CN111530450B - 一种MnxOy材料的制备方法及其应用 - Google Patents

一种MnxOy材料的制备方法及其应用 Download PDF

Info

Publication number
CN111530450B
CN111530450B CN202010235009.6A CN202010235009A CN111530450B CN 111530450 B CN111530450 B CN 111530450B CN 202010235009 A CN202010235009 A CN 202010235009A CN 111530450 B CN111530450 B CN 111530450B
Authority
CN
China
Prior art keywords
mixed solution
pms
steps
following
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010235009.6A
Other languages
English (en)
Other versions
CN111530450A (zh
Inventor
王韵芳
柴晨
刘建新
王雅文
张小超
李�瑞
樊彩梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010235009.6A priority Critical patent/CN111530450B/zh
Publication of CN111530450A publication Critical patent/CN111530450A/zh
Application granted granted Critical
Publication of CN111530450B publication Critical patent/CN111530450B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种MnxOy材料的制备方法及其应用,属于环境化工水处理技术领域,本发明的目的在于提供一种简单易行的可见光诱导MnxOy材料活化PMS的方法,本发明通过四水合氯化锰溶于蒸馏水和丙三醇的混合溶液,再加入NaOH溶液,搅拌,烘箱中反应,离心沉淀物,得到MnxOy材料,本发明制备的MnxOy材料在可见光照射下活化PMS产生寿命长且氧化性强的硫酸根自由基和羟基自由基协同降解水中有机污染物。

Description

一种MnxOy材料的制备方法及其应用
技术领域
本发明属于环境化工水处理技术领域,具体涉及一种MnxOy材料的制备方法及其应用。
背景技术
当前,随着现代化工业的迅猛发展,广泛来源于化工、矿物加工、制药等行业的工业废水对水体的污染日趋严重,特别是具有难以生物降解、生物累积性及致突变、致畸、致癌的“三致”特性,且采用常规处理方法又难以获得满意效果的污染物,已经严重威胁着人类的健康和安全。因此,致力于开发利用可再生能源——太阳能并对工业废水实现彻底无害化处理的技术已成为当今解决这一世界性难题的有效手段。
基于过一硫酸盐PMS产生硫酸根自由基(·SO4 -)的发现无疑是为AOPs开启了一个新篇章。与常规AOPs中的·OH相比,·SO4 -具有以下优势:①·SO4 -自由基的氧化还原电位(E o= 2.5 - 3.1 V vs NHE)接近于甚至超过氧化性极强的·OH(E o= 1.8 - 2.7 V,vsNHE),说明·SO4 -具有很高的氧化能力;②·SO4 -在水溶液中的半衰期长达4 s,要比·OH(寿命小于1 μs)的稳定时间更长,这将大大延长了·SO4 -与污染物的接触机会,有利于污染物的彻底矿化;③ PMS在地下环境中可稳定存在,其稳定性远高于O3和H2O2,具有更加可靠的实际操作性;④活化PMS产生·SO4 -降解污染物受pH的影响较小,具有宽泛的使用范围。基于以上诸多特点和优势,近年来,关于过硫酸盐活化产生硫酸根自由基降解水中难降解污染物的研究受到了人们的广泛关注。而PMS的活化是产生·SO4 -自由基的主要方式之一。PMS活化的常见方式主要包括:热活化、紫外光活化、碱活化、有机物活化、过渡金属离子活化及超声活化等。其中,密集的能量投入和较高的氧化成本是PMS在实际水处理应用中必需考虑的关键因素条件,因此,如何在反应条件温和且经济易行的手段下直接活化PMS而产生·SO4 -自由基是彻底矿化实际废水亟待解决的科学难题。
发明内容
本发明的目的在于提供一种简单易行的可见光诱导MnxOy材料活化PMS的方法,该方法不仅使MnxOy材料活化PMS后产生·SO4 -自由基和羟基自由基有效处理废水中的污染物,而且拓展了PMS活化在太阳光照射下的实际应用范围。该发明所用原料常见易得、工艺操作简单、易于实现工业化生产。
本发明采用如下技术方案:
一种MnxOy材料的制备方法,包括如下步骤:
第一步,将2mmol的四水合氯化锰溶于蒸馏水和丙三醇的混合溶液中,持续搅拌25min,形成混合溶液A;
第二步,在磁力搅拌的条件下,将10mL浓度为2mol/L的NaOH溶液逐滴加入混合溶液A中,继续搅拌3h,形成混合溶液B;
第三步,将混合溶液B倒入100mL的反应釜中,放入烘箱,于150℃下恒温24h;
第四步,待反应完成后,冷却至室温,将所得沉淀物经离心分离后,采用蒸馏水洗涤3次,乙醇洗涤2次,烘干干燥,得到棕黄色的MnxOy材料。
第一步中所述蒸馏水和丙三醇的体积比为0~1.25:1。
第二步中所述NaOH的加入量与四水合氯化锰的摩尔比为10:1。
第四步中所述干燥温度为60~90℃,干燥时间为5.5~9.5h。
一种MnxOy材料应用于可见光照射下活化过一硫酸盐PMS,并应用于水中微量有毒有害难降解的有机物的处理,具体包括如下步骤:
第一步,在模拟废水苯酚溶液中加入MnxOy材料形成悬浮物,避光搅拌30 min,使水中污染物在催化剂表面达到吸附平衡;
第二步,向上述悬浮物中加入PMS后,采用氙灯作为光源进行照射;
第三步,取样测试苯酚的浓度。
第一步中所述MnxOy材料与模拟废水的比例为0.2g/L ~ 0.4g/L。
第二步中所述PMS与模拟废水的比例为0.4g/L ~ 1g/L。
本发明的有益效果如下:
1. 本发明采用简单易行的醇热法制得可有效活化PMS的MnxOy材料;
2. 本发明所制得的MnxOy材料具有片状堆积的三维花状微米空间结构;
3. 本发明所制备MnxOy材料在可见光诱导下活化PMS产生氧化能力高的羟基自由基和硫酸根自由基;
4. 本发明在可见光照射下,利用MnxOy材料可方便实现PMS的活化实现水中难降解有机污染物的迅速、彻底、可重复地无害化处理。
附图说明
图1为本发明制备的MnxOy材料的X射线衍射图;
图2为本发明制备的MnxOy材料的扫描电镜图;
图3为不同条件下对水中苯酚的去除情况对比图;
图4为本发明制备的MnxOy材料电子顺磁共振波谱图。
具体实施方式
实施例1
MnxOy材料的制备,方法如下:
1)将2 mmol的四水合氯化锰溶于25mL蒸馏水和20mL丙三醇的混合溶液中并持续搅拌25 min,形成混合液1;
2)在磁力搅拌的条件下,将10 mL 2 mol/LNaOH溶液逐滴加入至上述混合液1中继续搅拌3 h,形成混合液2;
3)将混合液2倒入100毫升反应釜中,放入烘箱,于150℃下恒温24 h;
4)待反应完成后,冷却至室温,将所得沉淀物经离心分离后,采用蒸馏水洗涤3次,乙醇洗涤2次,于60℃下烘干5.5h,即制得棕黄色MnxOy材料。
实施例2
MnxOy材料的制备,方法如下:
1)将2 mmol的四水合氯化锰溶于15mL蒸馏水和30mL丙三醇的混合溶液中并持续搅拌25 min,形成混合液1;
2)在磁力搅拌的条件下,将10 mL 2 mol/LNaOH溶液逐滴加入至上述混合液1中继续搅拌3 h,形成混合液2;
3)将混合液2倒入100毫升反应釜中,放入烘箱,于150℃下恒温24 h;
4)待反应完成后,冷却至室温,将所得沉淀物经离心分离后,采用蒸馏水洗涤3次,乙醇洗涤2次,于80℃下烘干9.5h,即制得棕黄色MnxOy材料。
实施例3
MnxOy材料的制备,方法如下:
1)将2 mmol的四水合氯化锰溶于15mL蒸馏水和30mL丙三醇的混合溶液中并持续搅拌25 min,形成混合液1;
2)在磁力搅拌的条件下,将10 mL 2 mol/LNaOH溶液逐滴加入至上述混合液1中继续搅拌3 h,形成混合液2;
3)将混合液2倒入100毫升反应釜中,放入烘箱,于150℃下恒温24 h;
4)待反应完成后,冷却至室温,将所得沉淀物经离心分离后,采用蒸馏水洗涤3次,乙醇洗涤2次,于60℃下烘干5.5h,即制得棕黄色MnxOy材料。
图1展示了MnxOy材料的X射线衍射图,由图可看出所制MnxOy材料为四氧化三锰和λ-二氧化锰的复合物。图2展示了MnxOy材料的扫描电子显微镜照片,由图可知所制备MnxOy材料具有片状堆积的三维花状微米空间结构。
实施例4
可见光诱导去除水中苯酚,方法如下:
称取实施例3的0.02g MnxOy催化剂加入到100mL苯酚溶液(20 mg/L)中,避光搅拌30min,使苯酚在催化剂表面达到吸脱附平衡。加入0.08g PMS后打开氙灯开始进行降解,5min时取第一个样,后面每间隔15min取样分析,用紫外-可见分光光度仪测量苯酚的剩余浓度。在不同条件下苯酚降解的对比情况如图3所示,由图可知,在可见光照射下,MnxOy材料活化PMS的体系在60min时苯酚的降解率可达90%,说明本发明中的方法表现出对水中有机污染物的高效去除能力。此外,对催化剂进行了电子顺磁共振测试,结果如图4所示,证明本发明中MnxOy材料在可见光照射下活化PMS产生了羟基自由基和硫酸根自由基。

Claims (7)

1.一种MnxOy材料的制备方法,其特征在于:包括如下步骤:
第一步,将2mmol的四水合氯化锰溶于蒸馏水和丙三醇的混合溶液中,持续搅拌25min,形成混合溶液A;
第二步,在磁力搅拌的条件下,将10mL浓度为2mol/L的NaOH溶液逐滴加入混合溶液A中,继续搅拌3h,形成混合溶液B;
第三步,将混合溶液B倒入100mL的反应釜中,放入烘箱,于150℃下恒温24h;
第四步,待反应完成后,冷却至室温,将所得沉淀物经离心分离后,采用蒸馏水洗涤3次,乙醇洗涤2次,烘干干燥,得到棕黄色的MnxOy材料;
所述MnxOy材料为四氧化三锰和λ-MnO2的复合物,所述MnxOy材料具有片状堆积的三维花状微米空间结构。
2.根据权利要求1所述的一种MnxOy材料的制备方法,其特征在于:第一步中所述蒸馏水和丙三醇的体积比为0~1.25:1。
3.根据权利要求1所述的一种MnxOy材料的制备方法,其特征在于:第二步中所述NaOH的加入量与四水合氯化锰的摩尔比为10:1。
4.根据权利要求1所述的一种MnxOy材料的制备方法,其特征在于:第四步中所述干燥温度为60~90℃,干燥时间为5.5~9.5h。
5.一种利用权利要求1的制备方法制备的MnxOy材料应用于可见光照射下活化过一硫酸盐PMS,并应用于水中微量有毒有害难降解的有机物的处理,其特征在于:具体包括如下步骤:
第一步,在模拟废水苯酚溶液中加入MnxOy材料形成悬浮物,避光搅拌30 min,使水中污染物在催化剂表面达到吸附平衡;
第二步,向上述悬浮物中加入PMS后,采用氙灯作为光源进行照射;
第三步,取样测试苯酚的浓度。
6.根据权利要求5所述的一种MnxOy材料的应用,其特征在于:第一步中所述MnxOy材料与模拟废水的比例为0.2g/L ~ 0.4g/L。
7.根据权利要求5所述的一种MnxOy材料的应用,其特征在于:第二步中所述PMS与模拟废水的比例为0.4g/L ~ 1g/L。
CN202010235009.6A 2020-03-30 2020-03-30 一种MnxOy材料的制备方法及其应用 Expired - Fee Related CN111530450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010235009.6A CN111530450B (zh) 2020-03-30 2020-03-30 一种MnxOy材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010235009.6A CN111530450B (zh) 2020-03-30 2020-03-30 一种MnxOy材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111530450A CN111530450A (zh) 2020-08-14
CN111530450B true CN111530450B (zh) 2022-07-05

Family

ID=71970091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010235009.6A Expired - Fee Related CN111530450B (zh) 2020-03-30 2020-03-30 一种MnxOy材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111530450B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387271B (zh) * 2020-11-16 2022-08-12 湖南大学 一种碳包裹的四氧化三锰复合材料及其制备方法和应用
CN114797980B (zh) * 2022-06-02 2023-06-02 山东大学 环糊精修饰纳米环境矿物材料及其制备方法与在降解有机污染物中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920448A (zh) * 2014-04-17 2014-07-16 哈尔滨工程大学 一种二氧化锰铀吸附剂的制备方法及应用方法
WO2014209664A1 (en) * 2013-06-27 2014-12-31 Clariant Corporation Manganese oxide-stabilized zirconia catalyst support materials
CN104261476A (zh) * 2014-09-19 2015-01-07 济南大学 一种Mn3O4 自组装结构的制备方法
CN106299392A (zh) * 2016-08-26 2017-01-04 天津大学 一种具有锰缺陷的纳米Mn3O4及其制备方法及其在电催化氧还原反应中的应用
CN106475090A (zh) * 2016-10-13 2017-03-08 中国人民解放军后勤工程学院 一种Mn3O4‑MnO2纳米复合材料制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014209664A1 (en) * 2013-06-27 2014-12-31 Clariant Corporation Manganese oxide-stabilized zirconia catalyst support materials
CN103920448A (zh) * 2014-04-17 2014-07-16 哈尔滨工程大学 一种二氧化锰铀吸附剂的制备方法及应用方法
CN104261476A (zh) * 2014-09-19 2015-01-07 济南大学 一种Mn3O4 自组装结构的制备方法
CN106299392A (zh) * 2016-08-26 2017-01-04 天津大学 一种具有锰缺陷的纳米Mn3O4及其制备方法及其在电催化氧还原反应中的应用
CN106475090A (zh) * 2016-10-13 2017-03-08 中国人民解放军后勤工程学院 一种Mn3O4‑MnO2纳米复合材料制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ag3PO4的可见光光催化性能及机理分析;王韵芳;《无机化学学报》;20120228;第28卷;全文 *
Effect of Hydrothermal on the Crystalline Phase and Morphology of Manganese Oxide Nanocrystals;Jin Mu;《Journal of Dispersion Science and Technology》;20100604;第27卷;第1223-1225页 *

Also Published As

Publication number Publication date
CN111530450A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
Dong et al. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions
CN107298477B (zh) 一种催化过硫酸盐降解废水中有机污染物的方法
CN111530450B (zh) 一种MnxOy材料的制备方法及其应用
CN105413713B (zh) 一种硫改性的多孔氧化铁催化剂及其制备方法和应用
CN106807376B (zh) 一种磁性纳米复合催化剂及其制备方法与应用
CN101961662B (zh) 一种离子印迹负载型复合光催化剂的制备方法
CN101485985A (zh) 一种新型高效多相光芬顿催化剂CuOx-FeOOH的研制方法
Fan et al. Multi-targeted removal of coexisted antibiotics in water by the synergies of radical and non-radical pathways in PMS activation
Zhang et al. Enhancement of photo-fenton-like degradation of orange II by MnO2/NiO nanocomposite with the synergistic effect from bisulfite
Montalvo‐Herrera et al. Sonochemical synthesis of CaBi6O10 nanoplates: photocatalytic degradation of organic pollutants (ciprofloxacin and methylene blue) and oxidizing species study (h+, OH·, H2O2 and O2•‐)
Tony et al. Mechanistic implications of redox cycles solar reactions of recyclable layered double hydroxides nanoparticles for remazol brilliant abatement
Khosravi et al. Synthesis of sewage sludge‐based carbon/TiO2/ZnO nanocomposite adsorbent for the removal of Ni (II), Cu (II), and chemical oxygen demands from aqueous solutions and industrial wastewater
CN110368990B (zh) 一种Cu系多金属氧酸盐-功能化氧化石墨烯纳米材料的制备方法及其应用
Ullah et al. Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange
CN107262134A (zh) 一种新型磁性多功能光催化材料及其制备方法和应用
CN106693971A (zh) 一种以蛋白土为载体的非均相Fenton催化剂的制备方法
Yang et al. Well-designed MOF-derived hollow octahedral structure TiO2 coupled with ultra-thin porous g-C3N4 to enhance the degradation of real liquor brewing wastewater
Li et al. Photoassisted degradation of CI Reactive Red 195 using an Fe (III)‐grafted polytetrafluoroethylene fibre complex as a novel heterogeneous Fenton catalyst over a wide pH range
Ning et al. Enhanced H2O2 Upcycling into Hydroxyl Radicals with GO/Ni: FeOOH-Coated Silicon Nanowire Photocatalysts for Wastewater Treatment
Yang et al. Microwave synthesis of Fe–Cu diatomic active center MOF: synergistic cyclic catalysis of persulfate for degrading norfloxacin
Wang et al. Degradation kinetics of phenol by a titanium dioxide photocatalyst coupled with a magnetic field
Rafieyan et al. Application of Terminalia catappa wood-based activated carbon modified with CuO nanostructures coupled with H2O2 for the elimination of chemical oxygen demand in the gas refinery
CN115970693B (zh) 一种微藻改性氧化铁光芬顿催化剂及其制备方法和应用
Kamaraj et al. Human hair biochar to remove malachite green dye and bisphenol-A contamination
CN110124683A (zh) 介孔NiMn2O4催化剂的制备方法、由此制备的催化剂及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220705

CF01 Termination of patent right due to non-payment of annual fee