CN109372035B - 一种基于饱和虚土桩的浮承桩纵向振动分析方法 - Google Patents

一种基于饱和虚土桩的浮承桩纵向振动分析方法 Download PDF

Info

Publication number
CN109372035B
CN109372035B CN201811244367.2A CN201811244367A CN109372035B CN 109372035 B CN109372035 B CN 109372035B CN 201811244367 A CN201811244367 A CN 201811244367A CN 109372035 B CN109372035 B CN 109372035B
Authority
CN
China
Prior art keywords
pile
soil
solid
virtual
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811244367.2A
Other languages
English (en)
Other versions
CN109372035A (zh
Inventor
崔春义
孟坤
许成顺
梁志孟
刘海龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201811244367.2A priority Critical patent/CN109372035B/zh
Publication of CN109372035A publication Critical patent/CN109372035A/zh
Application granted granted Critical
Publication of CN109372035B publication Critical patent/CN109372035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

本发明公开了一种基于饱和虚土桩的浮承桩纵向振动分析方法,采用饱和虚土桩模型,能同时考虑桩周、桩底土体饱和特性及桩底土体的波动效应,能适用饱和土中浮承桩纵向振动问题,三维饱和土体模型可同时考虑桩周、桩底土体三维波动效应,可为桩基动力检测提供理论指导和参考作用。

Description

一种基于饱和虚土桩的浮承桩纵向振动分析方法
技术领域
本发明涉及一种浮承桩纵向振动分析方法,更具体地,涉及一种基于饱和虚土桩的浮承桩纵向振动分析方法。
背景技术
按照桩与基岩的关系,当桩底端未达到基岩,即桩浮在桩周土中时,称为浮承桩。浮承桩的底端可视为弹性固定的,在静荷载或动荷载作用下,浮承桩底端可产生轴向位移。
目前,在针对浮承桩情况,已有研究大多将桩底土简化为Winkler模型,其弹簧和阻尼器系数通常按经验取值,无法合理考虑桩底土体波动效应的影响。为解决此类问题,一些学者将桩底土考虑为单相或饱和弹性半空间介质,计算得出桩底复阻抗函数表达式,并对浮承桩纵向振动特性进行了分析。然而,弹性半空间模型虽可考虑桩底土波动效应,但其只适用于基岩埋深较大情况,且无法考虑桩底土厚度及成层特性对桩基纵向振动特性的影响。
基于此点考虑,提出了桩与桩底土完全耦合单相介质虚土桩模型。而单相虚土桩模型均假定桩底土体为单相介质,未考虑桩底土饱和两相介质性,这对于饱和土中浮承桩基纵向振动问题并不适用。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,提供一种基于饱和虚土桩的浮承桩纵向振动分析方法,能同时考虑桩周、桩底土体饱和特性及桩底土体的波动效应。
为实现上述目的,本发明的技术方案如下:
一种基于饱和虚土桩的浮承桩纵向振动分析方法,包括以下步骤:
S1:建立简化的三维轴对称模型,将桩-土体耦合振动系统分为实体桩、位于实体桩正下方的虚土桩、位于实体桩周围的桩周土和位于虚土桩周围的桩底土,虚土桩的上表面与实体桩下表面相连,虚土桩的下表面与基岩相连;基岩上土层总厚度为H,桩底土层厚HSP
实体桩为均质等截面弹性体,虚土桩为等截面饱和两相介质,桩周土为均质、各向同性的饱和线粘弹性介质,桩底土为均质、各向同性、渗透性较差的饱和线粘弹性粘土;桩周土与桩底土层间相互作用简化为分布式弹簧和阻尼器;
桩-土体耦合振动系统满足线弹性和小变形条件,桩土界面完全接触,不存在滑移和脱离;
S2:建立桩底土、桩周土、虚土桩和实体桩的动力学控制方程和边界条件;
S3:使用势函数方法求解桩底土和桩周土的土体质点位移,并求解桩底土与虚土桩的界面剪应力、桩周土与实体桩的界面剪应力、求解谐和激振下虚土桩和实体桩的质点纵向振动;
S4:综合虚土桩、实体桩的边界条件、各层桩界面处位移连续、力的平衡条件,求得实体桩桩顶动力阻抗函数,以对浮承桩的纵向振动进行分析。
优选地,所述步骤S2中桩底土、桩周土、虚土桩和实体桩的动力学控制方程分别为
桩底土和桩周土的动力学控制方程为
Figure BDA0001840157450000021
Figure BDA0001840157450000022
Figure BDA0001840157450000023
Figure BDA0001840157450000024
虚土桩纵向振动控制方程为
Figure BDA0001840157450000025
实体桩纵向振动控制方程为
Figure BDA0001840157450000026
上述式中,
Figure BDA0001840157450000027
是柱坐标下的算子,桩顶作用谐和激振力
Figure BDA0001840157450000028
Figure BDA0001840157450000029
是激振力幅值,ω为激振圆频率,
式中的符号定义为
Figure BDA0001840157450000031
Figure BDA0001840157450000032
Figure BDA0001840157450000033
Figure BDA0001840157450000034
msp=Aspρ1
Figure BDA0001840157450000035
mp=Apρp
其中,r为径向坐标,z为纵向坐标;
Figure BDA0001840157450000036
为饱和土体密度,
Figure BDA0001840157450000037
和Nj分别为流体密度、土颗粒密度和孔隙率,
Figure BDA0001840157450000038
bj=ξj/kj为土骨架与孔隙流体的粘性耦合系数,ξj为流体粘滞系数,
Figure BDA0001840157450000039
为Biot定义的动力渗透系数,
Figure BDA00018401574500000310
为土体达西定律渗透系数,g为重力加速度,
Figure BDA00018401574500000311
Figure BDA00018401574500000312
Gj
Figure BDA00018401574500000313
λj和vj分别为土体复值剪切模量、土体剪切模量、阻尼比、拉梅常数和泊松比,
Figure BDA00018401574500000314
αj、Mj为土颗粒、流体的压缩性常数,
Figure BDA00018401574500000315
Figure BDA00018401574500000316
分别为土颗粒、流体及土骨架的体积压缩模量,
Figure BDA00018401574500000317
Figure BDA00018401574500000318
上述参数中,当j=1时对应桩底土参数,j=2时对应桩周土参数;
桩周土与桩底土相互作用的动刚度、阻尼系数分别为kS、cS
g为重力加速度;
usp为桩底土第j层的纵向位移;
HP,r0p分别是实体桩桩长、半径和密度;
EPP分别为实体桩弹性模量和密度。
优选地,所述步骤S2中桩底土、桩周土、虚土桩和实体桩的边界条件分别为
无穷远处桩底土和桩周土的径向位移为零,j=1,2
Figure BDA00018401574500000319
桩底土刚性基底竖向位移为零
Figure BDA00018401574500000320
桩周土自由表面正应力为零
Figure BDA00018401574500000321
桩底土顶部与桩周土底部有力连续条件
Figure BDA0001840157450000041
Figure BDA0001840157450000042
实体桩端部边界条件为
Figure BDA0001840157450000043
虚土桩底部位移条件为
usp|z=H=0
实体桩与虚土桩界面处位移连续、力平衡条件为
Figure BDA0001840157450000044
桩底土与虚土桩界面土骨架径向位移和液相相对于固相纵向位移为零
Figure BDA0001840157450000045
桩周土与实体桩界面不透水,界面土骨架径向位移为零,
Figure BDA0001840157450000046
虚土桩与桩底土耦合条件为为
Figure BDA0001840157450000047
实体桩与桩周土耦合条件
Figure BDA0001840157450000048
以上式子,E1,E2中分别为桩底土和桩周土的土骨架弹性模量,
Figure BDA0001840157450000049
Figure BDA00018401574500000410
优选地,所述步骤S3包括以下步骤:
S31:桩底土和桩周土的土体质点在谐和激振下作稳态振动,位移满足下式:
Figure BDA00018401574500000411
引入势函数
Figure BDA00018401574500000412
满足下列式子
Figure BDA0001840157450000051
j=1、2,上述公式中,当j=1时对应桩底土参数,j=2时对应桩周土参数;
S32:将用势函数表示的土体质点位移代入桩底土和桩周土的动力学控制方程,得到矩阵形式的桩底土和桩周土的动力学控制方程
Figure BDA0001840157450000052
Figure BDA0001840157450000053
在边界条件作用下,得到通解为
Figure BDA0001840157450000054
式中,Csj,Dsj(s=1~6)是待定常数,I0(hr),K0(hr)分别是零阶第一类、第二类虚宗量贝塞尔函数,hsj,gsj(s=1,2,3)是中间参数,满足下列关系,
Figure BDA0001840157450000055
Figure BDA0001840157450000056
Figure BDA0001840157450000057
Figure BDA0001840157450000058
Figure BDA0001840157450000059
Figure BDA00018401574500000510
q1j,q2j是土层相关参数
Figure BDA00018401574500000511
Figure BDA00018401574500000512
待定常数Csj,Dsj(s=1~6)的关系为
Figure BDA0001840157450000061
其中γsj(s=1~3)是另一组土层相关参数
Figure BDA0001840157450000062
Figure BDA0001840157450000063
Figure BDA0001840157450000064
S33:桩底土和桩周土的土体位移为
Figure BDA0001840157450000065
Figure BDA0001840157450000066
Figure BDA0001840157450000067
Figure BDA0001840157450000068
S34:待定常数Csj,Dsj(s=1,2,5)满足下式
Figure BDA0001840157450000069
C12+D12=0 C22+D22=0 C52-D52=0
gn1是超越方程
Figure BDA00018401574500000610
的前n个解,其中
Figure BDA00018401574500000611
gn2是超越方程
Figure BDA00018401574500000612
的前n个解,其中
Figure BDA00018401574500000613
S35:桩底土在虚土桩界面处的土骨架纵向振动位移、剪应力幅值为
Figure BDA00018401574500000614
Figure BDA00018401574500000615
其中,Cn1是反映桩土耦合作用的一系列待定系数,式中
Figure BDA00018401574500000616
Figure BDA00018401574500000617
Figure BDA00018401574500000618
Figure BDA00018401574500000619
S36:第k层桩周土在实体桩界面处的土骨架纵向振动位移、剪应力幅值表达式
Figure BDA0001840157450000071
Figure BDA0001840157450000072
其中,Cn2是反映桩土耦合作用的一系列待定系数,式中
Figure BDA0001840157450000073
Figure BDA0001840157450000074
Figure BDA0001840157450000075
Figure BDA0001840157450000076
S37:谐和激振下虚土桩和实体桩的质点纵向振动位移满足方程
Figure BDA0001840157450000077
Figure BDA0001840157450000078
其中,
Figure BDA0001840157450000079
是虚土桩和实体桩的质点纵向振动位移响应幅值;
Figure BDA00018401574500000710
方程的解为
Figure BDA00018401574500000711
Figure BDA00018401574500000712
式中,Msp,Nsp,Mp,Np为待定常数,与待定系数Cnj的关系为
Cn1=MspEn1+NspFn1
Cn2=MpEn2+NpFn2
式中
Figure BDA00018401574500000713
Figure BDA00018401574500000714
Figure BDA0001840157450000081
Figure BDA0001840157450000082
Figure BDA0001840157450000083
Figure BDA0001840157450000084
Figure BDA0001840157450000085
Figure BDA0001840157450000086
Figure BDA0001840157450000087
Figure BDA0001840157450000088
Figure BDA0001840157450000089
Figure BDA00018401574500000810
优选地,所述步骤S4实体桩桩顶动力阻抗函数的计算方法为
S41:虚土桩桩顶处位移阻抗函数
Figure BDA00018401574500000811
其中
Figure BDA00018401574500000812
S42:实体桩桩顶位移阻抗函数
Figure BDA00018401574500000813
S45:实体桩桩顶复刚度为
Kd=Zp=Kr+iKi
式中Kr代表桩顶动刚度,Ki代表桩顶动阻尼;
S46:桩顶位移频率响应函数
Figure BDA0001840157450000091
桩顶速度频率响应函数为
Hv(iω)=iωHu(ω)
S47:单位脉冲激励作用下桩顶速度时域响应
Figure BDA0001840157450000092
优选地,在任意激振力p(t)作用下,桩顶时域速度响应为
g(t)=p(t)*h(t)=IFT[F(iω)×Hv(iω)]
优选地,在于半正弦脉冲激振力作用下,桩顶时域速度响应为
Figure BDA0001840157450000093
其中
Figure BDA0001840157450000094
T为脉冲宽度;
半正弦脉冲激振力作用下桩顶速度时域响应半解析解答为
Figure BDA0001840157450000095
从上述技术方案可以看出,本发明通过引入位于实体桩下方的虚土桩,并假定了虚土桩、实体桩以及围绕在其周围的桩周土和桩底土的特性,首先建立了控制方程和边界条件,并利用势函数方法进行求解了桩周土和桩底土的质点位移函数和桩体的质点位移函数,最后推导得到了桩顶的频响函数和时域函数。因此,本发明采用的饱和虚土桩模型能同时考虑桩周、桩底土体饱和特性及桩底土体的波动效应的优点,能合理考察桩底土厚度等因素对桩基纵向振动特性的影响,可为桩基动力检测提供理论指导和参考作用。
附图说明
图1是本发明桩-土体耦合振动系统划分示意图。
图中,1是桩底土,2是桩周土,3是实体桩,4是虚土桩,5是基岩。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
需要说明的是,在下述的具体实施方式中,在详述本发明的实施方式时,为了清楚地表示本发明的结构以便于说明,特对附图中的结构不依照一般比例绘图,并进行了局部放大、变形及简化处理,因此,应避免以此作为对本发明的限定来加以理解。
在以下本发明的具体实施方式中,请参阅图1,图1是本发明桩-土体耦合振动系统划分示意图。
一种基于层状饱和虚土桩的浮承桩纵向振动分析方法,包括以下步骤:
S1:建立简化的三维轴对称模型,将桩-土体耦合振动系统分为实体桩、位于实体桩正下方的虚土桩、位于实体桩周围的桩周土和位于虚土桩周围的桩底土,虚土桩的上表面与实体桩下表面相连,虚土桩的下表面与基岩相连;基岩上土层总厚度为H,桩底土层厚HSP
在针对浮承桩情况,已有研究大多将桩底土简化为Winkler模型,其弹簧和阻尼器系数通常按经验取值,无法合理考虑桩底土体波动效应的影响。为解决此类问题,一些学者将桩底土考虑为单相或饱和弹性半空间介质,计算得出桩底复阻抗函数表达式,并对浮承桩纵向振动特性进行了分析。然而,弹性半空间模型虽可考虑桩底土波动效应,但其只适用于基岩埋深较大情况,且无法考虑桩底土厚度及成层特性对桩基纵向振动特性的影响。
实体桩为均质等截面弹性体,虚土桩为等截面饱和两相介质,桩周土为均质、各向同性的饱和线粘弹性介质,桩底土为均质、各向同性、渗透性较差的饱和线粘弹性粘土;桩周土与桩底土层间相互作用简化为分布式弹簧和阻尼器。
桩-土体耦合振动系统满足线弹性和小变形条件,桩土界面完全接触,不存在滑移和脱离。
S2:建立桩底土、桩周土、虚土桩和实体桩的动力学控制方程和边界条件;
桩底土和桩周土的动力学控制方程为
Figure BDA0001840157450000101
Figure BDA0001840157450000102
Figure BDA0001840157450000103
Figure BDA0001840157450000104
虚土桩纵向振动控制方程为
Figure BDA0001840157450000111
实体桩纵向振动控制方程为
Figure BDA0001840157450000112
上述式中,
Figure BDA0001840157450000113
是柱坐标下的算子,桩顶作用谐和激振力
Figure BDA0001840157450000114
Figure BDA0001840157450000115
是激振力幅值,ω为激振圆频率,
式中的符号定义为
Figure BDA0001840157450000116
Figure BDA0001840157450000117
Figure BDA0001840157450000118
Figure BDA0001840157450000119
msp=Aspρ1
Figure BDA00018401574500001110
mp=Apρp
其中,r为径向坐标,z为纵向坐标;
Figure BDA00018401574500001111
为饱和土体密度,
Figure BDA00018401574500001112
Figure BDA00018401574500001113
和Nj分别为流体密度、土颗粒密度和孔隙率,
Figure BDA00018401574500001114
bj=ξj/kj为土骨架与孔隙流体的粘性耦合系数,ξj为流体粘滞系数,
Figure BDA00018401574500001115
为Biot定义的动力渗透系数,
Figure BDA00018401574500001116
为土体达西定律渗透系数,g为重力加速度,
Figure BDA00018401574500001117
Figure BDA00018401574500001118
Gj
Figure BDA00018401574500001119
λj和vj分别为土体复值剪切模量、土体剪切模量、阻尼比、拉梅常数和泊松比,
Figure BDA00018401574500001120
αj、Mj为土颗粒、流体的压缩性常数,
Figure BDA00018401574500001121
Figure BDA00018401574500001122
Figure BDA00018401574500001123
分别为土颗粒、流体及土骨架的体积压缩模量,
Figure BDA00018401574500001124
上述参数中,当j=1时对应桩底土参数,j=2时对应桩周土参数;
桩周土与桩底土相互作用的动刚度、阻尼系数分别为kS、cS
g为重力加速度;
usp为桩底土第j层的纵向位移;
HP,r0p分别是实体桩桩长、半径和密度;
EPP分别为实体桩弹性模量和密度。
桩底土、桩周土、虚土桩和实体桩的边界条件分别为
无穷远处桩底土和桩周土的径向位移为零,j=1,2
Figure BDA0001840157450000121
桩底土刚性基底竖向位移为零
Figure BDA0001840157450000122
桩周土自由表面正应力为零
Figure BDA0001840157450000123
桩底土顶部与桩周土底部有力连续条件
Figure BDA0001840157450000124
Figure BDA0001840157450000125
实体桩端部边界条件为
Figure BDA0001840157450000126
虚土桩底部位移条件为
usp|z=H=0
实体桩与虚土桩界面处位移连续、力平衡条件为
Figure BDA0001840157450000127
桩底土与虚土桩界面土骨架径向位移和液相相对于固相纵向位移为零
Figure BDA0001840157450000128
桩周土与实体桩界面不透水,界面土骨架径向位移为零,
Figure BDA0001840157450000129
虚土桩与桩底土耦合条件为为
Figure BDA00018401574500001210
实体桩与桩周土耦合条件
Figure BDA00018401574500001211
以上式子,E1,E2中分别为桩底土和桩周土的土骨架弹性模量,
Figure BDA0001840157450000131
Figure BDA0001840157450000132
S3:使用势函数方法求解桩底土和桩周土的土体质点位移,并求解桩底土与虚土桩的界面剪应力、桩周土与实体桩的界面剪应力、求解谐和激振下虚土桩和实体桩的质点纵向振动;
S31:桩底土和桩周土的土体质点在谐和激振下作稳态振动,位移满足下式:
Figure BDA0001840157450000133
引入势函数
Figure BDA0001840157450000134
满足下列式子
Figure BDA0001840157450000135
j=1、2,上述公式中,当j=1时对应桩底土参数,j=2时对应桩周土参数;
S32:将用势函数表示的土体质点位移代入桩底土和桩周土的动力学控制方程,得到矩阵形式的桩底土和桩周土的动力学控制方程
Figure BDA0001840157450000136
Figure BDA0001840157450000137
在边界条件作用下,得到通解为
Figure BDA0001840157450000138
式中,Csj,Dsj(s=1~6)是待定常数,I0(hr),K0(hr)分别是零阶第一类、第二类虚宗量贝塞尔函数,hsj,gsj(s=1,2,3)是中间参数,满足下列关系,
Figure BDA0001840157450000141
Figure BDA0001840157450000142
Figure BDA0001840157450000143
Figure BDA0001840157450000144
Figure BDA0001840157450000145
Figure BDA0001840157450000146
q1j,q2j是土层相关参数
Figure BDA0001840157450000147
Figure BDA0001840157450000148
待定常数Csj,Dsj(s=1~6)的关系为
Figure BDA0001840157450000149
其中γsj(s=1~3)是另一组土层相关参数
Figure BDA00018401574500001410
Figure BDA00018401574500001411
Figure BDA00018401574500001412
S33:桩底土和桩周土的土体位移为
Figure BDA00018401574500001413
Figure BDA00018401574500001414
Figure BDA00018401574500001415
Figure BDA00018401574500001416
S34:待定常数Csj,Dsj(s=1,2,5)满足下式
Figure BDA00018401574500001417
C12+D12=0 C22+D22=0 C52-D52=0
gn1是超越方程
Figure BDA00018401574500001418
的前n个解,其中
Figure BDA00018401574500001419
gn2是超越方程
Figure BDA0001840157450000151
的前n个解,其中
Figure BDA0001840157450000152
S35:桩底土在虚土桩界面处的土骨架纵向振动位移、剪应力幅值为
Figure BDA0001840157450000153
Figure BDA0001840157450000154
其中,Cn1是反映桩土耦合作用的一系列待定系数,式中
Figure BDA0001840157450000155
Figure BDA0001840157450000156
Figure BDA0001840157450000157
Figure BDA0001840157450000158
S36:第k层桩周土在实体桩界面处的土骨架纵向振动位移、剪应力幅值表达式
Figure BDA0001840157450000159
Figure BDA00018401574500001510
其中,Cn2是反映桩土耦合作用的一系列待定系数,式中
Figure BDA00018401574500001511
Figure BDA00018401574500001512
Figure BDA00018401574500001513
Figure BDA00018401574500001514
S37:谐和激振下虚土桩和实体桩的质点纵向振动位移满足方程
Figure BDA00018401574500001515
Figure BDA00018401574500001516
其中,
Figure BDA00018401574500001517
是虚土桩和实体桩的质点纵向振动位移响应幅值;
Figure BDA00018401574500001518
方程的解为
Figure BDA0001840157450000161
Figure BDA0001840157450000162
式中,Msp,Nsp,Mp,Np为待定常数,与待定系数Cnj的关系为
Cn1=MspEn1+NspFn1
Cn2=MpEn2+NpFn2
式中
Figure BDA0001840157450000163
Figure BDA0001840157450000164
Figure BDA0001840157450000165
Figure BDA0001840157450000166
Figure BDA0001840157450000167
Figure BDA0001840157450000168
Figure BDA0001840157450000169
Figure BDA00018401574500001610
Figure BDA00018401574500001611
Figure BDA00018401574500001612
Figure BDA00018401574500001613
Figure BDA00018401574500001614
S4:综合虚土桩、实体桩的边界条件、各层桩界面处位移连续、力的平衡条件,求得实体桩桩顶动力阻抗函数,以对浮承桩的纵向振动进行分析。
S41:虚土桩桩顶处位移阻抗函数
Figure BDA00018401574500001615
其中
Figure BDA0001840157450000171
S42:实体桩桩顶位移阻抗函数
Figure BDA0001840157450000172
S45:实体桩桩顶复刚度为
Kd=Zp=Kr+iKi
式中Kr代表桩顶动刚度,Ki代表桩顶动阻尼;
S46:桩顶位移频率响应函数
Figure BDA0001840157450000173
桩顶速度频率响应函数为
Hv(iω)=iωHu(ω)
S47:单位脉冲激励作用下桩顶速度时域响应
Figure BDA0001840157450000174
在任意激振力p(t)作用下,桩顶时域速度响应为
g(t)=p(t)*h(t)=IFT[F(iω)×Hv(iω)]
半正弦脉冲激振力作用下,桩顶时域速度响应为
Figure BDA0001840157450000175
其中
Figure BDA0001840157450000176
T为脉冲宽度;
半正弦脉冲激振力作用下桩顶速度时域响应半解析解答为
Figure BDA0001840157450000177
进一步的,基于桩顶速度导纳函数和桩顶速度时域响应函数,可以对桩身振动特性及桩身完整性进行评价。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种基于饱和虚土桩的浮承桩纵向振动分析方法,包括以下步骤:
S1:建立简化的三维轴对称模型,将桩-土体耦合振动系统分为实体桩、位于实体桩正下方的虚土桩、位于实体桩周围的桩周土和位于虚土桩周围的桩底土,虚土桩的上表面与实体桩下表面相连,虚土桩的下表面与基岩相连;基岩上土层总厚度为H,桩底土层厚HSP
实体桩为均质等截面弹性体,虚土桩为等截面饱和两相介质,桩周土为均质、各向同性的饱和线粘弹性介质,桩底土为均质、各向同性、渗透性较差的饱和线粘弹性粘土;桩周土与桩底土层间相互作用简化为分布式弹簧和阻尼器;
桩-土体耦合振动系统满足线弹性和小变形条件,桩土界面完全接触,不存在滑移和脱离;
S2:建立桩底土、桩周土、虚土桩和实体桩的动力学控制方程和边界条件;
S3:使用势函数方法求解桩底土和桩周土的土体质点位移,并求解桩底土与虚土桩的界面剪应力、桩周土与实体桩的界面剪应力、求解谐和激振下虚土桩和实体桩的质点纵向振动;
S4:综合虚土桩、实体桩的边界条件、各层桩界面处位移连续、力的平衡条件,求得实体桩桩顶动力阻抗函数,以对浮承桩的纵向振动进行分析。
2.根据权利要求1所述的一种基于饱和虚土桩的浮承桩纵向振动分析方法,其特征在于,所述步骤S2中桩底土、桩周土、虚土桩和实体桩的动力学控制方程分别为
桩底土和桩周土的动力学控制方程为
Figure FDA0002858749310000011
Figure FDA0002858749310000012
Figure FDA0002858749310000013
Figure FDA0002858749310000014
虚土桩纵向振动控制方程为
Figure FDA0002858749310000015
实体桩纵向振动控制方程为
Figure FDA0002858749310000021
上述式中,
Figure FDA0002858749310000022
是柱坐标下的算子,桩顶作用谐和激振力
Figure FDA0002858749310000023
Figure FDA0002858749310000024
是激振力幅值,ω为激振圆频率,
式中的符号定义为
Figure FDA0002858749310000025
Figure FDA0002858749310000026
Figure FDA0002858749310000027
Figure FDA0002858749310000028
msp=Aspρ1
Figure FDA0002858749310000029
mp=Apρp
其中,r为径向坐标,z为纵向坐标;
Figure FDA00028587493100000210
为饱和土体密度,
Figure FDA00028587493100000211
和Nj分别为流体密度、土颗粒密度和孔隙率,
Figure FDA00028587493100000212
bj=ξj/kj为土骨架与孔隙流体的粘性耦合系数,ξj为流体粘滞系数,
Figure FDA00028587493100000213
为Biot定义的动力渗透系数,
Figure FDA00028587493100000214
为土体达西定律渗透系数,g为重力加速度,
Figure FDA00028587493100000215
λj和vj分别为土体复值剪切模量、土体剪切模量、阻尼比、拉梅常数和泊松比,
Figure FDA00028587493100000216
αj、Mj为土颗粒、流体的压缩性常数,
Figure FDA00028587493100000217
Figure FDA00028587493100000218
分别为土颗粒、流体及土骨架的体积压缩模量,
Figure FDA00028587493100000219
Figure FDA00028587493100000220
上述参数中,当j=1时对应桩底土参数,j=2时对应桩周土参数;
桩周土与桩底土相互作用的动刚度、阻尼系数分别为kS、cS
g为重力加速度;
usp为桩底土第j层的纵向位移;
HP,r0p分别是实体桩桩长、半径和密度;
EPP分别为实体桩弹性模量和密度。
3.根据权利要求1所述的一种基于饱和虚土桩的浮承桩纵向振动分析方法,其特征在于,所述步骤S2中桩底土、桩周土、虚土桩和实体桩的边界条件分别为
无穷远处桩底土和桩周土的径向位移为零,j=1,2
Figure FDA0002858749310000031
桩底土刚性基底竖向位移为零
Figure FDA0002858749310000032
桩周土自由表面正应力为零
Figure FDA0002858749310000033
桩底土顶部与桩周土底部有力连续条件
Figure FDA0002858749310000034
Figure FDA0002858749310000035
实体桩端部边界条件为
Figure FDA0002858749310000036
虚土桩底部位移条件为
usp|z=H=0
实体桩与虚土桩界面处位移连续、力平衡条件为
Figure FDA0002858749310000037
桩底土与虚土桩界面土骨架径向位移和液相相对于固相纵向位移为零
Figure FDA0002858749310000038
桩周土与实体桩界面不透水,界面土骨架径向位移为零,
Figure FDA0002858749310000039
虚土桩与桩底土耦合条件为为
Figure FDA00028587493100000310
实体桩与桩周土耦合条件
Figure FDA00028587493100000311
以上式子,E1,E2中分别为桩底土和桩周土的土骨架弹性模量,
Figure FDA00028587493100000312
Figure FDA0002858749310000041
4.根据权利要求1所述的一种基于饱和虚土桩的浮承桩纵向振动分析方法,其特征在于,所述步骤S3包括以下步骤:
S31:桩底土和桩周土的土体质点在谐和激振下作稳态振动,位移满足下式:
Figure FDA0002858749310000042
引入势函数
Figure FDA0002858749310000043
满足下列式子
Figure FDA0002858749310000044
j=1、2,上述公式中,当j=1时对应桩底土参数,j=2时对应桩周土参数;
S32:将用势函数表示的土体质点位移代入桩底土和桩周土的动力学控制方程,得到矩阵形式的桩底土和桩周土的动力学控制方程
Figure FDA0002858749310000045
Figure FDA0002858749310000046
在边界条件作用下,得到通解为
Figure FDA0002858749310000047
式中,Csj,Dsj(s=1~6)是待定常数,I0(hr),K0(hr)分别是零阶第一类、第二类虚宗量贝塞尔函数,hsj,gsj(s=1,2,3)是中间参数,满足下列关系,
Figure FDA0002858749310000051
Figure FDA0002858749310000052
Figure FDA0002858749310000053
Figure FDA0002858749310000054
Figure FDA0002858749310000055
Figure FDA0002858749310000056
q1j,q2j是土层相关参数
Figure FDA0002858749310000057
Figure FDA0002858749310000058
待定常数Csj,Dsj(s=1~6)的关系为
Figure FDA0002858749310000059
其中γsj(s=1~3)是另一组土层相关参数
Figure FDA00028587493100000510
Figure FDA00028587493100000511
Figure FDA00028587493100000512
S33:桩底土和桩周土的土体位移为
Figure FDA00028587493100000513
Figure FDA00028587493100000514
Figure FDA00028587493100000515
Figure FDA00028587493100000516
S34:待定常数Csj,Dsj(s=1,2,5)满足下式
Figure FDA00028587493100000517
C12+D12=0 C22+D22=0 C52-D52=0
gn1是超越方程
Figure FDA00028587493100000518
的前n个解,其中
Figure FDA00028587493100000519
gn2是超越方程
Figure FDA0002858749310000061
的前n个解,其中
Figure FDA0002858749310000062
S35:桩底土在虚土桩界面处的土骨架纵向振动位移、剪应力幅值为
Figure FDA0002858749310000063
Figure FDA0002858749310000064
其中,Cn1是反映桩土耦合作用的一系列待定系数,式中
Figure FDA0002858749310000065
Figure FDA0002858749310000066
Figure FDA0002858749310000067
Figure FDA0002858749310000068
S36:第k层桩周土在实体桩界面处的土骨架纵向振动位移、剪应力幅值表达式
Figure FDA0002858749310000069
Figure FDA00028587493100000610
其中,Cn2是反映桩土耦合作用的一系列待定系数,式中
Figure FDA00028587493100000611
Figure FDA00028587493100000612
Figure FDA00028587493100000613
Figure FDA00028587493100000614
S37:谐和激振下虚土桩和实体桩的质点纵向振动位移满足方程
Figure FDA00028587493100000615
Figure FDA00028587493100000616
其中,
Figure FDA00028587493100000617
是虚土桩和实体桩的质点纵向振动位移响应幅值;
Figure FDA00028587493100000618
方程的解为
Figure FDA0002858749310000071
Figure FDA0002858749310000072
式中,Msp,Nsp,Mp,Np为待定常数,与待定系数Cnj的关系为Cn1=MspEn1+NspFn1
Cn2=MpEn2+NpFn2
式中
Figure FDA0002858749310000073
Figure FDA0002858749310000074
5.根据权利要求1所述的一种基于饱和虚土桩的浮承桩纵向振动分析方法,其特征在于,所述步骤S4实体桩桩顶动力阻抗函数的计算方法为
S41:虚土桩桩顶处位移阻抗函数
Figure FDA0002858749310000081
S42:实体桩桩顶位移阻抗函数
Figure FDA0002858749310000082
S45:实体桩桩顶复刚度为
Kd=Zp=Kr+iKi
式中Kr代表桩顶动刚度,Ki代表桩顶动阻尼;
S46:桩顶位移频率响应函数
Figure FDA0002858749310000083
桩顶速度频率响应函数为Hv(iω)=iωHu(ω)
S47:单位脉冲激励作用下桩顶速度时域响应
Figure FDA0002858749310000084
6.根据权利要求5所述的一种基于饱和虚土桩的浮承桩纵向振动分析方法,其特征在于在任意激振力p(t)作用下,桩顶时域速度响应为
g(t)=p(t)*h(t)=IFT[F(iω)×Hv(iω)];
其中,h(t)为单位脉冲激励作用下桩顶速度时域响应,Hv(iω)为桩顶速度频率响应函数;ω为激振圆频率;其中
Figure FDA0002858749310000085
T为脉冲宽度,F(iω)为p(t)的傅里叶变换。
7.根据权利要求1所述的一种基于饱和虚土桩的浮承桩纵向振动分析方法,其特征在于半正弦脉冲激振力作用下,桩顶时域速度响应为
Figure FDA0002858749310000086
半正弦脉冲激振力作用下桩顶速度时域响应半解析解答为
Figure FDA0002858749310000087
CN201811244367.2A 2018-10-24 2018-10-24 一种基于饱和虚土桩的浮承桩纵向振动分析方法 Active CN109372035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811244367.2A CN109372035B (zh) 2018-10-24 2018-10-24 一种基于饱和虚土桩的浮承桩纵向振动分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811244367.2A CN109372035B (zh) 2018-10-24 2018-10-24 一种基于饱和虚土桩的浮承桩纵向振动分析方法

Publications (2)

Publication Number Publication Date
CN109372035A CN109372035A (zh) 2019-02-22
CN109372035B true CN109372035B (zh) 2021-05-25

Family

ID=65401249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811244367.2A Active CN109372035B (zh) 2018-10-24 2018-10-24 一种基于饱和虚土桩的浮承桩纵向振动分析方法

Country Status (1)

Country Link
CN (1) CN109372035B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114358091B (zh) * 2022-03-03 2022-06-10 中山大学 一种基于卷积神经网络的桩损伤识别方法、设备及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469958B1 (en) * 2012-01-18 2016-10-18 Bernard J. Gochis Process for dynamic design of pile foundation systems using tunable pile members capable of absorbing vibrations
CN106503332B (zh) * 2016-10-21 2019-09-13 福州大学 一种引入非线性弹簧的微型桩基-土动力响应求解方法
CN107506564A (zh) * 2017-10-13 2017-12-22 北京工业大学 考虑竖向波动效应径向非均质土中桩纵向振动分析方法

Also Published As

Publication number Publication date
CN109372035A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN109446637B (zh) 一种基于层状饱和虚土桩的浮承桩纵向振动分析方法
Stoll Acoustic waves in saturated sediments
CN109344526B (zh) 一种基于虚土桩模型的饱和层状土中桩基纵向振动研究方法
CN104021277A (zh) 一种管涌现象的数值分析方法
Madabhushi et al. LEAP-GWU-2015: Centrifuge and numerical modelling of slope liquefaction at the University of Cambridge
CN109214123B (zh) 一种基于饱和虚土桩模型的浮承桩纵向振动分析方法
Chen et al. Influence of defects on the lateral dynamic characteristics of offshore piles considering hydrodynamic pressure
CN109372035B (zh) 一种基于饱和虚土桩的浮承桩纵向振动分析方法
Zheng et al. The effects of truncating the capillary fringe on water‐table dynamics during periodic forcing
CN112485106B (zh) 一种控制土体状态参数的物理模型分层制备与试验方法
Chrisopoulos et al. FE simulation of model tests on vibratory pile driving in saturated sand
CN110219324B (zh) 一种成层土中非完全黏结的摩擦桩纵向振动分析方法
Zhao et al. Seismic response of concrete gravity dams including water-dam-sediment-foundation interaction
CN109056847B (zh) 一种下卧基岩地基中大直径摩擦桩的竖向振动分析方法
CN108842831B (zh) 层状横观黏弹性土中部分埋入群桩的竖向振动分析方法
CN110093951B (zh) 一种基于虚土桩模型的摩擦桩纵向振动分析方法
Qiu et al. Numerical analysis of 1‐D compression wave propagation in saturated poroelastic media
CN113960170A (zh) 一种地震p波作用下饱和土中管桩的运动响应的确定方法
Brandt Earthquake analysis of subsea structure on caisson foundation using 3D finite element solution
Airoldi et al. Soil liquefaction tests in the ISMGEO geotechnical centrifuge
Lai et al. Numerical modeling of dynamic centrifuge experiments on a saturated dense sand stratum
Chandrasekaran et al. Virtual mass of submerged structures
Al-Busoda et al. The behavior of gypseous soil under vertical vibration loading
CN111539050A (zh) 一种双向非均质饱和土中实体桩水平振动分析方法
Banerjee et al. Progress in BEM applications in geomechanics via examples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant