CN111525104B - 低钴含量电极活性材料 - Google Patents

低钴含量电极活性材料 Download PDF

Info

Publication number
CN111525104B
CN111525104B CN202010180595.9A CN202010180595A CN111525104B CN 111525104 B CN111525104 B CN 111525104B CN 202010180595 A CN202010180595 A CN 202010180595A CN 111525104 B CN111525104 B CN 111525104B
Authority
CN
China
Prior art keywords
discharge
electrode active
active material
formula
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010180595.9A
Other languages
English (en)
Other versions
CN111525104A (zh
Inventor
黄桂清
莫博山
莫有德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Global Technologies
Guangxi Nuofang Energy Storage Technology Co ltd
Original Assignee
Boston Global Technologies
Guangxi Nuofang Energy Storage Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Global Technologies, Guangxi Nuofang Energy Storage Technology Co ltd filed Critical Boston Global Technologies
Publication of CN111525104A publication Critical patent/CN111525104A/zh
Application granted granted Critical
Publication of CN111525104B publication Critical patent/CN111525104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了低钴含量电极活性材料,所述电极活性材料由通式(Ⅰ)表示:Li1+xMnaNibO2+x·LiyCoyO2y·D*C (Ⅰ);其中,x>0,0<y<0.1,a+b=1,1.2≤a/b≤3.3;D是不含钴元素的一种或多种混合掺杂剂,可存在于或不存在于式(I)中;C是不含钴元素的一种或多种混合包覆剂,可存在于或不存在于式(I)中。

Description

低钴含量电极活性材料
技术领域
本发明涉及锂电池技术领域,具体涉及一种低钴含量电极活性材料。
背景技术
锂电池因其较高的能量密度而被广泛应用于消费类电子产品中。充电电池也被称为二次电池,锂离子二次电池通常有一个插锂的负极材料。目前一些商用电池的负极材料可以是石墨,正极材料可包括三元体系(NMC/NCA)、LiCoO2、LiMnO4、LiFePO4等,其中LiCoO2具有轧制密度高的优点。
但是,使用钴元素存在一些问题。首先,钴与电解液发生反应,有着火的危险。第二,当人体摄入过多的钴时,会对健康产生危害。当工人连续6小时吸入含钴0.038mg/m3空气时会呼吸困难。在使用硬质合金(一种钴碳化钨合金)时,暴露于0.005mg钴/m3的人群中发现了严重的肺部影响,包括哮喘、肺炎和喘息。在工作中接触0.007毫克钴/立方米的人会发生钴过敏,导致哮喘和皮疹。第三,钴太贵,不划算。
因此,在电池工业中需要减少甚至消除钴的使用。
发明内容
有鉴于此,本发明的目的是提供一种低钴含量电极活性材料。
本发明采取的具体技术方案是:
低钴含量电极活性材料,所述电极活性材料由通式(Ⅰ)表示:
Li1+xMnaNibO2+x·LiyCoyO2y·D*C (Ⅰ);
其中,x>0,0<y<0.1,a+b=1,1.2≤a/b≤3.3;D是不含钴元素的一种或多种混合的掺杂剂,可存在于或不存在于式(I)中;C是不含钴元素的一种或多种混合的包覆剂,可存在于或不存在于式(I)中。
为了更好的实现本发明,所述电极活性材料还包括以下特征中的任一项或多项:
a、YL≤y≤YH,且YL≤YH,其中YL和YH分别选自0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.01,0.011,0.012,0.013,0.014,0.015,0.016,0.017,0.018,0.019,0.02,0.021,0.022,0.023,0.024,0.025,0.026,0.027,0.028,0.029,0.03,0.035,0.04,0.045,0.05,0.055,0.06,0.065,0.07,0.071,0.072,0.073,0.074,0.075,0.076,0.077,0.078,0.079,0.08,0.081,0.082,0.083,0.084,0.085,0.086,0.087,0.088,0.089,0.09,0.091,0.092,0.093,0.094,0.095,0.096,0.097,0.098和0.099;
b、0.01≤y≤0.07;
c、XL≤x≤XH,且XL≤XH,其中XL和XH分别选自0.1,0.15,0.2,0.28,0.3,0.35,0.375,0.4,0.43,0.45,0.5,0.55和0.6;
d、(a/b)L≤a/b≤(a/b)H,且(a/b)L≤(a/b)H,其中(a/b)L和(a/b)H选自1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.05,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2和3.3;
e、D和C分别选自M(0-0.1)氧化物、M(0-0.1)氟化物、M(0-0.1)的盐、M(0-0.1)的无机酸盐的一种或多种混合,其中,M选自Li,Mg,Sr,Ba,Cd,Zn,Al,Ga,B,Zr,Ti,Ca,Ce,Y,Nb,Cr,Fe,Mo,W和V。
f、按照化学计量法计,D和C分别选自Al2O3,MgO,Cr2O3,SnO2,SrO2,ZnO,Nb2O5,ZrO2,TiO2,FeO,Fe3O4,AlF3,BF3,FeF3,CaF2,MgF2,B2O3,B2O5,LiF,SrF2,SnF2,ZnF2,CuF2,MnF2,NiF2,LiB3O5,Li3BO3,LiBO2,Li3B7O12,LiAlO2,Li2SiO3,Li8SiO6,LiPO3,Li3PO4,LiTi2(PO4)3,Li4Ti5O12,LiNbO3,Li3NbO4,Li2ZrO3,Li3TaO3,LiCr3O8,LiVO3,Li2MoO4,Li2Mo2O7,Li2TiO3,Li2WO4,LiTa3O8,Li4GeO4,LiFePO4和Fe2P2O7
为了更好的实现本发明,所述电极活性材料还包括以下特征中的任一项或多项:
a、YL≤y≤YH,且YL≤YH,其中YL和YH分别选自0.01,0.015,0.02,0.025,0.03,0.035,0.04,0.045,0.05,0.055,0.06,0.065和0.07;
b、YL≤y≤YH,且YL≤YH,其中YL和YH分别选自0.023,0.03,0.034,0.045和0.046;
c、XL≤x≤XH,且XL≤XH,其中XL和XH分别选自0.28,0.375,0.4和0.43;
d、(a/b)L≤a/b≤(a/b)H,且(a/b)L≤(a/b)H,其中(a/b)L和(a/b)H选自1.7,2.05,2.2和2.5;
e、D选自Li0.045Ti0.021O0.063,Sn0.01O0.02,Li0.03V0.03O0.09和Li0.1Mo0.05O0.2
f、C选自Al0.039F0.12,Al0.039O0.058,Al0.03F0.09,Al0.05F0.15,Ca0.03F0.06,Ca0.05F0.1,Li0.01V0.01O0.03,Li0.03(PO4)0.01,Li0.03Al0.03O0.06,Li0.03Mo0.03O0.12,Li0.03Nb0.03O0.09,Li0.03V0.03O0.09,Li0.06W0.03O0.12,Li0.05Al0.05O0.1,Li0.05Nb0.05O0.10,Li0.05V0.05O0.15,Li0.05W0.05O0.2,Li0.06(PO4)0.02,Li0.06W0.03O0.12,Li0.08W0.04O0.16,Li0.09B0.03O0.09,Li0.15(PO4)0.05,Li0.15B0.05O0.1,Li0.15B0.05O0.15,Li0.1Mo0.05O0.2,Mg0.03F0.06,Mg0.05F0.1,Zn0.05O0.05,Zn0.07O0.07,Zr0.03O0.06,和Zr0.05O0.1
为了更好的实现本发明,所述电极活性材料还包括以下特征中的任一项或多项:
a、y选自0.023,0.03,0.034,0.045和0.046;
b、D*C选自:
Li0.045Ti0.021O0.063*Al0.039O0.058,
Li0.045Ti0.021O0.063*Al0.039F0.12,
Sn0.01O0.02*Al0.039O0.058,
Sn0.01O0.02*Al0.039F0.12,
Sn0.01O0.02*Li0.01V0.01O0.03,
Li0.03V0.03O0.09*Zn0.07O0.07
Li0.03V0.03O0.09*Li0.05Al0.05O0.1,
Li0.03V0.03O0.09*Al0.05F0.15,
Li0.03V0.03O0.09*Ca0.05F0.1,
Li0.1Mo0.05O0.2*Ca0.03F0.06,
Li0.1Mo0.05O0.2*Li0.03(PO4)0.01,
Li0.1Mo0.05O0.2*Li0.03V0.03O0.09,
Li0.1Mo0.05O0.2*Al0.03F0.09,
Li0.1Mo0.05O0.2*Zn0.05O0.05,
Li0.1Mo0.05O0.2*Li0.03Al0.03O0.06
为了更好的实现本发明,所述电极活性材料选自:
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039O0.058,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039F0.12,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039O0.058,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039F0.12,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Li0.01V0.01O0.03,
Li1.40Mn0.688Ni0.312O2.40·Li0.045Co0.045O0.09·Li0.03V0.03O0.09,
Li1.40Mn0.688Ni0.312O2.40·Li0.045Co0.045O0.09·Li0.03V0.03O0.09*Zn0.07O0.07,
Li1.40Mn0.688Ni0.312O2.40·Li0.045Co0.045O0.09·Li0.03V0.03O0.09*Li0.05Al0.05O0.1,
Li1.40Mn0.688Ni0.312O2.40·Li0.03Co0.03O0.06·Li0.03V0.03O0.09*Al0.05F0.15,
Li1.40Mn0.688Ni0.312O2.40·Li0.03Co0.03O0.06·Li0.03V0.03O0.09*Ca0.05F0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Ca0.05F0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.06(PO4)0.02,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.05V0.05O0.15,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Al0.05F0.15,Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Zn0.05O0.05,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.05Al0.05O0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.15B0.05O0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.05Nb0.05O0.15,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.1Mo0.05O0.2,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Zr0.05O0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.05W0.05O0.2,
Li1.375Mn0.63Ni0.372O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Ca0.03F0.06,
Li1.375Mn0.63Ni0.312O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Li0.03(PO4)0.01,
Li1.375Mn0.63Ni0.37O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Li0.03V0.03O0.09,
Li1.375Mn0.63Ni0.37O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Al0.03F0.09,
Li1.375Mn0.63Ni0.37O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Zn0.05O0.05,
Li1.375Mn0.63Ni0.37O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Li0.03Al0.03O0.06,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Mg0.05F0.1,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Li0.15B0.05O0.15,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Li0.05Nb0.05O0.10,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Li0.1Mo0.05O0.20,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Zr0.03O0.06,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Li0.08W0.04O0.16,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Ca0.05F0.10,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.15(PO4)0.05,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.05V0.05O0.15,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Al0.03F0.09,Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Zn0.05O0.05,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.03Al0.03O0.06,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Mg0.03F0.06,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.09B0.03O0.09,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.03Nb0.03O0.09,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.03Mo0.03O0.12,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Zr0.03O0.06,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.06W0.03O0.12,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Ca0.03F0.06,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03(PO4)0.01,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03V0.03O0.09,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Al0.03F0.09,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Zn0.05O0.05,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03Al0.03O0.06,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Mg0.03F0.06,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.09B0.03O0.09,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03Nb0.03O0.09,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03Mo0.03O0.12,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Zr0.03O0.06,和Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.06W0.03O0.12
为了更好的实现本发明,所述电极活性材料选自:
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039O0.058,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039F0.12,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039O0.058,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039F0.12,andLi1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Li0.01V0.01O0.03
为了更好的实现本发明,所述电极活性材料具有优于NCM523电极活性材料的性能,与NCM523电极活性材料比含有更高的容量,与NCM523电极活性材料比与相当的循环容量衰减率、循环中值电压衰减率。
为了更好的实现本发明,所述电极活性材料放电特点为:第一次放电,放电电流为0.1C,放电电压为4.8V至2.0V,放电容量在215-275mAh/g之间;第二次放电时,放电电流为0.2C,当放电电压为4.6V至2.0V时,放电容量在195-240m Ah/g之间,当放电电压为4.45V至2.0V,放电容量在185-225m Ah/g之间,当放电电压为4.35V至2.0V时,放电容量在180-210mAh/g。
为了更好的实现本发明,所述电极活性材料放电特点为:第一次放电,放电电流为0.1C,放电电压为4.8V至2.0V,放电容量为290mAh/g;第二次放电时,放电电流为0.2C,当放电电压为4.6V至2.0V时,放电容量为250m Ah/g,当放电电压为4.45V至2.0V,放电容量为230m Ah/g,当放电电压为4.35V至2.0V时,放电容量在220m Ah/g。
相应地,本发明还提供了一种新的低钴含量的锂离子正极材料,降低了材料合成成本,且对环境友好。
附图说明
图1显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,且无C)的X射线衍射(XRD)图。
图2显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,无C)的扫描电镜照片。
图3显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,C为Al0.039O0.058)、电极活性材料Li1+ xMnaNibO2+xLiyCoyO2y D*C(x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,C为Al0.039F0.12)与NCM523在27℃、放电电流为1.0C、放电电压为2.0-4.3V时的循环中值电压保持率比较。
图4显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,C为Al0.039O0.058)、电极活性材料Li1+ xMnaNibO2+xLiyCoyO2y D*C(x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,C为Al0.039F0.12)与NCM523在27℃、放电电流为1.0C、放电电压为2.0-4.3V时的放电容量衰减率比较。
图5显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,C为Al0.039F0.12)的电池的第一次充放电曲线图。
图6显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.4、y=0.034、a=0.715、b=0.285、a/b=2.5,D为Sn0.01O0.02、C为Li0.01V0.01O0.03)在27℃、放电电压为2.0-4.35V时,不同的放电电流下的循环充放电曲线图。
图7显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.4、y=0.034、a=0.715、b=0.285、a/b=2.5,D为Sn0.01O0.02、C为Li0.01V0.01O0.03)在27℃、放电电压为2.0-4.45V时,不同的放电电流下的循环充放电曲线图。
图8显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.4、y=0.034、a=0.715、b=0.285、a/b=2.5,D为Sn0.01O0.02、C为Li0.01V0.01O0.03)在27℃、放电电压为2.0-4.6V时,不同的放电电流下的循环充放电曲线图。
图9显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,C为Al0.039F0.12)在27℃、放电电压为2.0-4.35V时,不同的放电电流下的循环充放电曲线图。
图10显示为电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.4、y=0.034、a=0.715、b=0.285、a/b=2.5,D为Sn0.01O0.02、C为Li0.01V0.01O0.03)在27℃、放电电流为1.0C时,不同的放电电压范围下的放电中值电压保有率的对比图。
图11显示为四个电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,且C分别为不存在、Al0.039O0.058、Al0.039F0.12或Li0.01V0.01O0.03)之间的容量保有率对比图,其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,C分别为不存在、Al0.039O0.058、Al0.039F0.12或Li0.01V0.01O0.03。4个
图12显示为四个电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C(其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,且C分别为不存在、Al0.039O0.058、Al0.039F0.12或Li0.01V0.01O0.03)的放电平均电压对比图。
图13显示为当y增加任意单位(例如0.01)时,电极活性材料Li1+xMnaNibO2+x·LiyCoyO2y·D*C的容量(mAh/g)的增量改变。
具体实施方式
在下面的描述中,为了说明的目的,阐述了许多具体细节,以提供对本发明的透彻理解。然而,对于本领域技术人员来说,显而易见的是,本发明可以在没有这些具体细节的情况下或在具有等效布置的情况下实施。
此处公开的数值范围,除非另有说明,这样的范围是连续的,包括范围的最小值和最大值以及最小值和最大值之间的每一个值。更进一步,在范围指整数的情况下,仅包括从最小值到最大值的整数,并且包括该范围的最大值。此外,如果提供多个范围来描述特征或特性,则可以组合这些范围。
在本发明的一般实施例中,电极活性材料可由式(I)表示:
Li1+xMnaNibO2+x·LiyCoyO2y·D*C(I),其中x>0,0<y<0.1,a+b=1,1.2≤a/b≤3.3;
其中D是不含钴(Co)元素的一种或多种掺杂剂,且D可存在于或不存在于式(I)中(即可选);及其中C是不含钴元素的一种或多种包覆剂,且C可存在于或不存在于式(I)中(即可选)。
式(I)定义中的“元素”或“Co元素”以传统方式使用,指元素周期表中的元素,如果元素处于构图中,元素具有适当的氧化状态,或者元素仅在其元素形式为元素形式时才具有适当的氧化态。因此,金属元素通常只处于其元素形式的金属状态或金属元素形式的相应合金。换句话说,金属氧化物或其他金属成分,除了金属合金之外,一般不是金属的。
应理解,式(I)中x、y、a和b的值基于合成中起始材料的摩尔量,该摩尔量可精确测定。对于多金属阳离子,通常认为它们定量地结合到最终材料中,没有已知的导致金属从产品成分中损失的重要途径。当然,许多金属具有多个氧化态,这与它们相对于电池的活性有关。由于存在多个氧化态和多个金属,相对于氧的精确化学计量学一般仅根据晶体结构、电化学性能和反应物金属的比例粗略估计,这是本领域的常规技术。然而,基于晶体结构,对氧的总化学计量比进行了合理的估计。本段中讨论的所有协议和本文中的相关问题都是本领域的常规,并且是与这些问题相关的领域中的长期确立的方法。
也就是说,对于式(I)中与Co量有关的y值,在本发明的各种实施例中,YL≤y≤YH,其中YL和Y H选自0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.01、0.011、0.012、0.013、0.014、0.015、0.016,0.017,0.018,0.019,0.02,0.021,0.022,0.023,0.024,0.025,0.026,0.027,0.028,0.029,0.03,0.035,0.04,0.045,0.05,0.055,0.06,0.065,0.07,0.071,0.072,0.073,0.074,0.075,0.076,0.077,0.078,0.079,0.08,0.081,0.082,0.083,0.084,0.085,0.086,0.087,0.088,0.089,0.09,0.091,0.092、0.093、0.094、0.095、0.096、0.097、0.098和0.099,前提是YL≤YH。例如,y值可以是0.01≤y≤0.07。
在本发明的优选实施例中,式(I)中的y值在YL≤y≤YH的范围内,其中YL和YH选自0.01、0.02、0.03、0.035、0.04、0.045、0.05、0.055、0.06、0.065和0.07,前提是YL≤YH。在更优选实施例中,YL和YH选自0.01、0.02、0.023、0.03、0.034、0.045、0.046和0.05。在大多数优选实施例中,y为0.01、0.015、0.02、0.023、0.03、0.034、0.045、0.046或0.05。
在本发明的各种实施例中,式(I)中的x值在XL≤x≤XH的范围内,其中XL和XH选自0.1、0.15、0.2、0.28、0.3、0.35、0.375、0.4、0.43、0.45、0.5、0.55和0.6,前提是XL≤XH。在优选实施例中,XL和XH从0.28、0.375、0.4和0.43中选择。在更优选实施例中,x为0.28、0.375、0.4或0.43。
控制式(I)中的a/b比,使得当成分在电池中循环时,Mn和Ni之间的平衡可以使Mn保持在+4的范围内。这种平衡避免了Mn+3的形成,Mn+3与Mn在电解液中的溶解与相应的容量损失有关。此外,用式(I)中的无机包覆剂材料*C包覆该组分进一步影响该化学性质,如克容量的变化以及不可逆容量损失所证明。此外,对于包覆剂样品,放电容量相对于未包覆剂样品可以增加。在本发明的各种实施例中,式(I)中的a/b比在(a/b)L≤a/b≤(a/b)H的范围内,其中(a/b)L和(a/b)H选自1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.05、2.1、2.2、2.3,2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2和3.3,前提是(a/b)L≤(a/b)H。在优选实施例中,(a/b)L和(a/b)H选自1.7、2.05、2.2和2.5。在更优选实施例中,a/b是1.7、2.05、2.2或2.5。
在本发明的各种实施方案中,式(I)中的D和C彼此独立地选自M(0-0.1)氧化物、M(0-0.1)氟化物、M(0-0.1)的盐、M(0-0.1)的无机酸盐或它们的任何组合,其中M选自Li、Mg、Sr、Ba、Cd、Zn、Al、Ga、B、Zr、Ti、Ca、Ce、Y、Nb、Cr、Fe、Mo、W和V。例如,通过化学计量法,D和C可以彼此独立地从以下组中选择Al2O3、MgO、Cr2O3、SnO2、SrO2、ZnO、Nb2O5、ZrO2、TiO2、FeO、Fe3O4、AlF3、Bf3、FeF3、CaF2、MGF2、B2O3、B2O5、LiF、SrF2、SnF2、ZNF2、CuF2、MnF2、NiF2、LiB3O5、Li3BO3、LiB2、Li3B7O12、LiAlO2、Li2SiO3、Li8SiO6、LiPO3、Li3PO4、LiTi2(PO4)3、Li4Ti5O12、LiNbO3、Li3NbO4、Li2ZrO3、Li3TaO3、LiR3O8、LiVO3、Li2MO4、Li2MO2O7、Li2TiO3、Li2WO4、LiA3O8、Li4GeO4、LiFePO4和Fe2P2O7
在优选实施例中,可从Li0.045Ti0.021O0.063、Sn0.01O0.02、Li0.03V0.03O0.09和Li0.1MO0.05O0.2组成的组中选择式(I)中的D。C可以从以下组中选择Al0.039F0.12,Al0.039O0.058,Al0.03F0.09,Al0.05F0.15,Ca0.03F0.06,Ca0.05F0.1,Li0.01V0.01O0.03,Li0.03(PO4)0.01,Li0.03Al0.03O0.06,Li0.03Mo0.03O0.12,Li0.03Nb0.03O0.09,Li0.03V0.03O0.09,Li0.06W0.03O0.12,Li0.05Al0.05O0.1,Li0.05Nb0.05O0.10,Li0.05V0.05O0.15,Li0.05W0.05O0.2,Li0.06(PO4)0.02,Li0.06W0.03O0.12、Li0.08W0.04O0.16、Li0.09B0.03O0.09、Li0.15(PO4)0.05、Li0.15B0.05O0.1、Li0.15B0.05O0.15、Li0.1Mo0.05O0.2、Mg0.03F0.06、Mg0.05F0.1、Zn0.05O0.05、Zn0.07O0.07、Zr0.03O0.06和Zr0.05O0.1
在更优选的实施例中,式(I)中的D*C部分可从以下组中选择:Li0.045Ti0.021O0.063*Al0.039O0.058,Li0.045Ti0.021O0.063*Al0.039F0.12,Sn0.01O0.02*Al0.039O0.058,Sn0.01O0.02*Al0.039F0.12,Sn0.01O0.02*Li0.01V0.01O0.03,Li0.03V0.03O0.09*Zn0.07O0.07,Li0.03V0.03O0.09*Li0.05Al0.05O0.1,Li0.03V0.03O0.09*Al0.05F0.15,Li0.03V0.03O0.09*Ca0.05F0.1,Li0.1Mo0.05O0.2*Ca0.03F0.06,Li0.1Mo0.05O0.2*Li0.03(PO4)0.01,Li0.1Mo0.05O0.2*Li0.03V0.03O0.09,Li0.1Mo0.05O0.2*Al0.03F0.09、Li0.1Mo0.05O0.2*Zn0.05O0.05和Li0.1Mo0.05O0.2*Li0.03Al0.03O0.06
在各种实施例中,在式(I)中的包覆剂“*C”,例如金属氟化物包覆剂能够对本发明的电极活性材料提供显著的改进。这些改进与长期循环有关,容量退化显著减少,第一个循环不可逆容量损失显著减少,容量普遍提高。可选择包覆剂材料的厚度,以观察到的性能改进。金属氧化物和金属磷酸盐也可以用作正极活性材料的包覆剂。
用x射线衍射(XRD)可以评价式(I)电极活性材料的晶体结构,XRD是评价无机结晶度的一种已建立的方法。按照本领域的惯例,将散射强度的图表示为散射角2θ的函数。检查复杂的锂金属氧化物的复杂性是,不同的结晶相彼此具有非常相似的晶格常数,使得XRD谱中的变化是细微的。
式(I)的电极活性材料可以用共沉淀法制备相关金属的碳酸盐、草酸盐,或氢氧化物。通常,形成的溶液中,金属氢氧化物或碳酸盐以所需的金属化学计量沉淀。随后,通过共沉淀的金属氢氧化物或碳酸盐组合物进行热处理以形成具有适当结晶度的相应金属氧化物组合物。锂离子既可以加入到初始共沉淀过程中,也可以在热处理期间或之后在固态反应中引入锂,以形成由氢氧化物或碳酸盐组成的氧化物组合物。如下例所示,由共沉淀工艺形成的式(I)的所得电极活性材料具有改进的性能特性。
在用于制备式(I)电极活性材料的共沉淀过程中,将可溶性金属盐溶解到具有所需摩尔比的水溶剂(例如纯化水)中。可溶性金属盐包括,金属醋酸盐、金属硫酸盐、金属硝酸盐、金属氯化物及其组合。溶液的浓度一般选择在1M到3M之间。金属盐的相对摩尔量可根据特定目标式(I)选择,即式(I)中a、b、x、y等的特定值。如上所述,按照所需摩尔量将式(I)的“·D”部分中的可选掺杂元素与其他金属盐(Mn、Ni和Co)一起在水溶剂中溶解得到掺杂剂,再将掺杂剂并入沉淀材料中。然后可以调整溶液的pH值,例如加入Na2CO3与氢氧化铵、氢氧化钠(优选不含铵),沉淀出相应的金属元素的金属氢氧化物或碳酸盐。一般来说,pH值可以调整到6.0到12.0之间。该溶液可以在搅拌的同时通过加热以促进氢氧化物或碳酸盐沉淀的生成。然后沉淀的金属氢氧化物或碳酸盐可从溶液中分离,并在进一步处理之前洗涤。本领域普通技术人员将认识到,上述明确范围内的工艺参数的附加范围被考虑并且在本发明范围内。
然后,将式(I)中的锂元素按摩尔比加入到上述金属氢氧化物或碳酸盐中进行热处理,将式(I)中的锂元素与氢氧化物或碳酸盐组合物转化为相应的氧化物组合物,消除水或二氧化碳。锂元素通常为,如LiOH·H2O、LiOH、Li 2CO3或它们的组合,可以与上述金属碳酸盐或金属氢氧化物混合,并可以添加氟化物(例如MgF2)作为氟化物掺杂剂使用。通常,热处理可以在有氧的环境中的烤箱、熔炉中进行。在一些实施例中,材料可以被加热到约350℃,或400℃至800℃,以将式(I)中的锂元素与金属氢氧化物或金属碳酸盐的组合物转化为氧化物。热处理一般可进行至少15分钟、30分钟至24小时或更长、或者45分钟至15小时。可以通过进一步的热处理以提高产品材料的结晶度。用于形成晶体产品的煅烧步骤通常在约650℃、700℃至1200℃或700℃至1100℃的温度下进行。改善结构性能的煅烧步骤通常可进行至少15分钟,或者从20分钟到30小时或更长,或者从1小时到36小时。如果需要,加热步骤可以与适当的温度梯步组合,以形成式(I)的结晶最终产物组合物。本领域普通技术人员将认识到,在上述明确范围内的附加温度和时间范围被考虑并且在本发明范围内。
如上所述,已经发现在式(I)中的无机包覆剂*C部分,如金属氟化物包覆剂和金属氧化物包覆剂,尽管包覆剂C相对于电池循环性能是惰性的,但显著地改善了式(I)的电极活性材料的性能。由含有*C的式(I)电极活性材料形成的电池的循环性能比无包覆剂的组分显著提高:增加电池克容量、首效提高,并且提高第一次充放电容量的效力。
通常,式(I)中的包覆剂*C部分的平均厚度不超过25nm,从约0.5nm到约20nm,从约1nm到约12nm,从1.25nm到约10nm,或从约1.5nm到约8nm。
例如,可以使用基于溶液的沉淀方法沉积式(I)中的金属氟化物*C包覆剂。将式(I)电极活性材料中不含*C的金属氢氧化物或碳酸盐在适当溶剂(例如水溶剂)中混合得到溶剂,再将所需金属/类金属的可溶性成分溶解在溶剂中形成分散液,然后,NH4F逐渐加入分散液中沉淀金属氟化物。包覆剂厚度由选择的包覆剂反应物的总量决定,包覆剂反应物的比率可基于包覆剂材料*C的化学计量比。通常可将材料干燥并加热至约250℃到600℃的温度约20分钟到48小时,以完成包覆剂材料的形成,即具有*C的式(I)的电极活性材料。
相反,式(I)中的氧化物包覆剂*C通常是通过在没有C*的配方(I)的上沉积前体包覆剂而形成的,然后将前体包覆剂加热以形成金属氧化物包覆剂。合适的前体包覆剂可以包括相应的金属氢氧化物、金属碳酸盐、金属醋酸盐或金属硝酸盐。可以通过沉淀过程沉积金属氢氧化物和金属碳酸盐前体包覆剂,因为可以使用氢氧化铵和/或碳酸铵来沉淀相应的前体包覆剂。金属硝酸盐前体包覆剂可以通过不含C的混合式(I)的活性电极与金属硝酸盐溶液混合,然后蒸发、干燥溶液,形成金属硝酸盐前体包覆剂。前体包覆剂可以被加热至分解包覆剂以形成相应的金属氧化物包覆剂。例如,可以将金属氢氧化物或金属碳酸盐前体包覆剂加热至约300℃至800℃的温度,一般为约1小时至20小时。此外,金属硝酸盐前体包覆剂通常可在约250℃至550℃的温度下加热至少30分钟以分解包覆剂。
在一些示例性实施例中,对于第一个循环,电池以C/10的放电电流放电以建立不可逆的容量损失。然后,在C/5下对电池进行第二次循环,在C/2下对电池进行第三次循环,在1C下从第四次循环开始,并在1C下继续进行50个或更多的循环。符号C/x表示电池以测试放电电流放电,以在x小时内将电池放电至选定的电压极限。例如,符号C/10表示电池以测试放电电流放电,包括电池放电超过10小时,在传统符号中写为C/10或0.1C。对于中等放电电流应用,合理的测试放电电流包括电池放电超过1.0小时,在传统符号中写为另一个合理的测试放电电流是电池放电超过2.0小时,传统的符号是C/2或0.5C。
通常情况下,在电池的第一个循环中,通常存在不可逆的容量损失,其明显大于随后循环中的每个循环的容量损失。不可逆容量损失是指新电池的充电容量与首次放电容量之间的差值。不可逆容量损失导致电池容量、能量和功率相应降低。不可逆容量损失通常可归因于电池材料在初始充放电循环期间的变化,而在随后的电池循环期间,这些变化可能基本上保持不变。
在充放电测量期间,式(I)中电极活性材料的克容量取决于放电电流。公式(I)的特定成分的最大克容量是在非常慢的放电电流下测量的。在实际使用中,由于有限放电电流下的放电,实际克容量小于最大值。更现实的具体容量可以用更接近使用期间的合理放电率来测量。对于低至中等放电电流的应用,合理的测试放电电流包括电池放电超过3小时。在传统的记法中,这是写为C/3或0.33C,其他充放电率可以写在这个记法中。
式(I)中的电极活性材料可表现在放电的高克容量特性特点:
所述电极活性材料放电特点为:第一次放电,放电电流为0.1C,放电电压为4.8V至2.0V,放电容量在215-275mAh/g之间,某些实施例可达到290mAh/g;第二次放电时,放电电流为0.2C,当放电电压为4.6V至2.0V时,放电容量在195-240m Ah/g之间,某些实施例可达到250mAh/g;当放电电压为4.45V至2.0V,放电容量在185-225m Ah/g之间,某些实施例可达到230mAh/g;当放电电压为4.35V至2.0V时,放电容量在180-210m Ah/g,某些实施例可达到220mAh/g。
式(I)的电极活性材料可用于制造具有与NCM523相当的循环性能的电池,包括高克容量、高总容量、低直流电阻和优异的倍率性能。由此产生的锂离子电池可以用作改进的电源,特别是用于高能量应用,例如电动汽车、插电式混合动力汽车等。式(I)中的电极活性材料在放电循环中表现出相对较高的平均电压,因此电池可以具有高功率输出和高克容量。式(I)的一些电极活性材料可具有适当的包覆剂,以改善循环,并可能减少不可逆容量损失和增加克容量。
使用式(I)电极活性材料的可充电电池具有一系列用途,例如移动通信设备,例如电话、移动娱乐设备,例如MP3播放器和电视、便携式计算机、正在广泛使用的这些设备的组合以及运输设备,例如汽车和叉车。使用式(I)电极活性材料的电池也可适用于车辆应用。特别是,这些电池可用于混合动力汽车、插电式混合动力汽车和纯电动汽车的电池组。这些车辆通常都有一个电池组,可以用来平衡重量、体积和容量。
提供以下示例和比较示例是为了突出一个或多个实施例的特征,但应理解,示例和比较示例不应被解释为限制实施例的范围,比较示例也不应被解释为在实施例的范围之外。此外,将理解,实施例不限于在示例和比较示例中描述的特定细节。
实例
比较示例1(示例CS1)y=0
将Li1.43Mn0.715Ni0.285O2.43前体MnSO4·H2O和NiSO4·6H2O溶解于去离子水中,与所需摩尔比的金属盐形成水溶液,得到2.0m混合金属离子的第一溶液。2MNa2Co3是第二种不含NH3H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应1小时后,用去离子水多次洗涤前体沉淀,过滤得到湿Mn0.715Ni0.285CO3浆料。将化学计量量的LiOH·H2O充分混合,并与湿泥浆研磨,制成混合物。将得到的混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在空气中900℃继续烧结12小时,制备具有近似公式Li1.43Mn0.715Ni0.285O2.43的活性电极材料“样品CS1”。
比较示例2(示例CS2)y=0.12
将Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092前体MnSO4·H2O和NiSO4·6H2O溶解于去离子水中,以所需摩尔比与金属盐形成水溶液,获得2.0m混合金属离子。2MNa2Co3是第二种不含NH3H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水洗涤前体沉淀数次,过滤得到湿Mn0.715Ni0.285Co3浆。将化学计量量的LiOH·H2O和掺杂化合物Co3O4充分混合,并与湿泥浆研磨以产生混合物。将得到的混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在空气中900℃继续烧结12小时,制备活性电极材料比较样品“CS2”,其近似公式为Li1.43Mn0.715Ni0.285O2.43·Li0.12Co0.12O0.24
比较示例3:LiNi0.5Co0.2Mn0.3O2(“NCM523”)y=0.25:
样品的制备方法可类似于比较实施例12中所述的程序。或者,样品可作为NCM523商业化获得。
例1:式(I),其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,且无C和D(样品S1)
将Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092前体MnSO4·H2O和NiSO4·6H2O在去离子水中溶解,以所需摩尔比与金属盐形成水溶液,并获得2.0M混合金属离子的第一溶液。2M的Na2Co3是第二种不含NH3H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水多次洗涤前体沉淀,过滤后得到湿Mn0.715Ni0.285Co3浆料。将化学计量量的LiOH·H2O和掺杂化合物Co3O4充分混合,并与湿泥浆研磨以产生混合物。将得到的混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在空气中900℃继续烧结12小时,制备具有近似公式Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092的活性电极材料“样品S1”
例2:式(I),其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,无C(样品S2)。
将Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063前体MnSO4·H2O和NiSO4·6H2O溶解于去离子水中,以所需摩尔比与金属盐形成水溶液,并获得2.0m混合金属离子的第一溶液。2MNa2CO3是第二种不含NH3·H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水洗涤前体沉淀数次,过滤得到湿Mn0.715Ni0.285Co3浆。将化学计量量的LiOH·H2O、掺杂化合物Co3O4和TiO2充分混合,并与湿泥浆研磨以产生混合物。得到的混合物在110℃干燥12小时,然后在500℃烧结6小时,然后继续在空气中900℃烧结12小时,生产出活性正极材料“样品S2”,近似公式为Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063
例3:式(I),其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,C为Al0.039O0.058(样品S3)
将Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063前体MnSO4·H2O和NiSO4·6H2O溶解于去离子水中,以所需摩尔比与金属盐形成水溶液,并获得2.0M混合金属离子的第一溶液。2MNa2Co3是第二种不含NH3H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水多次洗涤前体沉淀,过滤后得到湿Mn0.715Ni0.285Co3浆料。将化学计量量的LiOH·H2O和掺杂化合物Co3O4和TiO2充分混合,并与湿泥浆研磨以产生混合物。将得到的混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在空气中900℃继续烧结12小时,制备出具有近似公式Li1.43Mn0.715Ni0.285O2.43·Li0.046CO0.046O0.092·Li0.045 Ti0.021O0.063的活性电极材料样品。将化学计量量的包覆剂剂Al(NO3)3·9H2O溶于去离子水中,与活性电极材料样品充分混合。将得到的混合物在110℃下干燥8小时,然后在空气中500℃烧结6小时,用近似公式Li1.43Mn0.715Ni0.285O2.43·Li0.046CO0.046O0.092·Li0.045Ti0.021O0.063Al0.039O0.058制备包覆剂活性电极材料“样品S3”。
例4:式(I),其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,C为Al0.039F0.12(样品S4)
将Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063前体MnSO4·H2O和NiSO4·6H2O溶解在去离子水中,以所需摩尔比与金属盐形成水溶液,并获得2.0M混合金属离子的第一溶液。2MNa2CO3是第二种不含NH3·H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水多次洗涤前体沉淀,过滤后得到湿Mn0.715Ni0.285Co3浆料。将化学计量量的LiOH·H2O和掺杂化合物Co3O4和TiO2充分混合,并与湿泥浆研磨以得到混合物。将得到的混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在900℃空气中继续烧结12小时,制备出具有近似公式Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063的活性电极材料。将化学计量量的包覆剂剂Al(NO3)3·9H2O和NH4F分别溶于去离子水中,将Al(NO3)3·9H2O溶液与活性电极材料充分混合,再将NH4F充分混合。将得到的混合物在110℃下干燥6小时,然后在空气中500℃烧结6小时,用近似公式Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039F0.12制备包覆剂活性电极材料“样品S4”。
例5:式(I),其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,且无C(样品S5)
将Li1.4Mn0.715Ni0.285O2.4·Li0.034CO0.034O0.068·Sn0.01O0.02前体MnSO4·H2O、NiSO4·6H2O和CoSO4·7H2O溶解于去离子水中,以所需摩尔比与金属盐形成水溶液,并获得2.0M混合金属离子的第一溶液。2MNa2CO3是第二种不含NH3H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水洗涤前体沉淀数次,过滤得到湿Mn0.715Ni0.285CO3Co0.046(CO3)0.046浆料。将化学计量量的Li2CO3和掺杂化合物SnCl2充分混合,并与湿泥浆研磨以产生混合物。
将得到的混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在空气中900℃继续烧结12小时,制备具有近似公式Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02的活性电极材料“样品S5”。
例6:式(I),其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,C为Al0.039O0.058(样品S6)
将Li1.4Mn.715Ni0.285O2.4·Li0.034CO0.034O0.068·Sn0.01O0.02前体MnSO4·H2O、NiSO4·6H2O和CoSO4·7H2O溶解在去离子水中,以所需摩尔比与金属盐形成水溶液,并获得2.0M混合金属离子的第一溶液。2MNa2Co3是第二种不含NH3H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水多次洗涤前体沉淀,过滤得到湿Mn0.715Ni0.285CO3Co0.046(CO3)0.046浆料。将化学计量量的Li2CO3和掺杂化合物SnCl2充分混合,并与湿浆研磨成混合物。将所得混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在空气中900℃继续烧结12小时,制备具有近似公式Li1.4Mn0.715Ni0.285O2.4·Li0.03CO0.034O0.068·Sn0.01O0.02的活性电极材料。将化学计量量的包覆剂剂Al(No3)3·9H2O溶于去离子水中,与活性电极材料样品充分混合。将得到的混合物在110℃下干燥8小时,然后在空气中500℃烧结6小时,用近似公式Li1.4Mn0.715Ni0.285O2.4·Li0.034CO0.034O0.068·Sn0.01O0.02*Al0.039O0.058)制备包覆剂活性电极材料“样品S6”。
例7:式(I),其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,C为Al0.039F0.12(样品S7)
将Li1.4Mn0.715Ni0.285O2.4·Li0.034CO0.034O0.068·Sn0.01O0.02前体MnSO4·H2O、NiSO4·6H2O和CoSO4·7H2O溶解在去离子水中,以所需摩尔比与金属盐形成水溶液,并获得2.0M混合金属离子的第一溶液。2MNa2CO3是第二种不含NH3H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水洗涤前体沉淀数次,过滤得到湿Mn0.715Ni0.285CO3Co0.046(CO3)0.046浆料。将化学计量量的Li2CO3和掺杂化合物SnCl2充分混合,并与湿泥浆研磨以产生混合物。将得到的混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在空气中900℃继续烧结12小时,制备具有近似公式Li1.4Mn0.715Ni0.285O2.4·Li0.034CO0.034O0.068·Sn0.01O0.02的活性电极材料样品。将化学计量量的包衣剂Al(NO3)3·9H2O和NH4F分别溶于去离子水中,将Al(NO3)3·9H2O溶液与活性电极材料样品充分混合,再将NH4F充分混合。将得到的混合物在110℃下干燥6小时,然后在空气中500℃烧结6小时,用近似公式Li1.4Mn0.715Ni0.285O2.4·Li0.034CO0.034O0.068·Sn0.01O0.02*Al0.039F0.12制备包覆剂活性电极材料“样品S7”。
例8:式(I),其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,C为Li0.01V0.01O0.03(样品S8)。
将Li1.4Mn0.715Ni0.285O2.4·Li0.034CO0.034O0.068·Sn0.01O0.02前体MnSO4·H2O、NiSO4·6H2O和CoSO4·7H2O溶解在去离子水中,以所需摩尔比与金属盐形成水溶液,并获得2.0M混合金属离子的第一溶液。2MNa2CO3是第二种不含NH3H2O的溶液,两种溶液均缓慢泵入连续搅拌反应器。反应器中溶液的pH值保持在8.8左右。反应约1小时后,用去离子水洗涤前体沉淀数次,过滤得到湿Mn0.715Ni0.285CO3Co0.046(CO3)0.046浆料。将化学计量量的Li2CO3和掺杂化合物SnCl2充分混合,并与湿泥浆研磨以产生混合物。所得混合物在110℃下干燥12小时,然后在500℃下烧结6小时,然后在空气中在900℃下继续烧结12小时,以制备活性电极材料样品Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034o0.068·Sn0.01O0.02。将化学计量量的包覆剂剂NH4VO3溶于去离子水中,然后与活性电极材料样品充分混合。将得到的混合物在110℃下干燥8小时,然后在空气中500℃烧结6小时,用近似公式Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Li0.01V0.01O0.03制备包覆剂活性电极材料“样品S8”。
下表1总结了实施例1-8的电极活性材料。
表1
例9-60
采用与实施例1-8类似的方法,还合成了表2中式(I)所示的电极活性材料。也使用与实施例1-8中所述类似的方法制备了在式(I)定义的范围内和范围外的其他电极活性材料
表2
/>
/>
/>
例61:电化学性能的测量
将得到的电极活性材料在充氩手套箱中组装成扣电池(CR2032型)后测量其电化学性能。将占重量比90%的电极活性材料、占重量比5%的乙炔黑和溶解在N-甲基吡咯烷酮中占重量比5%的聚偏氟乙烯粘合剂组成的混合物在铝箔集电器上制成极片。用隔膜(Celgard 2502)将负极与锂正极分离。电解液由1MLiPF6在碳酸乙烯酯/碳酸二甲酯混合物中的溶液组成。在27℃或45℃下,在2.0V和4.8V之间,在0.1C电流下,在第二个循环的不同电压和电流下进行充放电试验。
式(I)代表性电极活性材料的化学和电化学性质如下图和表3所示。
1所示为X射线衍射(XRD)图,其为实施例2中式(I)的电极活性材料(即样品“S2”),其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,D为Li0.045Ti0.021O0.063,无C,即Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063。图1是计数与衍射角的关系图,实施例2中式(I)电极活性材料的x射线衍射分析结果。用Cu-Kα射线测量了XRD。
图2示出了来自实施例2中式(I)的电极活性材料的扫描电子显微镜(SEM)图像(即样品“S2”)。
图3示出了样品“S3”和“S4”与样品“NCM523”在1.0C、27℃和2.0-4.30V下循环时的电压保持率比较。如上所述,样品“S3”是实施例1中式(I)的电极活性材料,其中x=0.43,y=0.046,a=0.715,b=0.285,a/b=2.5,且无C和D,即Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092。样品“NCM523”是来自比较实施例3的电极活性材料,LiNi0.5Co0.2Mn0.3O2。样品“S3”和“S4”含有的Co元素量要少得多,但它们的电压保持率与样品“NCM523”相当。
图4显示了样品“S3”和“S4”与样品“NCM523”在1.0C、27℃和2.0-4.30V下循环时的容量循环性能(mAh/g)比较。样品“S3”和“S4”含有的Co元素量要少得多,但其容量循环性能与样品“NCM523”相当。
图5显示了样品“S7”在0.1C放电电流、2.0-4.8V下和两种不同温度(27℃和45℃)下的首次充放电曲线。样品“S7”是实施例7中式(I)的电极活性材料,其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,d为Sn0.01O0.02,c为Al0.039F0.12,即Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039F0.12
图6显示了样品“S8”在不同C放电电流、27℃和2.0-4.35V下的循环性能充放电曲线,但第一个循环为2.0-4.8V除外。样品“S8”是示例8中公式(I)的电极活性材料,其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,d为Sn0.01O0.02,c为Li0.01V0.01O0.03,即Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01
图7显示了样品“S8”在不同温度、27℃和2.0-4.45V下的循环性能充放电曲线,但第一个循环为2.0-4.8V除外。
图8显示了样品“S8”在不同温度、27℃和2.0-4.60V下的循环性能充放电曲线,但第一个循环为2.0-4.8V除外。
图9显示了样品“S8”在不同的C放电电流、27℃和2.0-4.35V下的充放电循环性能曲线,但第一个循环为2.0-4.8V除外。
图10显示了样品“S8”在1.0C放电电流、27℃和不同放电电压范围下的放电容量循环性能。
图11比较了样品“S5”与样品“S6”、“S7”和“S8”在1.0C放电电流、27℃和2.0-4.35V下的容量循环性能。其中样品“S6”、“S7”和“S8”包覆3种不同的包覆剂,“S5”未包覆包覆剂。样品“S5”是实施例5中式(I)的电极活性材料,其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,无C,即Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02。样品“S6”是实施例6中式(I)的电极活性材料,其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D为Sn0.01O0.02,C为Al0.039O0.058,即Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039O0.058。样品“S7”是实施例7中式(I)的电极活性材料,其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,d为Sn0.01O0.02,c为Al0.039F0.12,即Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039F0.12。样品“S8”是实施例8中式(I)的电极活性材料,其中x=0.4,y=0.034,a=0.715,b=0.285,a/b=2.5,D=Sn0.01O0.02,C=Li0.01V0.01O0.03,即Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Li0.01V0.01O0.03。图12比较了样品“S5”与样品“S6”、“S7”和“S8”在1.0C、27℃和2.0-4.35V下的放电平均电压循环性能。
表3
0.1C和2.0-4.8V下的首次充放电
0.2C第二次
样品 充放电电压 放电容量mAh/g 中值电压V
CS1 2.0-4.35V 165.9 3.6190
CS2 2.0-4.35V 170.3 3.6510
S1 2.0-4.35V 177.0 3.6470
S2 2.0-4.35V 177.8 3.6950
S3 2.0-4.30V 179.8 3.7437
S4 2.0-4.30V 181.2 3.7044
S5 2.0-4.35V 181.5 3.6935
S6 2.0-4.35V 183.9 3.7056
S7 2.0-4.35V 183.2 3.6985
S8 2.0-4.35V 200.6 3.6920
NCM523 2.0-4.30V 162.2 3.7918
0.5C第3次
1.0C第4次到第53次
2.0第54次
从实施例1-61中选择的式(I)的电极活性材料在从4.8V放电到2.0V的放电电流为C/10时表现出大范围的质量比放电容量(例如,至少约215-280mAh/g)。例如,实施例1-8的电极活性材料的克容量(mAh/g)为分别235.9、239.1、234.9、249.3、238.9、243.4、239.5和266.9。相比之下,对比实施例1-3中的电极活性材料的克容量(mAh/g)分别为221.7、228.9和165.7。如果将(mAh/g)/y定义为当y增加任意单位(例如0.01)时,式(I)的电极活性材料的克容量(mAh/g)的改进,则估计mAh/g)/y和y之间的关系可以在图13中示意性地示出,其中(mAh/g)达到显著更高的当y在0.01和0.1之间时(至少高出20%)。当y在0.01到0.05之间时,该值达到其峰值。
在上述规范中,参考了许多具体细节描述了本发明的实施例,这些细节可能因实施而不同。因此,说明书和附图应被视为说明性的而不是限制性的。本发明的范围以及申请人打算成为本发明的范围的唯一和唯一的指示符是从本申请发出的一组权利要求的文字范围和等效范围,以该权利要求发出的具体形式,包括任何随后的更正。

Claims (9)

1.低钴含量电极活性材料,其特征在于,所述电极活性材料由通式(I)表示:
Li1+xMnaNibO2+x·LiyCoyO2y·D*C (I);
其中,x>0,0<y<0.1,a+b=1,1.2≤a/b≤3.3;D是不含钴元素的一种或多种混合的掺杂剂,可存在于或不存在于式(I)中;C是不含钴元素的一种或多种混合的包覆剂,可存在于或不存在于式(I)中。
2.根据权利要求1所述低钴含量电极活性材料,其特征在于,还包括以下特征中的任一项或多项:
a、YL≤y≤YH,且YL≤YH,其中YL和YH分别选自0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.01,0.011,0.012,0.013,0.014,0.015,0.016,0.017,0.018,0.019,0.02,0.021,0.022,0.023,0.024,0.025,0.026,0.027,0.028,0.029,0.03,0.035,0.04,0.045,0.05,0.055,0.06,0.065,0.07,0.071,0.072,0.073,0.074,0.075,0.076,0.077,0.078,0.079,0.08,0.081,0.082,0.083,0.084,0.085,0.086,0.087,0.088,0.089,0.09,0.091,0.092,0.093,0.094,0.095,0.096,0.097,0.098和0.099;
b、0.01≤y≤0.07;
c、XL≤x≤XH,且XL≤XH,其中XL和XH分别选自0.1,0.15,0.2,0.28,0.3,0.35,0.375,0.4,0.43,0.45,0.5,0.55和0.6;
d、(a/b)L≤a/b≤(a/b)H,且(a/b)L≤(a/b)H,其中(a/b)L和(a/b)H选自1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.05,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2和3.3;
e、按照化学计量法计,D和C分别选自Al2O3,MgO,Cr2O3,SnO2,SrO2,ZnO,Nb2O5,ZrO2,TiO2,FeO,Fe3O4,AlF3,BF3,FeF3,CaF2,MgF2,B2O3,B2O5,LiF,SrF2,SnF2,ZnF2,CuF2,MnF2,NiF2,LiB3O5,Li3BO3,LiBO2,Li3B7O12,LiAlO2,Li2SiO3,Li8SiO6,LiPO3,Li3PO4,LiTi2(PO4)3,Li4Ti5O12,LiNbO3,Li3NbO4,Li2ZrO3,Li3TaO3,LiCr3O8,LiVO3,Li2MOO4,Li2MO2O7,Li2TiO3,Li2WO4,LiTa3O8,Li4GeO4,LiFePO4和Fe2P2O7
3.根据权利要求2所述低钴含量电极活性材料,其特征在于,还包括以下特征中的任一项或多项:
a、YL≤y≤YH,且YL≤YH,其中YL和YH分别选自0.01,0.015,0.02,0.025,0.03,0.035,0.04,0.045,0.05,0.055,0.06,0.065和0.07;
b、YL≤y≤YH,且YL≤YH,其中YL和YH分别选自0.023,0.03,0.034,0.045和0.046;
c、XL≤x≤XH,且XL≤XH,其中XL和XH分别选自0.28,0.375,0.4和0.43;
d、(a/b)L≤a/b≤(a/b)H,且(a/b)L≤(a/b)H,其中(a/b)L和(a/b)H选自1.7,2.05,2.2和2.5;
e、D选自Li0.045Ti0.021O0.063,Sn0.01O0.02,Li0.03V0.03O0.09和Li0.1MO0.05O0.2
f、C选自Al0.039F0.12,Al0.039O0.058,Al0.03F0.09,Al0.05F0.15,Ca0.03F0.06,Ca0.05F0.1,Li0.01V0.01O0.03,Li0.03(PO4)0.01,Li0.03Al0.03O0.06,Li0.03Mo0.03O0.12,Li0.03Nb0.03O0.09,Li0.03V0.03O0.09,Li0.06W0.03O0.12,Li0.05Al0.05O0.1,Li0.05Nb0.05O0.10,Li0.05V0.05O0.15,Li0.05W0.05O0.2,Li0.06(PO4)0.02,Li0.06W0.03O0.12,Li0.08W0.04O0.16,Li0.09B0.03O0.09,Li0.15(PO4)0.05,Li0.15B0.05O0.1,Li0.15B0.05O0.15,Li0.1MO0.05O0.2,Mg0.03F0.06,Mg0.05F0.1,Zn0.05O0.05,Zn0.07O0.07,Zr0.03O0.06,和Zr0.05O0.1
4.根据权利要求3所述低钴含量电极活性材料,其特征在于,还包括以下特征中的任一项或多项:
a、y选自0.023,0.03,0.034,0.045和0.046;
b、D*C选自:
Li0.045Ti0.021O0.063*Al0.039O0.058,
Li0.045Ti0.021O0.063*Al0.039F0.12,
Sn0.01O0.02*Al0.039O0.058,
Sn0.01O0.02*Al0.039F0.12,
Sn0.01O0.02*Li0.01V0.01O0.03,
Li0.03V0.03O0.09*Zn0.07O0.07
Li0.03V0.03O0.09*Li0.05Al0.05O0.1,
Li0.03V0.03O0.09*Al0.05F0.15,
Li0.03V0.03O0.09*Ca0.05F0.1,
Li0.1Mo0.05O0.2*Ca0.03F0.06,
Li0.1Mo0.05O0.2*Li0.03(PO4)0.01,
Li0.1Mo0.05O0.2*Li0.03V0.03O0.09,
Li0.1Mo0.05O0.2*Al0.03F0.09,
Li0.1Mo0.05O0.2*Zn0.05O0.05,
Li0.1Mo0.05O0.2*Li0.03Al0.03O0.06
5.根据权利要求2所述低钴含量电极活性材料,其特征在于,所述电极活性材料选自:
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039O0.058,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039F0.12,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039O0.058,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039F0.12,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Li0.01V0.01O0.03,
Li1.40Mn0.688Ni0.312O2.40·Li0.045Co0.045O0.09·Li0.03V0.03O0.09,
Li1.40Mn0.688Ni0.312O2.40·Li0.045Co0.045O0.09·Li0.03V0.03O0.09*Zn0.07O0.07,
Li1.40Mn0.688Ni0.312O2.40·Li0.045Co0.045O0.09·Li0.03V0.03O0.09*Li0.05Al0.05O0.1,
Li1.40Mn0.688Ni0.312O2.40·Li0.03Co0.03O0.06·Li0.03V0.03O0.09*Al0.05F0.15,
Li1.40Mn0.688Ni0.312O2.40·Li0.03Co0.03O0.06·Li0.03V0.03O0.09*Ca0.05F0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Ca0.05F0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.06(PO4)0.02,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.05V0.05O0.15,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Al0.05F0.15,Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Zn0.05O0.05,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.05Al0.05O0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.15B0.05O0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.05Nb0.05O0.15,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.1Mo0.05O0.2,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Zr0.05O0.1,
Li1.375Mn0.688Ni0.312O2.375·Li0.03Co0.03O0.06*Li0.05W0.05O0.2,
Li1.375Mn0.63Ni0.372O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Ca0.03F0.06,
Li1.375Mn0.63Ni0.312O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Li0.03(PO4)0.01,
Li1.375Mn0.63Ni0.37O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Li0.03V0.03O0.09,
Li1.375Mn0.63Ni0.37O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Al0.03F0.09,
Li1.375Mn0.63Ni0.37O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Zn0.05O0.05,
Li1.375Mn0.63Ni0.37O2.375·Li0.03Co0.03O0.06·Li0.1Mo0.05O0.2*Li0.03Al0.03O0.06,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Mg0.05F0.1,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Li0.15B0.05O0.15,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Li0.05Nb0.05O0.10,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Li0.1Mo0.05O0.20,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Zr0.03O0.06,
Li1.375Mn0.63Ni0.37O2.375·Li0.023Co0.023O0.046*Li0.08W0.04O0.16,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Ca0.05F0.10,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.15(PO4)0.05,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.05V0.05O0.15,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Al0.03F0.09,Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Zn0.05O0.05,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.03Al0.03O0.06,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Mg0.03F0.06,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.09B0.03O0.09,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.03Nb0.03O0.09,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.03Mo0.03O0.12,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Zr0.03O0.06,
Li1.375Mn0.672Ni0.328O2.375·Li0.03Co0.03O0.06*Li0.06W0.03O0.12,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Ca0.03F0.06,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03(PO4)0.01,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03V0.03O0.09,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Al0.03F0.09,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Zn0.05O0.05,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03Al0.03O0.06,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Mg0.03F0.06,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.09B0.03O0.09,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03Nb0.03O0.09,
Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.03Mo0.03O0.12,Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Zr0.03O0.06,
和Li1.28Mn0.63Ni0.37O2.28·Li0.03Co0.03O0.06*Li0.06W0.03O0.12
6.根据权利要求5所述低钴含量电极活性材料,其特征在于,所述电极活性材料选自:
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039O0.058,
Li1.43Mn0.715Ni0.285O2.43·Li0.046Co0.046O0.092·Li0.045Ti0.021O0.063*Al0.039F0.12,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039O0.058,
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Al0.039F0.12,和
Li1.4Mn0.715Ni0.285O2.4·Li0.034Co0.034O0.068·Sn0.01O0.02*Li0.01V0.01O0.03
7.根据权利要求1-6任意一种所述的低钴含量电极活性材料,其特征在于,其放电特点为:第一次放电,放电电流为0.1C,放电电压为4.8V至2.0V,放电容量在215-275mAh/g之间;第二次放电时,放电电流为0.2C,当放电电压为4.6V至2.0V时,放电容量在195-240m Ah/g之间,当放电电压为4.45V至2.0V,放电容量在185-225m Ah/g之间,当放电电压为4.35V至2.0V时,放电容量在180-210m Ah/g。
8.根据权利要求1-6任意一种所述的低钴含量电极活性材料,其特征在于,其放电特点为:第一次放电,放电电流为0.1C,放电电压为4.8V至2.0V,放电容量为290mAh/g;第二次放电时,放电电流为0.2C,当放电电压为4.6V至2.0V时,放电容量为250m Ah/g,当放电电压为4.45V至2.0V,放电容量为230m Ah/g,当放电电压为4.35V至2.0V时,放电容量在220m Ah/g。
9.一种电池正极材料,其特征在于,所述电池正极材料为权利要求1-6所述的低钴含量电极活性材料。
CN202010180595.9A 2019-07-18 2020-03-16 低钴含量电极活性材料 Active CN111525104B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/516,249 2019-07-18
US16/516,249 US11309543B2 (en) 2019-07-18 2019-07-18 Electrode active composition with reduced amount of cobalt

Publications (2)

Publication Number Publication Date
CN111525104A CN111525104A (zh) 2020-08-11
CN111525104B true CN111525104B (zh) 2023-11-10

Family

ID=71910549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010180595.9A Active CN111525104B (zh) 2019-07-18 2020-03-16 低钴含量电极活性材料

Country Status (2)

Country Link
US (1) US11309543B2 (zh)
CN (1) CN111525104B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003615A (zh) 2021-02-10 2021-06-22 中国科学院宁波材料技术与工程研究所 一种高熵正极材料及其制备方法和应用
CN113517423B (zh) * 2021-04-22 2023-02-24 远景动力技术(江苏)有限公司 一种正极材料、其制备方法以及极片及其制备方法
CN115010490A (zh) * 2022-06-29 2022-09-06 安徽大学 一种超低损耗铌锆酸锌系微波介质陶瓷材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284756A (zh) * 1999-08-16 2001-02-21 复旦大学 用于锂离子二次电池的正极活性材料及其制造方法和用途
CN101952999A (zh) * 2007-12-22 2011-01-19 普里梅精密材料有限公司 小颗粒电极材料组合物及其形成方法
CN102244237A (zh) * 2011-06-10 2011-11-16 北京理工大学 一种高容量锂离子电池正极材料的合成方法
CN103456946A (zh) * 2013-09-12 2013-12-18 刘志航 锂离子电池正极材料
CN103928673A (zh) * 2014-05-04 2014-07-16 成都赛恩斯特科技有限公司 一种复合多元锂离子电池正极材料及其制备方法
CN104201337A (zh) * 2014-09-17 2014-12-10 河北工业大学 一种锂离子电池用钠掺杂富锂锰基正极材料及其制备方法
CN105051945A (zh) * 2012-12-14 2015-11-11 尤米科尔公司 用于可再充电电池中的双峰的基于锂过渡金属的氧化物粉末
CN108735993A (zh) * 2018-05-23 2018-11-02 江西理工大学 一种Co、Al共掺杂高镍锰基氧化物正极材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284756A (zh) * 1999-08-16 2001-02-21 复旦大学 用于锂离子二次电池的正极活性材料及其制造方法和用途
CN101952999A (zh) * 2007-12-22 2011-01-19 普里梅精密材料有限公司 小颗粒电极材料组合物及其形成方法
CN102244237A (zh) * 2011-06-10 2011-11-16 北京理工大学 一种高容量锂离子电池正极材料的合成方法
CN105051945A (zh) * 2012-12-14 2015-11-11 尤米科尔公司 用于可再充电电池中的双峰的基于锂过渡金属的氧化物粉末
CN103456946A (zh) * 2013-09-12 2013-12-18 刘志航 锂离子电池正极材料
CN103928673A (zh) * 2014-05-04 2014-07-16 成都赛恩斯特科技有限公司 一种复合多元锂离子电池正极材料及其制备方法
CN104201337A (zh) * 2014-09-17 2014-12-10 河北工业大学 一种锂离子电池用钠掺杂富锂锰基正极材料及其制备方法
CN108735993A (zh) * 2018-05-23 2018-11-02 江西理工大学 一种Co、Al共掺杂高镍锰基氧化物正极材料的制备方法

Also Published As

Publication number Publication date
US20210020931A1 (en) 2021-01-21
US11309543B2 (en) 2022-04-19
CN111525104A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
TWI384669B (zh) 具有高特定放電容量之用於鋰離子電池之正電極材料及合成此等材料之方法
US8535832B2 (en) Metal oxide coated positive electrode materials for lithium-based batteries
US9960424B2 (en) Positive electrode materials for high discharge capacity lithium ion batteries
EP2471134B1 (en) Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US20180062170A1 (en) Coated positive electrode materials for lithium ion batteries
JP4326041B2 (ja) ドープされた層間化合物およびその作製方法
JP4574877B2 (ja) リチウム二次電池用正極活物質及びその製造方法
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4524339B2 (ja) リチウム二次電池用正極活物質の製造方法
KR100428616B1 (ko) 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
JP2012504316A (ja) 高い比容量を有するフッ素をドープされたリチウムリッチ金属酸化物からなる正極電池材料およびそれに対応する電池
CN111525104B (zh) 低钴含量电极活性材料
US10224539B2 (en) Surface modified cathode with improved lithium intercalation behavior
JP4553095B2 (ja) コバルト酸化物粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法並びに非水電解質二次電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant