CN111512474A - 蓄电元件 - Google Patents

蓄电元件 Download PDF

Info

Publication number
CN111512474A
CN111512474A CN201880083522.9A CN201880083522A CN111512474A CN 111512474 A CN111512474 A CN 111512474A CN 201880083522 A CN201880083522 A CN 201880083522A CN 111512474 A CN111512474 A CN 111512474A
Authority
CN
China
Prior art keywords
main body
electrode
electrode body
container
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880083522.9A
Other languages
English (en)
Inventor
小川祐介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Publication of CN111512474A publication Critical patent/CN111512474A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

蓄电元件(10)具备:层叠型的电极体(400);收容电极体(400)的容器主体(101);具有将容器主体(101)闭塞的盖体(110)的盖结构体(180);和配置于容器主体(101)内的电极体(400)的周围的侧方隔离物(700)(绝缘构件),侧方隔离物(700)具有:与电极体(400)的第二侧面(405)对置的板状的主体部(701);和作为主体部(701)中的盖结构体(180)侧的一端部且比主体部(701)中的其他部分更为厚壁的嵌合部(702)(厚壁部)。

Description

蓄电元件
技术领域
本发明涉及具备配置于电极体的周围的绝缘构件的蓄电元件。
背景技术
过去,在蓄电元件中,已知通过将作为绝缘构件的隔离物以安装在电极体的状态插入容器来进行组装的蓄电元件(例如参考专利文献1)。
现有技术文献
专利文献
专利文献1:JP特开2011-216239号公报
发明内容
发明要解决的课题
然而,在蓄电元件的组装时,在预先将盖体以及隔离物组装在电极体的状态下将电极体插入容器主体。这时,隔离物中的不与电极体重叠的部分由于没有支撑而易于纵向弯曲(buckling)。近年来,出于能量密度的高密化的观点,还在推进隔离物自身的薄型化,处于前述的部分更易于纵向弯曲的状况。
为此,本发明的目的在于,提供能抑制作为绝缘构件的隔离物的纵向弯曲的蓄电元件。
用于解决课题的手段
为了达成上述目的,本发明的一个方案所涉及的蓄电元件具备:层叠型的电极体;收容电极体的容器主体;具有将容器主体闭塞的盖体的盖结构体;和配置于容器主体内的电极体的周围的绝缘构件,绝缘构件具有:与电极体的侧面对置的板状的主体部;和作为主体部中的盖结构体侧的一端部且比主体部中的其他部分更厚壁的厚壁部。
据此,由于绝缘构件的主体部是板状,因此能减小在容器主体内该主体部所占的容积。因此,能加大电极体,能提高能量密度。
另外,由于绝缘构件的主体部的一端部是比其他部分更为厚壁的厚壁部,因此能提高该部位的强度。因此,能抑制插入时的绝缘构件的纵向弯曲。由此能将电极体以及绝缘构件平稳地插入容器主体。
另外,厚壁部向电极体与盖结构体之间突出。
据此,由于厚壁部向电极体与盖结构体之间突出,因此即使不使厚壁部向与电极体相反的一侧突出,也能确保该厚壁部的厚度。即,能利用电极体与盖结构体之间的剩余空间来设置厚壁部。换言之,能抑制由于厚壁部而容器主体的内部空间变得狭小。因此,能极力加大电极体,能提高能量密度。
另外,厚壁部具有越接近盖结构体越加厚厚壁部的壁厚的倾斜面。
据此,由于厚壁部具有越接近盖结构体越加厚厚壁部的壁厚的倾斜面,因此越前往容器主体的内方,倾斜面与电极体的间隔越大。由此,能减小插入时厚壁部对电极体进行抵接的面积,能减小加在电极体的负荷。
另外,主体部的宽度比电极体的侧面的宽度窄。
在此,在容器主体的内部,有相邻的内表面彼此所成的角部例如形成为R形状的情况。若角部是R形状,容器主体内部的宽度就会慢慢变窄,就会有可能与和电极体的侧面重叠的绝缘构件的主体部干扰。
如上述那样,由于绝缘构件的主体部的宽度比电极体的侧面的宽度窄,因此能够在宽度方向上收容在绝缘构件电极体的侧面内。由此,能将主体部配置得比R形状的一对角部更靠内侧,能抑制主体部与角部的干扰。因此,能将电极体以及绝缘构件更平稳地插入容器主体。
另外,主体部中的另一端部的角部被倒角。
据此,由于绝缘构件的主体部中的另一端部的角部被倒角,因此在将绝缘构件插入容器主体时,该角部难以与容器主体干扰。因此,能将电极体以及绝缘构件更平稳地插入容器主体。
另外,主体部中的另一端部收容在电极体的侧面内。
据此,由于主体部中的另一端部收容在电极体的侧面内,因此主体部的另一端部不从电极体突出。因此,能抑制主体部的另一端部与容器主体的干扰,能进行更平稳的插入。
发明的效果
根据本发明,能提供能抑制作为绝缘构件的隔离物的纵向弯曲的蓄电元件。
附图说明
图1是表示实施方式所涉及的蓄电元件的外观的立体图。
图2是实施方式所涉及的蓄电元件的分解立体图。
图3是从实施方式所涉及的蓄电元件去除容器主体和绝缘薄片的部位的分解立体图。
图4是表示实施方式所涉及的侧方隔离物的概略结构的侧视图。
图5是表示实施方式所涉及的侧方隔离物的概略结构的俯视图。
图6是表示实施方式所涉及的侧方隔离物的概略结构的俯视图。
图7是表示实施方式所涉及的侧方隔离物、电极体和绝缘薄片的位置关系的主视图。
图8是表示实施方式所涉及的侧方隔离物、容器主体和绝缘薄片的位置关系的截面图。
图9是表示实施方式所涉及的侧方隔离物、电极体和盖结构体的位置关系的截面图。
图10是表示实施方式所涉及的绝缘薄片与侧方隔离物的接合区域的说明图。
图11是表示变形例所涉及的侧方隔离物、电极体和绝缘薄片的位置关系的主视图。
具体实施方式
以下参考附图来说明本发明的实施方式以及其变形例所涉及的蓄电元件。另外,以下说明的实施方式以及其变形例均表示总括或具体的示例。以下的实施方式以及其变形例中示出的数值、形状、材料、构成要素、构成要素的配置位置以及连接形态、制造工序、制造工序的顺序等是一例,并非限定本发明的主旨。另外,关于以下的实施方式以及其变形例中的构成要素当中未记载于表示最上位概念的独立权利要求的构成要素,作为任意的构成要素来说明。另外,各图是示意图,尺寸等不一定严格是图示的尺寸。
另外,在以下的说明以及附图中,将蓄电元件所具有的一对电极端子的排列方向、电极体的一对集束部的排列方向或容器的短侧面的对置方向定义成X轴方向。另外,将容器的长侧面的对置方向、容器的短侧面的短边方向、容器的厚度方向或电极体的极板的层叠方向定义成Y轴方向。另外,将蓄电元件的容器主体和盖体的排列方向、容器的短侧面的长边方向、电极端子的轴部的轴方向或上下方向定义成Z轴方向。这些X轴方向、Y轴方向以及Z轴方向是相互交叉(本实施方式中正交)的方向。另外,根据使用方式而还考虑Z轴方向不成为上下方向的情况,但以下为了说明方便,将Z轴方向设为上下方向来进行说明。另外,在以下的说明中,例如所谓X轴方向正侧,表示X轴的箭头方向侧,所谓X轴方向负侧,表示X轴方向正侧的相反侧。关于Y轴方向以及Z轴方向也同样。
(实施方式)
[1.蓄电元件的结构]
首先使用图1~图3来进行本实施方式中的蓄电元件10的整体的说明。图1是表示实施方式所涉及的蓄电元件10的外观的立体图。另外,图2是实施方式所涉及的蓄电元件10的分解立体图。图3是从实施方式所涉及的蓄电元件10去除容器主体101和绝缘薄片500的部位的分解立体图。
蓄电元件10是能将电充电、并且还能将电放电的二次电池,具体是锂离子二次电池等非水电解质二次电池。蓄电元件10例如能运用于电动汽车(EV)、混合动力电动汽车(HEV)或插电式混合动力电动汽车(PHEV)等的汽车用(或者移动体用)电源、电子设备用电源、或者电力贮存用电源等中。另外,蓄电元件10并不限定于非水电解质二次电池,也可以是非水电解质二次电池以外的二次电池,还可以是电容器。蓄电元件10也可以是即使使用者不进行充电也能使用蓄积的电的一次电池。另外,蓄电元件10也可以是全固体电池。
如这些图所示那样,蓄电元件10具备容器100、电极体400、绝缘薄片500和一对侧方隔离物700。另外,在容器100的内部封入电解液(非水电解质),但省略图示。作为电解液,只要无损蓄电元件10的性能,就对其种类没有特别限制,能选择各种电解液。
在本实施方式中,通过在容器100的盖体110配置各种要素而构成的盖结构体180配置在电极体400的上方。在容器100内,电极体400的一端部与盖结构体180对置。
容器100由矩形筒状且有底的容器主体101、和将容器主体101的开口闭塞的盖体110构成。在容器100中收容有电极体400、绝缘薄片500和一对侧方隔离物700。容器100通过在将电极体400等收容到内部后将盖体110和容器主体101焊接等而具有将内部密封的结构。另外,容器100(盖体110以及容器主体101)例如由不锈钢、铝或铝合金等能进行焊接的金属形成。另外,盖体110和容器主体101优选由相同材质形成,但用不同材质形成也没关系。另外,在盖体110设有用于对容器100内部注入电解液的注液口124。注液口124被注液栓126堵塞。另外,在盖体110也可以配置在容器100的内压上升时将容器100内部的气体排出的气体排出阀等。
盖结构体180具有容器100的盖体110、正极端子200、负极端子300、上衬垫125、135、下衬垫120、130、正极集电体140和负极集电体150。
盖体110是板状构件,如图3所示那样形成注液口124、贯通孔110a、110b和2个鼓出部160。注液口124是用于在蓄电元件10的制造时注液电解液的贯通孔。在本实施方式中,2个鼓出部160分别通过将盖体110的一部分形成为鼓出状而设于盖体110,例如用在上衬垫125、135的定位中。另外,在鼓出部160的背侧(与电极体400对置的一侧),在上方形成作为凹状的部分的凹部(未图示),在凹部的一部分卡合下衬垫120、130的卡合突部120b、130b。由此下衬垫120、130也被定位,在该状态下被固定于盖体110。
上衬垫125、135和下衬垫120、130是绝缘体,例如由聚丙烯(PP)、聚乙烯(PE)或聚苯硫醚树脂(PPS)等绝缘性的树脂等形成。
上衬垫125是将正极端子200和盖体110电绝缘的构件。在上衬垫125形成正极端子200的紧固部贯通的贯通孔125a。下衬垫120是将正极集电体140和盖体110电绝缘的构件。在下衬垫120形成正极端子200的紧固部贯通的贯通孔120a。
上衬垫135是将负极端子300和盖体110电绝缘的构件。在上衬垫135形成负极端子300的紧固部310(参考图9)贯通的贯通孔135a。下衬垫130是将负极集电体150和盖体110电绝缘的构件。在下衬垫130形成负极端子300的紧固部310贯通的贯通孔130a。
上衬垫125、135也有被称作例如上填充物(packing)的情况,下衬垫120、130也有被称作例如下填充物的情况。即,在本实施方式中,上衬垫125、135还具有将电极端子(200或300)与容器100之间密封的功能。另外,下衬垫120、130也可以具有将电极端子(200或300)与容器100之间密封的功能。
另外,在下衬垫120、130设有与侧方隔离物700卡合的卡合部121、131。具体地,卡合部121、131从下衬垫120、130的外侧的一端部向外方在X轴方向上突出。在卡合部121、131的Y轴方向上的两侧部,立设加固肋122、132。加固肋122、132倾斜成越前往卡合部121、131的前端,高度越低。通过该加固肋122、132来提高卡合部121、131的强度。
通过卡合部121、131与侧方隔离物700卡合来决定相对于侧方隔离物700的下衬垫120、130的位置。进而决定相对于侧方隔离物700的盖结构体180的位置。关于该卡合部121、131和侧方隔离物700的卡合时的位置关系,之后叙述。
如图1~图3所示那样,正极端子200是经由正极集电体140与电极体400的正极电连接的电极端子。负极端子300是经由负极集电体150与电极体400的负极电连接的电极端子。即,正极端子200以及负极端子300是用于将蓄积于电极体400的电导出到蓄电元件10的外部空间且还用于为了在电极体400蓄积电而对蓄电元件10的内部空间导入电的金属制的电极端子。正极端子200由铝或铝合金等形成,负极端子300由铜或铜合金等形成。
另外,在正极端子200设有将容器100和正极集电体140紧固的紧固部。在负极端子300设有用于将容器100和负极集电体150紧固的紧固部310(参考图9)。
正极端子200的紧固部是从正极端子200向下方延伸设置的构件(铆钉),插入在正极集电体140的贯通孔140a并进行铆接。具体地,正极端子200的紧固部插入上衬垫125的贯通孔125a、盖体110的贯通孔110a、下衬垫120的贯通孔120a以及正极集电体140的贯通孔140a并进行铆接。由此,将正极端子200和正极集电体140电连接,正极集电体140和正极端子200、上衬垫125以及下衬垫120一起被固定在盖体110。
负极端子300的紧固部310是从负极端子300向下方延伸设置的构件(铆钉),插入负极集电体150的贯通孔150a并进行铆接。具体地,紧固部310插入上衬垫135的贯通孔135a、盖体110的贯通孔110b、下衬垫130的贯通孔130a以及负极集电体150的贯通孔150a并进行铆接。由此,将负极端子300和负极集电体150电连接,负极集电体150和负极端子300、上衬垫135以及下衬垫130一起被固定在盖体110。
另外,紧固部310可以作为与负极端子300的一体物而形成,也可以将作为与负极端子300不同的部件而制作的紧固部310通过铆接或焊接等手法固定在负极端子300。关于正极端子200与其紧固部的关系也同样。
正极集电体140配置于电极体400与盖体110之间,是将电极体400和正极端子200电连接的构件。正极集电体140由铝或铝合金等形成。在正极集电体140形成正极端子200的紧固部贯通的贯通孔140a。
负极集电体150配置于电极体400与盖体110之间,是将电极体400和负极端子300电连接的构件。负极集电体150由铜或铜合金等形成。负极集电体150形成有负极端子300的紧固部310贯通的贯通孔150a。
电极体400如图3所示那样具备正极板、负极板和隔板,是能蓄积电的蓄电要素(发电要素),配置于容器100的内方。具体地,电极体400是多个正极板和多个负极板夹着隔板而交替排列的层叠型的电极体。正极板是在由铝、铝合金等构成的长条带状的集电箔即正极基材层上形成有正极活性物质层的极板。负极板是在由铜、铜合金等构成的长条带状的集电箔即负极基材层上形成有负极活性物质层的极板。另外,作为上述集电箔,还能适当使用镍、铁、不锈钢、钛、煅烧碳、导电性高分子、导电性玻璃、Al-Cd合金等公知的材料。另外,作为正极活性物质层以及负极活性物质层中所用的正极活性物质以及负极活性物质,只要是能包藏放出锂离子的活性物质,就能适当使用公知的材料。另外,隔板例如能使用由树脂构成的微多孔性的薄片、无纺布。
电极体400具有:作为进行发电以及蓄电的部分的电极体主体401;和作为进行电极体主体401与外部的电力的交换的部分的正极集束部415以及负极集束部425。
电极体主体401作为整体而形成为大致长方体状。在电极体主体401,多个极板的端缘汇集而构成面。具体说明,在电极体主体401具备:与盖体110对置的顶面402;与容器主体101的底部对置的底面403;与顶面402以及底面403相邻、与XZ平面平行的一对第一侧面404;和与顶面402以及底面403相邻、与YZ平面平行的一对第二侧面405。第一侧面404和第二侧面405是不同的侧面。具体地,第一侧面404是比第二侧面405面积更大的长侧面,第二侧面405是短侧面。
在电极体主体401中的顶面402以及一对第一侧面404,在2个部位安装粘接带370。另外,在电极体主体401中的底面403以及一对第一侧面404,在3个部位安装粘接带370。通过这些粘接带370来防止正极板、负极板和隔板的位置偏离。
正极集束部415在电极体主体401的顶面402从X轴方向负侧突出。通过在各正极板将不涂抹正极活性物质而正极基材层露出的部位捆扎,来形成正极集束部415。负极集束部425在电极体主体401的顶面402从X轴方向正侧突出。通过在各负极板将不涂抹负极活性物质而负极基材层露出的部位捆扎,来形成负极集束部425。
正极集束部415与正极集电体140接合,负极集束部425与负极集电体150接合。即,正极集束部415经由正极集电体140与正极端子200电连接,负极集束部425经由负极集电体150与负极端子300电连接。由此电极体400能经由正极端子200以及负极端子300在与外部的装置等之间进行电力的交换。
另外,在集束部与集电体的接合中能使用周知的接合方法。作为接合方法的一例,能举出超声波焊接、激光焊接等焊接、铆接或上螺丝等紧固等。
接下来,说明本实施方式所涉及的侧方隔离物700。
如图2所示那样,一对侧方隔离物700分别与电极体400的一对第二侧面405重叠而配置。即,在容器主体101内,一对侧方隔离物700配置于电极体400的周围。侧方隔离物700例如是由PP、PE或PPS等绝缘性的树脂形成的绝缘构件。以后,对一对侧方隔离物700当中负极侧的侧方隔离物700的具体的结构进行说明。关于正极侧的侧方隔离物700,由于是与负极侧的侧方隔离物700同样的结构,因此省略其说明。
图4是表示实施方式所涉及的侧方隔离物700的概略结构的侧视图。图5以及图6是表示实施方式所涉及的侧方隔离物700的概略结构的俯视图。具体地,图4是从Y轴方向负侧来看侧方隔离物700的图,图5是从X轴方向正侧来看侧方隔离物700的图,图6是从X轴方向负侧来看侧方隔离物700的图。
如图4~图6所示那样,侧方隔离物700作为整体而形成为大致平板状。侧方隔离物700具备主体部701和嵌合部702,它们一体成形。
主体部701形成为板状,与电极体400的第二侧面405对置而配置。具体地,主体部701形成为在Z轴方向上为长条状并与YZ平面平行的大致矩形。主体部701中的Y轴方向的宽度H1比电极体400的第二侧面405的宽度H2窄(参考图7)。具体地,主体部701的宽度H1优选为电极体400的宽度的80%以上且不足100%。在本实施方式中,侧方隔离物700的整体的宽度收于宽度H1。
另外,主体部701的下端部的一对角部703被倒角。具体地,角部703形成为R形状。另外,角部703只要是不成为角呈锐角的形状,就并不限定于R形状。作为角部703中的其他形状,例如能举出C面状等。另外,主体部701的下端部(另一端部)是与其他部分相比壁厚更薄的薄壁部704。薄壁部704成为与主体部701中的宽度方向的整体一样的厚度。在主体部701中的与电极体400的第二侧面405相反的一侧的面,在薄壁部704与其他部分的边界部分形成倾斜面705。通过该倾斜面705来抑制应力的集中。
嵌合部702从主体部701的上端部(一端部)向容器主体101的内方突出。因此,嵌合部702的突出方向成为X轴方向。在主体部701的上端部的正下方,也成为与其他部分相比壁厚更薄的薄壁部706。薄壁部706成为与主体部701中的宽度方向的整体一样的厚度。在主体部701中的与电极体400的第二侧面405相反的一侧的面,设置一对倾斜面707,使得在Z轴方向上夹着薄壁部706。一对倾斜面707是薄壁部706与其他部分的边界部分。通过该一对倾斜面707来抑制应力的集中。
在一对薄壁部704、706之间,在Z轴方向上设置一对长条的狭缝708。一对狭缝708平行设置。由于通过这一对狭缝708而电极体400的第二侧面405露出,因此电解液经过该狭缝708而浸透到电极体400。
嵌合部702具备基端部721和前端部725。嵌合部702的基端部721具备倾斜部722、一对壁部723和保持部724。倾斜部722具备越接近盖结构体180就越加厚壁厚的倾斜面726。在此,将倾斜部722的厚度方向与主体部701同样地设为X轴方向。但在倾斜部722中,还能将厚度方向设为Z轴方向。在该情况下,倾斜面726也可以说是使倾斜部722的厚度越接近盖结构体180越薄。倾斜部722不管是X轴方向的厚度还是Z轴方向的厚度,都比主体部701中的嵌合部702以外的部分的X轴方向的壁厚更厚。
一对壁部723设于倾斜部722中的Y轴方向的两端部。具体地,壁部723从倾斜部722的倾斜面726伸出。壁部723和倾斜部722所成的外侧面齐平,其侧视观察形状是矩形。即,该外侧面比仅壁部723所成的外侧面面积大。
保持部724是保持前端部725的部位。具体地,保持部724设于倾斜部722中的Y轴方向的中央部。该保持部724从倾斜部722的倾斜面726伸出,从其前端面,前端部725突出。如图6所示那样,在俯视观察下,保持部724形成为将前端部725作为整体而收容的形状、大小。具体地,保持部724的俯视观察形状是矩形,Z轴方向的厚度比前端部725厚,Y轴方向的宽度也比前端部725大。
前端部725形成为方柱状,从保持部724的前端面向容器100的内方突出。前端部725的上表面与基端部721的上表面齐平。前端部725的X轴方向的厚度和Z轴方向的厚度分别比主体部701中的X轴方向的厚度大。
如此地,在嵌合部702中,基端部721和前端部725各自的壁厚比主体部701中的嵌合部702以外的部分的壁厚更厚。即,嵌合部702是与主体部701的其他部分相比壁更厚的厚壁部。
接下来说明容器100内的侧方隔离物700与其他构件的位置关系。图7是表示实施方式所涉及的侧方隔离物700、电极体400和绝缘薄片500的位置关系的主视图。图8是表示实施方式所涉及的侧方隔离物700、容器主体101和绝缘薄片500的位置关系的截面图。图9是表示实施方式所涉及的侧方隔离物700、电极体400和盖结构体180的位置关系的截面图。图8是相当于包含图7中的VIII-VIII切断线的截面的截面图。图9是相当于包含图7中的IX-IX切断线的截面的截面图。在图8以及图9中还图示了图7中未图示的构件。
如图7所示那样,侧方隔离物700的主体部701与电极体400的第二侧面405重叠而配置。主体部701在Y轴方向(宽度方向)上收容在电极体400的第二侧面405内。这是因为,侧方隔离物700的宽度H1比电极体400的第二侧面405的宽度H2小。如图8所示那样,虽然容器主体101的内侧的角部形成为R形状,但通过将主体部701收容在电极体400的第二侧面405内,能使主体部701从容器主体101的内侧的角部分离开。由此能抑制容器主体101的内侧的角部与主体部701的干扰。
另外,如图7所示那样,主体部701的下端部即薄壁部704位于比电极体400的底面403更靠上方的位置。具体地,主体部701的Z轴方向的长度优选是电极体400的第二侧面405的Z轴方向的长度(高度)的30%以上且不足100%。由此,主体部701的薄壁部704在Z轴方向上收容在电极体400的第二侧面405内。即,由于主体部701的薄壁部704不从电极体400突出,因此能抑制薄壁部704与容器主体101的干扰。
如图9所示那样,侧方隔离物700的嵌合部702配置于盖体110与电极体400之间。在此,在盖结构体180,在盖体110与下衬垫130的卡合部131之间设置沿着Z轴方向的间隙S。该间隙S将侧方隔离物700侧开放,从该开放部分将嵌合部702的前端部725插入间隙S。嵌合部702的前端部725在间隙S内在Z轴方向上与盖结构体180嵌合。即,成为卡合部131与侧方隔离物700卡合的状态。具体地,前端部725在Z轴方向正侧与盖体110抵接,在Z轴方向负侧与下衬垫130的卡合部131抵接。即,前端部725在间隙S内被盖体110和下衬垫130所夹。
在此,Z轴方向负侧是对容器主体101插入电极体400的插入方向。即,嵌合部702的前端部725可以说是在间隙S内在插入方向以及其相反方向的各方向上与盖结构体180抵接来与间隙S嵌合。如此地,由于嵌合部702的前端部725与间隙S嵌合,因此抑制了相对于盖结构体180的侧方隔离物700的Z轴方向的位置偏离。
嵌合部702的保持部724的前端面与下衬垫130的卡合部131在X轴方向上抵接。即,保持部724是在嵌合部702的突出方向(X轴方向)上与盖结构体180抵接的抵接部。由此,进行突出方向上的侧方隔离物700和盖结构体180的定位。
另外,一对壁部723将其下表面与电极体400的顶面402对置。由此,即使侧方隔离物700想要在嵌合部702的边界弯折,一对壁部723会与电极体400的顶面402抵接,抑制了进一步的弯折。
另外,侧方隔离物700和电极体400通过粘接带380固定。因此,电极体400通过侧方隔离物700抑制了相对于盖结构体180的Z轴方向的位置偏离。
将粘接带380对主体部701的一对薄壁部704、706贴附(参考图2)。由于对比主体部701的其他部分薄的薄壁部704、706贴附粘接带380,因此能抑制粘接带380中的从主体部701的突出量。因此,能加大容器100内的电极体400的设置空间,即使不加大蓄电元件10整体,也能加大电极体400的外形尺寸,从而能提高能量密度。
如图7所示那样,绝缘薄片500是覆盖电极体400的一部分的绝缘性的薄片体。具体地,绝缘薄片500覆盖电极体400的一对第一侧面404和底面403。由此,绝缘薄片500作为整体而形成大致U字状。绝缘薄片500的两端部与侧方隔离物700接合。
图10是表示实施方式所涉及的绝缘薄片500与侧方隔离物700的接合区域C的说明图。在图7以及图10中,将接合区域C进行阴影图示。
具体地,绝缘薄片500的两端部分别与侧方隔离物700的一对壁部723接合。另外,这里说的“接合”中包含粘接、熔敷、粘着等。由于一对壁部723配置于电极体400的上方,因此仅将绝缘薄片500中的覆盖第一侧面404的部分延长,就能使绝缘薄片500与壁部重合。由此能使绝缘薄片成为简单的形状。例如绝缘薄片500在展开时成为长条的矩形。另外,绝缘薄片500例如由PP、PE或者PPS等绝缘性的树脂形成。
[2.蓄电元件的制造方法]
接下来说明蓄电元件10的制造方法。另外,在以后的说明中例示作业者组装蓄电元件10的情况,但也能由组装装置组装蓄电元件10。
首先,作业者对电极体400的正极集束部415接合正极集电体140,并对电极体400的负极集束部425接合负极集电体150。之后,作业者对容器100的盖体110组装正极端子200、负极端子300、上衬垫125、135、下衬垫120、130、正极集电体140和负极集电体150。由此将电极体400和盖结构体180一体化。
接下来,作业者对电极体400安装一对侧方隔离物700。具体地,作业者对电极体400的第二侧面405重叠主体部701,并在盖结构体180的间隙S插入嵌合部702。之后,作业者对各侧方隔离物700的薄壁部704、706以及电极体400的各第一侧面404贴附粘接带380,并在电极体400固定一对侧方隔离物700。
接下来,作业者将绝缘薄片500卷绕到电极体400,使得覆盖电极体400的底面403和一对第一侧面404,然后将该绝缘薄片500的两端部与一对侧方隔离物700的嵌合部702接合。由此将盖结构体180、电极体400、一对侧方隔离物700以及绝缘薄片500一体化。
接下来,作业者将一体化的盖结构体180、电极体400、一对侧方隔离物700以及绝缘薄片500插入容器主体101。在该插入时,对绝缘薄片500产生从电极体400的底面403向盖结构体180的张力,但该张力难以作用到绝缘薄片500的两端部。即,在插入时,由于是绝缘薄片500的两端部难以从侧方隔离物700剥离的状态,因此能进行平稳的插入。在插入后,作业者通过将盖体110焊接在容器主体101来组装容器100。
之后,作业者从注液口124注入电解液,来对容器100内填充电解液。在电解液的注入后,作业者通过如图1所示那样将注液口124用注液栓126堵塞,来使蓄电元件10完成。
[3.效果等]
如以上说明的那样,根据本实施方式所涉及的蓄电元件10,具备:层叠型的电极体400;收容电极体400的容器主体101;具有将容器主体101闭塞的盖体110的盖结构体180;和配置于容器主体101内的电极体400的周围的侧方隔离物700(绝缘构件),侧方隔离物700具有:与电极体400的第二侧面405对置的板状的主体部701;和作为主体部701中的盖结构体180侧的一端部且比主体部701中的其他部分更厚壁的嵌合部702(厚壁部)。
据此,由于侧方隔离物700的主体部701是板状,因此能减小在容器主体101内该主体部701所占的容积。因此,能加大电极体400,能提高能量密度。
另外,由于侧方隔离物700的主体部701的一端部是比其他部分更厚壁的嵌合部702,因此能提高该部位的强度。因此,能抑制插入时的侧方隔离物700的纵向弯曲。由此能将电极体400以及侧方隔离物700平稳地插入容器主体101。
另外,嵌合部702向电极体400与盖结构体180之间突出。
据此,由于嵌合部702向电极体400与盖结构体180之间突出,因此即使不使嵌合部702向与电极体400相反的一侧突出,也能确保该嵌合部702的厚度。即,能利用电极体400与盖结构体180之间的剩余空间来设置嵌合部702。换言之,能抑制由于嵌合部702而容器主体101的内部空间变得狭小。因此,能极力加大电极体400,能提高能量密度。
另外,嵌合部702具有越接近盖结构体180越加厚嵌合部702的壁厚的倾斜面726。
据此,由于嵌合部702具有越接近盖结构体180越加厚嵌合部702的壁厚的倾斜面726,因此在X轴方向上越前往容器主体101的内方,则倾斜面726与电极体400的间隔越大。由此能减小插入时嵌合部702对电极体400进行抵接的面积,能减小加在电极体400上的负荷。
另外,主体部701的宽度H1比电极体400的第二侧面405的宽度H2窄。
在此,存在在容器主体101的内部,相邻的内表面彼此所成的角部形成为例如R形状的情况。若角部是R形状,则容器主体101内部的宽度会慢慢变窄,有可能会和与电极体400的第二侧面405重叠的侧方隔离物700的主体部701干扰。
如上述那样,若主体部701的宽度H1比电极体400的第二侧面405的宽度H2窄,就能在宽度方向上将侧方隔离物700收容在电极体400的第二侧面405内。由此,能比R形状的一对角部更靠内侧来配置主体部701,能抑制主体部701与角部的干扰。因此,能将电极体400以及侧方隔离物700更平稳地插入容器主体101。
另外,主体部701中的薄壁部704(另一端部)的角部703被倒角。
据此,由于主体部701中的薄壁部704的角部703被倒角,因此在将侧方隔离物700插入容器主体101时,该角部703难以与容器主体101干扰。因此,能将电极体400以及侧方隔离物700更平稳地插入容器主体101。例如在侧方隔离物700从电极体400在宽度方向上位置偏离从而角部703从电极体400的第二侧面405超出的情况下,产生合适的效果。
另外,主体部701中的薄壁部704收容在电极体400的第二侧面405内。
据此,由于主体部701中的薄壁部704收容在电极体400的第二侧面405内,因此薄壁部704不从电极体400突出。因此,由于能抑制薄壁部704与容器主体101的干扰,因此能进行更平稳的插入。
[4.变形例]
以上说明了上述实施方式所涉及的蓄电元件10,但蓄电元件10也可以具备与上述方案不同的绝缘薄片。因此,以下以与上述实施方式的差异为中心来说明针对蓄电元件10所具备的绝缘薄片的变形例。另外,在以后的说明中,存在对与上述实施方式相同的部分标注相同附图标记并省略其说明的情况。
在上述实施方式中例示了绝缘薄片500在展开时是长条的矩形的情况,但在该变形例中例示在绝缘薄片500A的两端部设置突出片501的情况。
图11是表示变形例所涉及的侧方隔离物700、电极体400和绝缘薄片500A的位置关系的主视图。具体地,图11是与图7对应的图。如图11所示那样,在绝缘薄片500A的两端部分别设置突出片501。另外,虽省略图示,但突出片501在正极侧也设于绝缘薄片500A的两端部。
突出片501与侧方隔离物700中的与电极体400的第二侧面405相反的一侧的外表面710接合。具体地,突出片501与外表面710中的盖结构体180侧的端部接合。外表面710是侧方隔离物700中的与容器主体101的内表面对置的面。
突出片501是矩形,在接合前,从绝缘薄片500A的两端部沿着X轴方向向外方突出。通过将该突出片501折弯来使其与侧方隔离物700的外表面710重合,来将突出片501与外表面710接合。侧方隔离物700的外表面710由于表面积比嵌合部702的表面积大,因此能加大接合区域C。
[5.其他实施方式]
以上基于实施方式以及其变形例说明了本发明所涉及的蓄电元件。但本发明并不限定于上述实施方式以及变形例。只要不脱离本发明的主旨,则将本领域技术人员想到的各种变形施加于上述实施方式或变形例而得到的方案、或者组合上述说明的多个构成要素而构建的方式也包含在本发明的范围内。
例如在上述实施方式中,例示了多个正极板和多个负极板夹着隔板交替排列的层叠型的电极体400。但电极体也可以是正极板和负极板夹着隔板而蛇腹状折叠的层叠型的电极体。另外,电极体也可以是正极板和负极板夹着隔板而卷绕的卷绕型的电极体。
另外,在上述实施方式中,例示了在侧方隔离物700设置嵌合部702、在盖结构体180设置间隙S的情况。但也可以在侧方隔离物设置间隙,在盖结构体设置嵌合部。
另外,在上述实施方式中,例示了嵌合部702的基端部721比前端部725更厚壁的情况,但也可以嵌合部的基端部和前端部是一样的壁厚。
另外,在上述实施方式中,例示了间隙S设于盖体110与下衬垫120、130之间的情况。但间隙也可以设于盖体单体,还可以设于下衬垫单体。
另外,在上述实施方式中,例示了作为厚壁部的嵌合部702向电极体400与盖结构体180之间突出的情况。但厚壁部只要比其他部分更厚壁即可,也可以不向电极体与盖结构体之间突出。
另外,在上述实施方式中,例示了嵌合部702具备倾斜面726的情况。但嵌合部也可以不具备越接近盖结构体越加厚嵌合部的壁厚的倾斜面。
另外,在上述实施方式中,例示了侧方隔离物700的主体部701的宽度H1比电极体400的第二侧面405的宽度H2窄的情况。但主体部的宽度也可以是与电极体的第二侧面的宽度同等的程度以上。
另外,在上述实施方式中,例示了侧方隔离物700的主体部701中的薄壁部704(另一端部)的角部703被倒角的情况。但也可以主体部中的另一端部的角部不被倒角。
另外,在上述实施方式中,例示了侧方隔离物700的主体部701中的另一端部收容在电极体400的第二侧面405内的情况。但也可以主体部中的另一端部不收容在电极体的第二侧面。
另外,在上述实施方式中,例示了绝缘薄片500与侧方隔离物700中的盖结构体180侧的一端部接合的情况。但绝缘薄片与侧方隔离物的任意部位接合即可。
另外,在上述实施方式中,例示了绝缘薄片500覆盖电极体400的底面403和一对第一侧面404的情况。但绝缘薄片至少覆盖电极体中的一个第一侧面即可。另外,绝缘薄片可以单独地具备覆盖电极体中的一对第一侧面当中的一方的第一侧面的薄片和覆盖另一方的第一侧面的薄片。
另外,在上述实施方式中,例示了侧方隔离物700为平板状的情况。但侧方隔离物也可以是弯曲的曲板状。
在与侧方隔离物700的主体部701对置的电极体400的第二侧面405,也可以是,隔板比正极板以及负极板更突出。通过隔板比正极板以及负极板更突出,侧方隔离物700难以与正极板以及负极板接触。由此能抑制由于与侧方隔离物700的接触而正极板或负极板损伤。
产业上的可利用性
本发明能运用于锂离子二次电池等蓄电元件等。
附图标记的说明
10 蓄电元件
100 容器
101 容器主体
110 盖体
110a、110b、120a、125a、130a、135a、140a、150a 贯通孔
120、130 下衬垫(衬垫)
120b、130b 卡合突部
121、131 卡合部
122、132 加固肋
124 注液口
125、135 上衬垫
126 注液栓
140 正极集电体
150 负极集电体
160 鼓出部
180 盖结构体
200 正极端子
300 负极端子
310 紧固部
370、380 粘接带
400 电极体
401 电极体主体
402 顶面
403 底面
404 第一侧面
405 第二侧面
415 正极集束部
425 负极集束部
500、500A 绝缘薄片
501 突出片
700 侧方隔离物(绝缘构件)
701 主体部
702 嵌合部(厚壁部)
703 角部
704、706 薄壁部
705、707、726 倾斜面
708 狭缝
710 外表面
721 基端部
722 倾斜部
723 壁部
724 保持部(抵接部)
25 前端部
C 接合区域H1、H2宽度
S 间隙。

Claims (7)

1.一种蓄电元件,其特征在于,具备:
层叠型的电极体;
收容所述电极体的容器主体;
具有将所述容器主体闭塞的盖体的盖结构体;和
配置于所述容器主体内的所述电极体的周围的绝缘构件,
所述绝缘构件具有:
与所述电极体的侧面对置的板状的主体部;和
作为所述主体部中的所述盖结构体侧的一端部且比所述主体部中的其他部分更为厚壁的厚壁部。
2.根据权利要求1所述的蓄电元件,其特征在于,
所述厚壁部向所述电极体与所述盖结构体之间突出。
3.根据权利要求2所述的蓄电元件,其特征在于,
所述厚壁部具有越接近所述盖结构体越加厚所述厚壁部的壁厚的倾斜面。
4.根据权利要求1~3中任一项所述的蓄电元件,其特征在于,
所述主体部的宽度比所述电极体的所述侧面的宽度窄。
5.根据权利要求1~4中任一项所述的蓄电元件,其特征在于,
所述主体部中的另一端部的角部被倒角。
6.根据权利要求1~5中任一项所述的蓄电元件,其特征在于,
所述主体部中的另一端部收容在所述电极体的所述侧面内。
7.根据权利要求1~6中任一项所述的蓄电元件,其特征在于,
所述电极体具有正极板、负极板和隔板,
在所述电极体的所述侧面,所述隔板比所述正极板以及所述负极板更突出。
CN201880083522.9A 2017-12-27 2018-12-21 蓄电元件 Pending CN111512474A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017251006 2017-12-27
JP2017-251006 2017-12-27
PCT/JP2018/047176 WO2019131481A1 (ja) 2017-12-27 2018-12-21 蓄電素子

Publications (1)

Publication Number Publication Date
CN111512474A true CN111512474A (zh) 2020-08-07

Family

ID=67067279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880083522.9A Pending CN111512474A (zh) 2017-12-27 2018-12-21 蓄电元件

Country Status (5)

Country Link
US (1) US20200395577A1 (zh)
JP (1) JPWO2019131481A1 (zh)
CN (1) CN111512474A (zh)
DE (1) DE112018006700T5 (zh)
WO (1) WO2019131481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016273A1 (zh) * 2022-07-21 2024-01-25 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237849B2 (ja) * 2012-02-15 2017-11-29 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
JP6075619B2 (ja) * 2012-12-19 2017-02-08 株式会社Gsユアサ 円筒形電池
JP6142521B2 (ja) * 2012-12-19 2017-06-07 株式会社Gsユアサ 円筒形電池
WO2017047787A1 (ja) * 2015-09-18 2017-03-23 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト 蓄電素子及び蓄電素子の製造方法
JP6606400B2 (ja) * 2015-10-29 2019-11-13 日立オートモティブシステムズ株式会社 蓄電素子
JP6743417B2 (ja) * 2016-02-29 2020-08-19 株式会社Gsユアサ 蓄電素子
JP2017157342A (ja) * 2016-02-29 2017-09-07 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子
JP2017157352A (ja) * 2016-02-29 2017-09-07 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子の製造方法及び蓄電素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016273A1 (zh) * 2022-07-21 2024-01-25 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Also Published As

Publication number Publication date
JPWO2019131481A1 (ja) 2021-01-21
US20200395577A1 (en) 2020-12-17
WO2019131481A1 (ja) 2019-07-04
DE112018006700T5 (de) 2020-09-10

Similar Documents

Publication Publication Date Title
CN108028342B (zh) 蓄电元件以及蓄电元件的制造方法
CN108028343B (zh) 蓄电元件
CN108028348B (zh) 蓄电元件以及蓄电元件的制造方法
US10135056B2 (en) Energy storage device
JP6739522B2 (ja) 蓄電素子
CN111512484A (zh) 蓄电元件
EP3552258B1 (en) Energy storage device
CN111052443B (zh) 蓄电元件以及蓄电装置
CN108140794B (zh) 蓄电元件以及蓄电元件的制造方法
KR101821488B1 (ko) 전지
CN111512474A (zh) 蓄电元件
CN111656565A (zh) 蓄电元件
CN112753129A (zh) 蓄电元件及其制造方法
JP6867610B2 (ja) 蓄電素子
CN108028326B (zh) 电池
CN110114900B (zh) 储能装置
JP2019117720A (ja) 蓄電素子
JP7405090B2 (ja) 蓄電素子
JP7069941B2 (ja) 蓄電素子
JP2018120830A (ja) 蓄電素子
CN117954809A (zh) 电池
CN111433935A (zh) 蓄电元件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination