体剪切模量变化的函数,对应的表达为
Figure RE-GDA00025531850300001012
其中,GRi=Gi1/Gi(n+1)为影响区域土体模量比,q为正的指数,ri(n+1)是第i层段中内外部区域界面处的半径,rij是第i层段第j圈层土体内边界半径,ri1是第i 层段第1圈层土体内边界半径,bi是第i层段内部区域的径向宽度;
第i层第j圈土体剪切模量取该圈层内、外边界处剪切模量的平均值:
Figure RE-GDA0002553185030000111
式中,ri(j-1)和rij分别表示第j圈层的内、外半径。
从上述技术方案可以看出,本发明公开的双向非均质饱和土中实体桩水平振动分析方法,采用双向非均质饱和土体模型对天然土体和受扰动土体的的径向非均质效应进行模拟,采用Biot多孔介质模型考虑了固液两相之间的耦合作用,较单相介质更加接近实际工况,能够简单处理比较复杂的实际工程问题,可为更为复杂的饱和土-桩动力相互作用问题的研究提供理论指导和参考作用。
附图说明
图1为实施例中本发明所述方法对应的核心步骤流程图;
图2为实施例中本发明所述方法对应的桩-土耦合振动模型示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
需要说明的是,在下述的具体实施方式中,在详述本发明的实施方式时,为了清楚地表示本发明的结构以便于说明,特对附图中的结构不依照一般比例绘图,并进行了局部放大、变形及简化处理,因此,应避免以此作为对本发明的限定来加以理解。
为了解决现有技术所存在的问题,本申请在考虑径向非均质效应的基础上,考虑了桩周土体因自然沉积导致的纵向不均匀性,建立了同时考虑桩周土体纵、径双向非均质效应下实体桩水平振动模型。基于上述设计目的,如图1-2所示的双向非均质饱和土中实体桩水平振动分析方法,其特征在于,包括以下步骤:
S1:引入如下假定条件,以建立双向非均质饱和土中实体桩水平振动分析模型,所述假定条件包括:
将桩-土耦合振动模型沿纵向划分成m段以综合考虑所述模型的纵向成层性 (下文参数含有均i每个参数中下标均代表考虑了纵向第i层的含义);
假定实体桩为均质、圆形等截面弹性体,采用Bernoulli-Euler梁模型模拟每一层实体桩桩身,桩底端处采用固定支承;
假定桩周土体分为内部区域和外部区域,内部区域划分n圈,且各圈桩周土体为均质、各向同性的两相饱和弹性介质;
桩-土耦合振动模型振动为小变形,桩-土界面完全接触,无脱开和滑移现象,且桩土接触面不透水,各圈土界面两侧的位移连续、应力平衡;
忽略土骨架及土中流体的竖向位移;
S2:根据Biot两相介质波动理论建立饱和土体水平运动方程:
Figure RE-GDA0002553185030000121
Figure RE-GDA0002553185030000122
Figure RE-GDA0002553185030000123
Figure RE-GDA0002553185030000124
并根据Euler-Bernoulli杆件理论,建立桩身水平振动方程:
Figure RE-GDA0002553185030000125
同时根据步骤S1中的假定条件,建立桩-土耦合振动模型边界条件,所述桩 -土耦合振动模型边界条件至少包括下述边界条件(为了适用本模型而创建了桩身分层界面连续条件):
实体桩桩顶边界条件
Figure RE-GDA0002553185030000131
实体桩桩底边界条件
Figure RE-GDA0002553185030000132
桩身分层界面连续条件
Figure RE-GDA0002553185030000133
桩土完全接触条件
Figure RE-GDA0002553185030000134
桩土界面不透水条件
Figure RE-GDA0002553185030000135
土体分圈界面连续条件
Figure RE-GDA0002553185030000136
在饱和土体水平运动方程、桩身水平振动方程和桩-土模型边界条件中,定义以下符号:
本案采用柱坐标系,r为轴向坐标,轴向坐标零点位于桩截面圆心,θ为幅角坐标,z为纵向坐标,纵向坐标零点位于自由表面,自地面向下为正,t为时间坐标;
m是桩-土耦合振动模型的纵向划分段数,i是自顶部至底层对应的各段数编号,且i=1~m,底层与地面接触的段编号为1;第i段高度为hi,桩-土耦合振动模型的总厚度为H;
n是桩-土耦合振动模型中桩周土内部区域的水平划分圈数,每一圈均为圆环,j=1~n是层数编号,自模型中心向外,与实体桩接触处的圈编号为1;第j 圈的内径为rij,第j圈的外径为ri(j+1),内部区域的内径为ri1,外径为ri(n+1);g为重力加速度;
第i段桩中,桩身半径为ri1
Figure RE-GDA0002553185030000141
为惯性矩,
Figure RE-GDA0002553185030000142
为横截面积、
Figure RE-GDA0002553185030000143
为弹性模量,
Figure RE-GDA0002553185030000144
为单位长度质量;Fi为第i段桩周土体对第i段桩身的横向作用力;
Figure RE-GDA0002553185030000145
为第i段第j圈的桩周土的土骨架径向位移,
Figure RE-GDA0002553185030000146
为第i段第j圈的桩周土的土骨架环向位移,
Figure RE-GDA0002553185030000147
为第i段第j圈的桩周土的流体相对于土骨架的径向位移,
Figure RE-GDA0002553185030000148
为第i段第j圈的桩周土的流体相对于土骨架的环向位移;
Figure RE-GDA0002553185030000149
是第i段第j圈的桩周土的流体密度,
Figure RE-GDA00025531850300001410
是第i段第j圈的桩周土的土颗粒密度,nij是第i段第j圈的桩周土的孔隙率;ρij为饱和土体密度,且
Figure RE-GDA00025531850300001411
mij是第i段第j圈的桩周土的土骨架的粘性耦合系数,且 mij=ρij/nij;bij是第i段第j圈的桩周土的流体的粘性耦合系数,且
Figure RE-GDA00025531850300001412
Figure RE-GDA00025531850300001413
是第i段第j圈的桩周土的土体达西定律渗透系数;
λij是第i段第j圈的桩周土的拉梅常数,Gij是第i段第j圈的桩周土的土体剪切模量,υs是桩周土的泊松比;
Figure RE-GDA00025531850300001414
是第i段第j圈的桩周土的土颗粒的体积压缩模量,
Figure RE-GDA00025531850300001415
是第i段第j圈的桩周土的流体的体积压缩模量,
Figure RE-GDA00025531850300001416
是第i段第j圈的桩周土的土骨架的体积压缩模量,且
Figure RE-GDA00025531850300001417
αij是表征土颗粒及流体压缩性的常数,且
Figure RE-GDA00025531850300001418
Mij是表征土颗粒及流体压缩性的另一常数,
Figure RE-GDA00025531850300001419
Figure RE-GDA00025531850300001420
其中,
Figure RE-GDA00025531850300001421
S3:基于桩-土系统边界条件,使用Laplace变换求解步骤S2中所述的饱和土体水平运动方程,得到桩周土对桩身的作用力表达式后,再求解桩身水平振动方程以得到实体桩桩顶水平动力阻抗,进而完成对双向非均质饱和土中实体桩水平振动进行分析。
在其中一个具体的实施例中,所述步骤S3中,求解包括以下步骤
步骤S31:对第i段第j圈的桩周土的土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移引入势函数,对应的表达式为:
Figure RE-GDA0002553185030000151
步骤S32:将第i段第j圈的桩周土的土骨架与流体的势函数进行Laplace 变换,得到Laplace变换后的饱和土体水平运动方程,所述饱和土体水平运动方程为:
Figure RE-GDA0002553185030000152
步骤S33:通过分离变量法求解得到土骨架与流体的势函数,所述势函数的表达式为
Figure RE-GDA0002553185030000153
步骤S34:利用土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移与势函数之间的关系,求得Laplace变换后的土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移,对应的表达式分别为
Figure RE-GDA0002553185030000154
Figure RE-GDA0002553185030000155
Figure RE-GDA0002553185030000156
Figure RE-GDA0002553185030000161
步骤S35:根据土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移,求得径向应力
Figure RE-GDA0002553185030000162
和切向应力
Figure RE-GDA0002553185030000163
对应的计算公式分别为:
Figure RE-GDA0002553185030000164
Figure RE-GDA0002553185030000165
步骤S36:使用边界条件,求解方程组RΛ=U以获得Λ对应的各个待定系数值,其中
Figure RE-GDA0002553185030000166
Figure RE-GDA0002553185030000167
R=[Rij](6n+3)×(6n+3);获得上述待定系数值后,带入步骤S34和S35的表达式中,以获得得到土骨架径向位移、土骨架环向位移、流体径向位移、流体环向位移、径向应力和切向应力;
步骤S37:确定第i段处桩周土对第i段桩身的横向作用力,对应的表达式为
Figure RE-GDA0002553185030000171
步骤S38:基于所述i段处桩周土对第i段桩身的横向作用力,确定经Laplace 变换后的所述桩身水平振动方程,对应的表达式为
Figure RE-GDA0002553185030000172
其位移通解为
Figure RE-GDA0002553185030000173
转角通解为
Figure RE-GDA0002553185030000174
弯矩通解为
Figure RE-GDA0002553185030000175
剪力通解为
Figure RE-GDA0002553185030000176
步骤S39:基于所述边界条件,求解方程组NX=Ω以确定X中对应的待定系数;其中
Figure RE-GDA0002553185030000177
Figure RE-GDA0002553185030000178
N=[Nij]4m×4m,其具体的表达式为N12=η1,N14=η1,
Figure RE-GDA0002553185030000179
则当i=1,2,...,m-1
N(4i-1)×(4i-3)=cos(ηihi) N(4i-1)×(4i-2)=sin(ηihi) N(4i-1)×(4i-1)=cosh(ηihi)
N(4i-1)×(4i)=cosh(ηihi) N(4i-1)×(4i+1)=-1 N(4i-1)×(4i+3)=-1
N(4i)×(4i-3)=-ηisin(ηihi) N(4i)×(4i-2)=ηicos(ηihi) N(4i)×(4i-1)=ηisinh(ηihi)
N(4i)×(4i)=ηicosh(ηihi) N(4i)×(4i+2)=-ηi N(4i)×(4i+4)=-ηi
Figure RE-GDA0002553185030000181
Figure RE-GDA0002553185030000182
Figure RE-GDA0002553185030000183
Figure RE-GDA0002553185030000184
Figure RE-GDA0002553185030000185
则当i=m时,
N(4m-1)×(4m-3)=cos(ηmhm) N(4m-1)×(4m-2)=sin(ηmhm)
N(4m-1)×(4m-1)=cosh(ηmhm) N(4m-1)×(4m)=sinh(ηmhm)
N(4m)×(4m-3)=-ηmsin(ηmhm) N(4m)×(4m-2)=ηmcos(ηmhm)
N(4m)×(4m-1)=ηmsinh(ηmhm) N(4m)×(4m)=ηmcosh(ηmhm)
需要说明的是:矩阵N=[Nij]4m×4m中未说明的元素均为0;
步骤S310:获取实体桩桩顶水平动力阻抗,所述实体桩桩顶水平动力阻抗的表达式为
Figure RE-GDA0002553185030000186
其中Kr为桩顶动刚度,Ki为桩顶动阻尼;
在以上步骤中,涉及以下符号定义
本案采用柱坐标系,r为轴向坐标,轴向坐标零点位于桩截面圆心,θ为幅角坐标,z为纵向坐标,纵向坐标零点位于自由表面,自地面向下为正,t为时间坐标;
m是桩-土耦合振动模型的纵向划分段数,i是自顶部至底层对应的各段数编号,且i=1~m,底层与地面接触的段编号为1;第i段高度为hi,桩-土耦合振动模型的总厚度为H;
n是桩-土耦合振动模型中桩周土内部区域的水平划分圈数,每一圈均为圆环,j=1~n是层数编号,自模型中心向外,与实体桩接触处的圈编号为1;第j 圈的内径为rij,第j圈的外径为ri(j+1),内部区域的内径为ri1,外径为ri(n+1);g为重力加速度;
第i段桩中,桩身半径为ri1
Figure RE-GDA0002553185030000191
为惯性矩,
Figure RE-GDA0002553185030000192
为横截面积、
Figure RE-GDA0002553185030000193
为弹性模量,
Figure RE-GDA0002553185030000194
为单位长度质量;Fi为第i段桩周土体对第i段桩身的横向作用力;
Figure RE-GDA0002553185030000195
为第i段桩桩身水平位移,
Figure RE-GDA0002553185030000196
Figure RE-GDA0002553185030000197
的Laplace变换形式;
Figure RE-GDA0002553185030000198
为第i段第j圈的桩周土的土骨架径向位移,
Figure RE-GDA0002553185030000199
为第i段第j圈的桩周土的土骨架环向位移,
Figure RE-GDA00025531850300001910
为第i段第j圈的桩周土的流体相对于土骨架的径向位移,
Figure RE-GDA00025531850300001911
为第i段第j圈的桩周土的流体相对于土骨架的环向位移;
Figure RE-GDA00025531850300001912
为第i段第j圈的桩周土的土骨架位移势函数,
Figure RE-GDA00025531850300001913
为第i段第j圈的桩周土的土骨架位移的另一势函数,
Figure RE-GDA00025531850300001914
为第i段第j圈的桩周土的流体相对于土骨架的位移的势函数,
Figure RE-GDA00025531850300001915
为第i段第j圈的桩周土的流体相对于土骨架的位移的另一势函数;
Figure RE-GDA00025531850300001916
Figure RE-GDA00025531850300001917
的Laplace变换形式,
Figure RE-GDA00025531850300001918
Figure RE-GDA00025531850300001919
的Laplace变换形式,
Figure RE-GDA00025531850300001920
Figure RE-GDA00025531850300001921
的 Laplace变换形式,
Figure RE-GDA00025531850300001922
Figure RE-GDA00025531850300001923
的Laplace变换形式;
Figure RE-GDA00025531850300001924
是第i段第j圈的桩周土的流体密度,
Figure RE-GDA00025531850300001925
是第i段第j圈的桩周土的土颗粒密度,nij是第i段第j圈的桩周土的孔隙率;ρij为饱和土体密度,且
Figure RE-GDA00025531850300001926
mij是第i段第j圈的桩周土的土骨架的粘性耦合系数,且 mij=ρij/nij;bij是第i段第j圈的桩周土的流体的粘性耦合系数,且
Figure RE-GDA00025531850300001927
Figure RE-GDA00025531850300001928
是第i段第j圈的桩周土的土体达西定律渗透系数;
λij是第i段第j圈的桩周土的拉梅常数,Gij是第i段第j圈的桩周土的土体剪切模量,υs是桩周土的泊松比;
Figure RE-GDA00025531850300001929
是第i段第j圈的桩周土的土颗粒的体积压缩模量,
Figure RE-GDA00025531850300001930
是第i段第j圈的桩周土的流体的体积压缩模量,
Figure RE-GDA00025531850300001931
是第i段第j圈的桩周土的土骨架的体积压缩模量,且
Figure RE-GDA00025531850300001932
αij是表征土颗粒及流体压缩性的常数,且
Figure RE-GDA00025531850300001933
Mij是表征土颗粒及流体压缩性的另一常数,
Figure RE-GDA00025531850300001934
Figure RE-GDA00025531850300001935
Figure RE-GDA00025531850300001936
为h1阶第一类变形贝塞尔函数,
Figure RE-GDA00025531850300001937
阶第二类变形贝塞尔函数;
[·]′表示方括号中表达式对r取一次导数;[·]″表示方括号中表达式对r取二次导数;
文中各个算符和中间变量的含义是:
Figure RE-GDA00025531850300001938
Figure RE-GDA0002553185030000201
Figure RE-GDA0002553185030000202
Figure RE-GDA0002553185030000203
Figure RE-GDA0002553185030000204
Figure RE-GDA0002553185030000205
Figure RE-GDA0002553185030000206
Figure RE-GDA0002553185030000207
Figure RE-GDA0002553185030000208
在其中一个具体的实施例中,所述步骤S1中,所述假定条件还包括给定第 i段第j圈土体的剪切模量,对应的公式为
Figure RE-GDA0002553185030000209
其中,
Figure RE-GDA00025531850300002010
分别为第i层第1圈桩周土土体剪切模量;
Figure RE-GDA00025531850300002011
分别为第i层内外区域界面处土体的剪切模量;
f(r)是土体剪切模量变化的函数,对应的表达为
Figure RE-GDA00025531850300002012
其中,GRi=Gi1/Gi(n+1)为影响区域土体模量比,q为正的指数,ri(n+1)是第i层段中内外部区域界面处的半径,rij是第i层段第j圈层土体内边界半径,ri1是第i 层段第1圈层土体内边界半径,bi是第i层段内部区域的径向宽度;
第i层第j圈土体剪切模量取该圈层内、外边界处剪切模量的平均值:
Figure RE-GDA0002553185030000211
式中,ri(j-1)和rij分别表示第j圈层的内、外半径。
综上所述,本发明基于平面应变条件下双向非均质饱和土体模型的实体桩水平振动分析方法,其采用的平面应变假定和Biot多孔介质模型建立的双向非均质饱和土体动力控制方程,一方面Biot多孔介质模型考虑了固液两相之间的耦合作用,较单相介质更加接近实际工况,另一方面,双向非均质性能考虑桩周土体因自然沉积导致的纵向不均匀性以及径向施工扰动效应,且平面应变假定能够简单处理比较复杂的实际工程问题,可为更为复杂的饱和土-桩动力相互作用问题提供理论指导和参考作用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种双向非均质饱和土中实体桩水平振动分析方法,其特征在于,包括以下步骤:
S1:引入如下假定条件,以建立双向非均质饱和土中实体桩水平振动分析模型,所述假定条件包括:
将桩-土耦合振动模型沿纵向划分成m段;
假定实体桩为均质、圆形等截面弹性体,采用Bernoulli-Euler梁模型模拟每一层实体桩桩身,桩底端处采用固定支承;
假定桩周土体分为内部区域和外部区域,内部区域划分n圈,且各圈桩周土体为均质、各向同性的两相饱和弹性介质;
桩-土耦合振动模型振动为小变形,桩-土界面完全接触,无脱开和滑移现象,且桩土接触面不透水,各圈土界面两侧的位移连续、应力平衡;
忽略土骨架及土中流体的竖向位移;
S2:根据Biot两相介质波动理论建立饱和土体水平运动方程:
Figure RE-FDA0002553185020000011
Figure RE-FDA0002553185020000012
Figure RE-FDA0002553185020000013
Figure RE-FDA0002553185020000014
并根据Euler-Bernoulli杆件理论,建立桩身水平振动方程:
Figure RE-FDA0002553185020000015
同时根据步骤S1中的假定条件,建立桩-土耦合振动模型边界条件,所述桩-土耦合振动模型边界条件至少包括下述边界条件:
实体桩桩顶边界条件
Figure RE-FDA0002553185020000021
实体桩桩底边界条件
Figure RE-FDA0002553185020000022
桩身分层界面连续条件
Figure RE-FDA0002553185020000023
桩土完全接触条件
Figure RE-FDA0002553185020000024
桩土界面不透水条件
Figure RE-FDA0002553185020000025
土体分圈界面连续条件
Figure RE-FDA0002553185020000026
在饱和土体水平运动方程、桩身水平振动方程和桩-土模型边界条件中,定义以下符号:
本案采用柱坐标系,r为轴向坐标,轴向坐标零点位于桩截面圆心,θ为幅角坐标,z为纵向坐标,纵向坐标零点位于自由表面,自地面向下为正,t为时间坐标;
m是桩-土耦合振动模型的纵向划分段数,i是自顶部至底层对应的各段数编号,且i=1~m,底层与地面接触的段编号为1;第i段高度为hi,桩-土耦合振动模型的总厚度为H;
n是桩-土耦合振动模型中桩周土内部区域的水平划分圈数,每一圈均为圆环,j=1~n是层数编号,自模型中心向外,与实体桩接触处的圈编号为1;第j 圈的内径为rij,第j圈的外径为ri(j+1),内部区域的内径为ri1,外径为ri(n+1);g为重力加速度;
第i段桩中,桩身半径为ri1
Figure RE-FDA0002553185020000031
为惯性矩,
Figure RE-FDA0002553185020000032
为横截面积、
Figure RE-FDA0002553185020000033
为弹性模量,
Figure RE-FDA0002553185020000034
为单位长度质量;Fi为第i段桩周土体对第i段桩身的横向作用力;
Figure RE-FDA0002553185020000035
为第i段第j圈的桩周土的土骨架径向位移,
Figure RE-FDA0002553185020000036
为第i段第j圈的桩周土的土骨架环向位移,
Figure RE-FDA0002553185020000037
为第i段第j圈的桩周土的流体相对于土骨架的径向位移,
Figure RE-FDA0002553185020000038
为第i段第j圈的桩周土的流体相对于土骨架的环向位移;
Figure RE-FDA0002553185020000039
是第i段第j圈的桩周土的流体密度,
Figure RE-FDA00025531850200000310
是第i段第j圈的桩周土的土颗粒密度,nij是第i段第j圈的桩周土的孔隙率;ρij为饱和土体密度,且
Figure RE-FDA00025531850200000311
mij是第i段第j圈的桩周土的土骨架的粘性耦合系数,且mij=ρij/nij;bij是第i段第j圈的桩周土的流体的粘性耦合系数,且
Figure RE-FDA00025531850200000312
Figure RE-FDA00025531850200000313
是第i段第j圈的桩周土的土体达西定律渗透系数;
λij是第i段第j圈的桩周土的拉梅常数,Gij是第i段第j圈的桩周土的土体剪切模量,υs是桩周土的泊松比;
Figure RE-FDA00025531850200000314
是第i段第j圈的桩周土的土颗粒的体积压缩模量,
Figure RE-FDA00025531850200000315
是第i段第j圈的桩周土的流体的体积压缩模量,
Figure RE-FDA00025531850200000316
是第i段第j圈的桩周土的土骨架的体积压缩模量,且
Figure RE-FDA00025531850200000317
αij是表征土颗粒及流体压缩性的常数,且
Figure RE-FDA00025531850200000318
Mij是表征土颗粒及流体压缩性的另一常数,
Figure RE-FDA00025531850200000319
Figure RE-FDA00025531850200000320
其中,
Figure RE-FDA00025531850200000321
S3:基于桩-土耦合振动模型边界条件,使用Laplace变换求解步骤S2中所述的饱和土体水平运动方程,得到桩周土对桩身的作用力表达式后,再求解桩身水平振动方程以得到实体桩桩顶水平动力阻抗,进而完成对双向非均质饱和土中实体桩水平振动进行分析。
2.根据权利要求1所述的分析方法,其特征在于,所述步骤S3中,求解包括以下步骤
步骤S31:对第i段第j圈的桩周土的土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移引入势函数,对应的表达式为:
Figure RE-FDA0002553185020000041
步骤S32:将第i段第j圈的桩周土的土骨架与流体的势函数进行Laplace变换,得到Laplace变换后的饱和土体水平运动方程,所述饱和土体水平运动方程为:
Figure RE-FDA0002553185020000042
步骤S33:通过分离变量法求解得到土骨架与流体的势函数,所述势函数的表达式为
Figure RE-FDA0002553185020000043
步骤S34:利用土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移与势函数之间的关系,求得Laplace变换后的土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移,对应的表达式分别为
Figure RE-FDA0002553185020000044
Figure RE-FDA0002553185020000045
Figure RE-FDA0002553185020000046
Figure RE-FDA0002553185020000051
步骤S35:根据土骨架径向位移、土骨架环向位移、流体径向位移和流体环向位移,求得径向应力
Figure RE-FDA0002553185020000052
和切向应力
Figure RE-FDA0002553185020000053
对应的计算公式分别为:
Figure RE-FDA0002553185020000054
Figure RE-FDA0002553185020000055
步骤S36:使用边界条件,求解方程组RΛ=U以获得Λ对应的各个待定系数值,其中
Figure RE-FDA0002553185020000056
Figure RE-FDA0002553185020000057
R=[Rij](6n+3)×(6n+3);获得上述待定系数值后,带入步骤S34和S35的表达式中,以获得得到土骨架径向位移、土骨架环向位移、流体径向位移、流体环向位移、径向应力和切向应力;
步骤S37:确定第i段处桩周土对第i段桩身的横向作用力,对应的表达式为
Figure RE-FDA0002553185020000061
步骤S38:基于所述i段处桩周土对第i段桩身的横向作用力,确定经Laplace变换后的所述桩身水平振动方程,对应的表达式为
Figure RE-FDA0002553185020000062
其位移通解为
Figure RE-FDA0002553185020000063
转角通解为
Figure RE-FDA0002553185020000064
弯矩通解为
Figure RE-FDA0002553185020000065
剪力通解为
Figure RE-FDA0002553185020000066
步骤S39:基于所述边界条件,求解方程组NX=Ω以确定X中对应的待定系数;其中
Figure RE-FDA0002553185020000067
Figure RE-FDA0002553185020000068
N=[Nij]4m×4m,其具体的表达式为N12=η1,N14=η1,
Figure RE-FDA0002553185020000069
则当i=1,2,...,m-1
N(4i-1)×(4i-3)=cos(ηihi) N(4i-1)×(4i-2)=sin(ηihi) N(4i-1)×(4i-1)=cosh(ηihi)
N(4i-1)×(4i)=cosh(ηihi) N(4i-1)×(4i+1)=-1 N(4i-1)×(4i+3)=-1
N(4i)×(4i-3)=-ηisin(ηihi) N(4i)×(4i-2)=ηicos(ηihi) N(4i)×(4i-1)=ηisinh(ηihi)
N(4i)×(4i)=ηicosh(ηihi) N(4i)×(4i+2)=-ηi N(4i)×(4i+4)=-ηi
Figure RE-FDA0002553185020000071
Figure RE-FDA0002553185020000072
Figure RE-FDA0002553185020000073
Figure RE-FDA0002553185020000074
Figure RE-FDA0002553185020000075
则当i=m时,
N(4m-1)×(4m-3)=cos(ηmhm) N(4m-1)×(4m-2)=sin(ηmhm)
N(4m-1)×(4m-1)=cosh(ηmhm) N(4m-1)×(4m)=sinh(ηmhm)
N(4m)×(4m-3)=-ηmsin(ηmhm) N(4m)×(4m-2)=ηmcos(ηmhm)
N(4m)×(4m-1)=ηmsinh(ηmhm) N(4m)×(4m)=ηmcosh(ηmhm)
需要说明的是:矩阵N=[Nij]4m×4m中未说明的元素均为0;
步骤S310:获取实体桩桩顶水平动力阻抗,所述实体桩桩顶水平动力阻抗的表达式为
Figure RE-FDA0002553185020000076
其中Kr为桩顶动刚度,Ki为桩顶动阻尼;
在以上步骤中,涉及以下符号定义
本案采用柱坐标系,r为轴向坐标,轴向坐标零点位于桩截面圆心,θ为幅角坐标,z为纵向坐标,纵向坐标零点位于自由表面,自地面向下为正,t为时间坐标;
m是桩-土耦合振动模型的纵向划分段数,i是自顶部至底层对应的各段数编号,且i=1~m,底层与地面接触的段编号为1;第i段高度为hi,桩-土耦合振动模型的总厚度为H;
n是桩-土耦合振动模型中桩周土内部区域的水平划分圈数,每一圈均为圆环,j=1~n是层数编号,自模型中心向外,与实体桩接触处的圈编号为1;第j圈的内径为rij,第j圈的外径为ri(j+1),内部区域的内径为ri1,外径为ri(n+1);g为重力加速度;
第i段桩中,桩身半径为ri1
Figure RE-FDA0002553185020000081
为惯性矩,
Figure RE-FDA0002553185020000082
为横截面积、
Figure RE-FDA0002553185020000083
为弹性模量,
Figure RE-FDA0002553185020000084
为单位长度质量;Fi为第i段桩周土体对第i段桩身的横向作用力;
Figure RE-FDA0002553185020000085
为第i段桩桩身水平位移,
Figure RE-FDA0002553185020000086
Figure RE-FDA0002553185020000087
的Laplace变换形式;
Figure RE-FDA0002553185020000088
为第i段第j圈的桩周土的土骨架径向位移,
Figure RE-FDA0002553185020000089
为第i段第j圈的桩周土的土骨架环向位移,
Figure RE-FDA00025531850200000810
为第i段第j圈的桩周土的流体相对于土骨架的径向位移,
Figure RE-FDA00025531850200000811
为第i段第j圈的桩周土的流体相对于土骨架的环向位移;
Figure RE-FDA00025531850200000812
为第i段第j圈的桩周土的土骨架位移势函数,
Figure RE-FDA00025531850200000813
为第i段第j圈的桩周土的土骨架位移的另一势函数,
Figure RE-FDA00025531850200000814
为第i段第j圈的桩周土的流体相对于土骨架的位移的势函数,
Figure RE-FDA00025531850200000815
为第i段第j圈的桩周土的流体相对于土骨架的位移的另一势函数;
Figure RE-FDA00025531850200000816
Figure RE-FDA00025531850200000817
的Laplace变换形式,
Figure RE-FDA00025531850200000818
Figure RE-FDA00025531850200000819
的Laplace变换形式,
Figure RE-FDA00025531850200000820
Figure RE-FDA00025531850200000821
的Laplace变换形式,
Figure RE-FDA00025531850200000822
Figure RE-FDA00025531850200000823
的Laplace变换形式;
Figure RE-FDA00025531850200000824
是第i段第j圈的桩周土的流体密度,
Figure RE-FDA00025531850200000825
是第i段第j圈的桩周土的土颗粒密度,nij是第i段第j圈的桩周土的孔隙率;ρij为饱和土体密度,且
Figure RE-FDA00025531850200000826
mij是第i段第j圈的桩周土的土骨架的粘性耦合系数,且mij=ρij/nij;bij是第i段第j圈的桩周土的流体的粘性耦合系数,且
Figure RE-FDA00025531850200000827
Figure RE-FDA00025531850200000828
是第i段第j圈的桩周土的土体达西定律渗透系数;
λij是第i段第j圈的桩周土的拉梅常数,Gij是第i段第j圈的桩周土的土体剪切模量,υs是桩周土的泊松比;
Figure RE-FDA00025531850200000829
是第i段第j圈的桩周土的土颗粒的体积压缩模量,
Figure RE-FDA00025531850200000830
是第i段第j圈的桩周土的流体的体积压缩模量,
Figure RE-FDA00025531850200000831
是第i段第j圈的桩周土的土骨架的体积压缩模量,且
Figure RE-FDA00025531850200000832
αij是表征土颗粒及流体压缩性的常数,且
Figure RE-FDA00025531850200000833
Mij是表征土颗粒及流体压缩性的另一常数,
Figure RE-FDA00025531850200000834
Figure RE-FDA00025531850200000835
Figure RE-FDA00025531850200000836
为h1阶第一类变形贝塞尔函数,
Figure RE-FDA00025531850200000837
阶第二类变形贝塞尔函数;
[·]′表示方括号中表达式对r取一次导数;[·]″表示方括号中表达式对r取二次导数;
文中各个算符和中间变量的含义是:
Figure RE-FDA00025531850200000838
Figure RE-FDA0002553185020000091
Figure RE-FDA0002553185020000092
Figure RE-FDA0002553185020000093
Figure RE-FDA0002553185020000094
Figure RE-FDA0002553185020000095
Figure RE-FDA0002553185020000096
Figure RE-FDA0002553185020000097
Figure RE-FDA0002553185020000098
3.根据权利要求1所述的分析方法,其特征在于,所述步骤S1中,所述假定条件还包括给定第i段第j圈土体的剪切模量,对应的公式为
Figure RE-FDA0002553185020000099
其中,
Figure RE-FDA00025531850200000910
分别为第i层第1圈桩周土土体剪切模量;
Figure RE-FDA00025531850200000911
分别为第i层内外区域界面处土体的剪切模量;
f(r)是土体剪切模量变化的函数,对应的表达为
Figure RE-FDA00025531850200000912
其中,GRi=Gi1/Gi(n+1)为影响区域土体模量比,q为正的指数,ri(n+1)是第i层段中内外部区域界面处的半径,rij是第i层段第j圈层土体内边界半径,ri1是第i层段第1圈层土体内边界半径,bi是第i层段内部区域的径向宽度;
第i层第j圈土体剪切模量取该圈层内、外边界处剪切模量的平均值:
Figure RE-FDA0002553185020000101
式中,ri(j-1)和rij分别表示第j圈层的内、外半径。
CN202010093557.XA 2020-02-14 2020-02-14 一种双向非均质饱和土中实体桩水平振动分析方法 Active CN111539050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010093557.XA CN111539050B (zh) 2020-02-14 2020-02-14 一种双向非均质饱和土中实体桩水平振动分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010093557.XA CN111539050B (zh) 2020-02-14 2020-02-14 一种双向非均质饱和土中实体桩水平振动分析方法

Publications (2)

Publication Number Publication Date
CN111539050A true CN111539050A (zh) 2020-08-14
CN111539050B CN111539050B (zh) 2022-09-06

Family

ID=71972942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010093557.XA Active CN111539050B (zh) 2020-02-14 2020-02-14 一种双向非均质饱和土中实体桩水平振动分析方法

Country Status (1)

Country Link
CN (1) CN111539050B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112287444A (zh) * 2020-10-30 2021-01-29 大连海事大学 一种层状Pasternak地基中相邻桩基水平动力相互作用分析方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147631A (zh) * 2019-05-29 2019-08-20 大连海事大学 一种径向非均质饱和土中实体桩水平振动分析方法
CN110162908A (zh) * 2019-05-29 2019-08-23 大连海事大学 一种径向非均质饱和土中管桩水平振动分析方法
CN110222400A (zh) * 2019-05-29 2019-09-10 大连海事大学 一种横向惯性效应双向非均质土中管桩纵向振动分析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147631A (zh) * 2019-05-29 2019-08-20 大连海事大学 一种径向非均质饱和土中实体桩水平振动分析方法
CN110162908A (zh) * 2019-05-29 2019-08-23 大连海事大学 一种径向非均质饱和土中管桩水平振动分析方法
CN110222400A (zh) * 2019-05-29 2019-09-10 大连海事大学 一种横向惯性效应双向非均质土中管桩纵向振动分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘林超等: "基于多孔介质理论的非均质饱和土中单桩的纵向振动", 《河南大学学报(自然科学版)》 *
崔春义等: "非均质土中不同缺陷管桩纵向振动特性研究", 《振动工程学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112287444A (zh) * 2020-10-30 2021-01-29 大连海事大学 一种层状Pasternak地基中相邻桩基水平动力相互作用分析方法及系统
CN112287444B (zh) * 2020-10-30 2023-09-08 大连海事大学 一种层状Pasternak地基中相邻桩基水平动力相互作用分析方法及系统

Also Published As

Publication number Publication date
CN111539050B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN110147631B (zh) 一种径向非均质饱和土中实体桩水平振动分析方法
CN111310264B (zh) 一种基于Pasternak地基模型层状土中单桩水平动力响应分析方法
CN109446637B (zh) 一种基于层状饱和虚土桩的浮承桩纵向振动分析方法
CN110162908B (zh) 一种径向非均质饱和土中管桩水平振动分析方法
CN108446460B (zh) 一种径向非均质、纵向成层土体中桩基纵向振动分析方法
Zhang et al. Development of a combined VHM loading apparatus for a geotechnical drum centrifuge
CN102269676A (zh) 一种高精度土工单剪仪及使用方法
CN108416130A (zh) 轴对称径向非均质土中大直径桩纵向振动分析方法
CN111539050B (zh) 一种双向非均质饱和土中实体桩水平振动分析方法
Ueda et al. Centrifuge model tests and effective stress analyses of offshore wind turbine systems with a suction bucket foundation subject to seismic load
CN110147630B (zh) 一种横向惯性效应径向非均质土中管桩纵向振动分析方法
CN110598262A (zh) 直桩垂直阻抗的计算方法
CN110222400B (zh) 一种横向惯性效应双向非均质土中管桩纵向振动分析方法
Fattah et al. Vertical and horizontal displacement of model piles in dry soil with horizontal excitation
CN109214123B (zh) 一种基于饱和虚土桩模型的浮承桩纵向振动分析方法
CN109359390A (zh) 一种轴对称双向非均质黏性阻尼土中桩基扭转振动分析方法
CN111310321B (zh) 一种基于Pasternak地基模型的层状土中单桩水平振动分析方法
CN112733244A (zh) 一种双向非均质饱和土中楔形桩水平振动分析方法
CN110219324B (zh) 一种成层土中非完全黏结的摩擦桩纵向振动分析方法
CN113960170A (zh) 一种地震p波作用下饱和土中管桩的运动响应的确定方法
Manandhar et al. Evaluation of skin friction of tapered piles in sands based on Cavity Expansion Theory
CN109372035B (zh) 一种基于饱和虚土桩的浮承桩纵向振动分析方法
CN110093951B (zh) 一种基于虚土桩模型的摩擦桩纵向振动分析方法
CN107063673A (zh) 隔震结构动力特性水平推移测试装置及其测试方法
CN108776173B (zh) 一种岩土结构动力安全设计不排水分析适应性判别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant