CN111509406A - Polarization and directional diagram composite reconfigurable antenna - Google Patents
Polarization and directional diagram composite reconfigurable antenna Download PDFInfo
- Publication number
- CN111509406A CN111509406A CN202010397728.8A CN202010397728A CN111509406A CN 111509406 A CN111509406 A CN 111509406A CN 202010397728 A CN202010397728 A CN 202010397728A CN 111509406 A CN111509406 A CN 111509406A
- Authority
- CN
- China
- Prior art keywords
- polarization
- radio frequency
- dielectric substrate
- antenna
- patch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 102
- 239000002131 composite material Substances 0.000 title claims abstract description 19
- 238000010586 diagram Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 38
- 230000003071 parasitic effect Effects 0.000 claims abstract description 28
- 230000005669 field effect Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 16
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000005388 cross polarization Methods 0.000 description 11
- 230000005855 radiation Effects 0.000 description 11
- 238000004088 simulation Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
- H01Q15/242—Polarisation converters
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明提出了一种极化和方向图复合可重构天线,用于解决现有技术中存在的可重构极化状态少,由于天线单元馈电端口多,导致的馈电系统复杂的技术问题,包括上下层叠的第一介质基板和第二介质基板,其中,在第一介质基板上表面加载有射频开关,包括用于连接十字型金属贴片和矩形贴片的等效射频开关和用于连接不同寄生像素贴片的理想射频开关,通过控制这些射频开关的连通与断开状态,天线可以实现三种极化状态,分别为线极化、左旋圆极化和右旋圆极化,且在每种极化状态下,利用可重构的寄生像素贴片都可使主波束发生偏转,可应用于遥感遥测、无线通讯等领域。
The present invention proposes a polarization and pattern composite reconfigurable antenna, which is used to solve the technology of complex feeding system due to few reconfigurable polarization states existing in the prior art and many antenna element feeding ports. The problem includes a first dielectric substrate and a second dielectric substrate that are stacked on top of each other, wherein a radio frequency switch is loaded on the upper surface of the first dielectric substrate, including an equivalent radio frequency switch for connecting a cross-shaped metal patch and a rectangular patch, and a For ideal RF switches connecting different parasitic pixel patches, by controlling the on and off states of these RF switches, the antenna can achieve three polarization states, namely linear polarization, left-hand circular polarization and right-hand circular polarization. And in each polarization state, the use of reconfigurable parasitic pixel patches can deflect the main beam, which can be used in remote sensing telemetry, wireless communication and other fields.
Description
技术领域technical field
本发明属于天线技术领域,涉及一种极化和方向图复合可重构天线,可应用于遥感遥测、无线通讯等领域。The invention belongs to the technical field of antennas, and relates to a composite reconfigurable antenna of polarization and direction pattern, which can be applied to the fields of remote sensing telemetry, wireless communication and the like.
背景技术Background technique
随着科学技术的进步,人们对信息的需求量前所未有地增加,使得通信技术得到突飞猛进地发展。作为通信领域的一个重要分支,无线通信因其摆脱了对物理传输线的依赖,在国防、民生等各个领域得到了广泛应用。而天线是无线电设备的信息出入口,天线性能的优劣直接影响整个无线通信系统的通信质量。With the advancement of science and technology, people's demand for information has increased unprecedentedly, which has led to the rapid development of communication technology. As an important branch of the communication field, wireless communication has been widely used in various fields such as national defense and people's livelihood because it gets rid of the dependence on physical transmission lines. The antenna is the information entrance and exit of the radio equipment, and the quality of the antenna performance directly affects the communication quality of the entire wireless communication system.
现如今无线通信逐步加速进入多功能、大容量、超宽带时代,现代无线通信系统迅猛的发展直接导致同一平台上的子系统数量越来越多,与此同时天线的数量也相应增加。随着同一平台上天线数量的增加,大体积、高成本、电磁兼容等问题也同步出现。为了解决这些问题,可重构天线被研发出来,它可以根据不同环境的使用要求改变天线工作频率、辐射方向图和极化方式等特性,从而满足无线通信系统需求。频率可重构天线可以提高通信系统频谱利用率;方向图可重构天线可以节约通信系统能量,提高通信系统安全性;极化可重构天线可以增加额外的收发信道,在极化分集、频分复用等方面有巨大贡献,另外,极化可重构天线对于多径效应造成的信号衰落也有一定的抑制作用,提高系统对干扰信号的免疫能力。Nowadays, wireless communication is gradually accelerating into the era of multi-function, large-capacity, and ultra-broadband. The rapid development of modern wireless communication systems directly leads to an increasing number of subsystems on the same platform, and at the same time, the number of antennas also increases accordingly. With the increase in the number of antennas on the same platform, problems such as large size, high cost, and electromagnetic compatibility also appear simultaneously. In order to solve these problems, reconfigurable antennas have been developed, which can change the characteristics of the antenna's operating frequency, radiation pattern and polarization according to the requirements of different environments, so as to meet the needs of wireless communication systems. The frequency reconfigurable antenna can improve the spectrum utilization rate of the communication system; the pattern reconfigurable antenna can save the energy of the communication system and improve the security of the communication system; the polarization reconfigurable antenna can add additional transmit and receive channels. In addition, the polarized reconfigurable antenna also has a certain inhibitory effect on the signal fading caused by the multipath effect, and improves the immunity of the system to the interference signal.
国内外学者对于可重构天线的研究主要集中在极化可重构天线和方向图可重构天线,提出多种极化或方向图单独可重构的天线设计方案。然而,天线的极化和方向图同时可重构可以提高空间自由度,从而提高无线通信系统的系统容量,解决通信中的极化失配的问题,还可以避免系统间电子干扰,提高频谱利用率,改善通信系统的传输速率。另外,为了在接收天线端能够得到最大信号幅度值,在发射不同频率高频波的时候需要匹配特定极化方式选择不同的极化波传输,因此,在设计极化可重构天线时,应尽可能的使天线的可重构极化数最大化。然而,现在的一些极化和方向图复合可重构的天线,在实现极化可重构时,仅仅在左旋圆极化和右旋圆极化之间切换,或者在水平极化和垂直极化之间切换,这类天线很少能够实现圆极化和线极化之间的切换。The research on reconfigurable antennas by domestic and foreign scholars mainly focuses on polarization reconfigurable antennas and pattern reconfigurable antennas, and proposes a variety of polarization or pattern independent reconfigurable antenna design schemes. However, the simultaneous reconfiguration of the polarization and pattern of the antenna can improve the degree of spatial freedom, thereby improving the system capacity of the wireless communication system, solving the problem of polarization mismatch in communication, avoiding electronic interference between systems, and improving spectrum utilization. rate, improving the transmission rate of the communication system. In addition, in order to obtain the maximum signal amplitude value at the receiving antenna end, it is necessary to match the specific polarization mode to select different polarized wave transmission when transmitting high-frequency waves of different frequencies. to maximize the reconfigurable polarization number of the antenna. However, some current polarization and pattern composite reconfigurable antennas only switch between left-handed circular polarization and right-handed circular polarization, or between horizontal polarization and vertical polarization when realizing polarization reconfiguration. Switching between polarizations, such antennas are rarely able to switch between circular polarization and linear polarization.
例如申请公开号为CN108963472A,名称为“一种方向图、极化可重构天线”的专利申请,公开了一种方向图、极化可重构天线,包括四个天线单元和四个与天线单元一一对应的开关,每个天线单元具有两对可控的微扰部分,两对可控的微扰部分分别与所在天线单元对应的开关相连,开关用于控制微扰部分的状态从而改变对电流的扰动;每个天线单元包括三个馈电端口,各天线单元的馈电端口分别由馈电探针经传输线与所在天线单元对应的开关相连所述传输线经过第一等相位等幅度功率分配器分成两部分,每一部分再分别经过一个第二等相位等幅度功率分配器分成两部分,最终分成的四部分分别连接四个开关。该天线为三层结构,通过控制开关改变天线单元馈电端口的状态,从而改变天线阵列的方向图,通过控制开关切换两对可控微扰部分,从而改变对电流的扰动,实现左旋圆极化和右旋圆极化的切换。该天线虽然实现了极化和方向图的可重构,但是其存在的不足之处在于天线只能在左旋圆极化和右旋圆极化状态之间切换,另外,天线单元采用了多端口,导致馈电系统复杂,天线设计难度增加,因此,在实际应用中会受到一定的限制。For example, the application publication number is CN108963472A, and the patent application titled "A Pattern and Polarization Reconfigurable Antenna" discloses a pattern and polarization reconfigurable antenna, which includes four antenna units and four parallel antennas. One-to-one switch between units, each antenna unit has two pairs of controllable perturbation parts, and the two pairs of controllable perturbation parts are respectively connected with the switches corresponding to the antenna unit where they are located, and the switches are used to control the state of the perturbation parts to change Disturbance to the current; each antenna unit includes three feeding ports, and the feeding ports of each antenna unit are respectively connected by the feeding probe through the transmission line with the switch corresponding to the antenna unit where it is located. The transmission line passes through the first equal-phase equal-amplitude power The divider is divided into two parts, and each part is divided into two parts through a second equal-phase equal-amplitude power divider respectively, and the final divided four parts are respectively connected to four switches. The antenna has a three-layer structure. The state of the feeding port of the antenna unit is changed by controlling the switch, thereby changing the pattern of the antenna array, and the two pairs of controllable perturbation parts are switched by the control switch, thereby changing the disturbance to the current and realizing the left-handed circular pole. switching between polarization and right-hand circular polarization. Although the antenna realizes the reconfiguration of polarization and pattern, its disadvantage is that the antenna can only switch between left-handed circular polarization and right-handed circular polarization. In addition, the antenna unit adopts multi-port , which leads to the complexity of the feeding system and the increased difficulty in antenna design. Therefore, it will be limited in practical applications.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服上述现有技术存在的缺陷,提出了一种极化和方向图复合可重构天线,用于解决现有技术中存在的可重构极化状态少,由于天线单元馈电端口多,导致的馈电系统复杂的技术问题。The purpose of the present invention is to overcome the above-mentioned defects in the prior art, and proposes a composite reconfigurable antenna with polarization and pattern, which is used to solve the problem of few reconfigurable polarization states in the prior art, because the antenna element feeds There are many electrical ports, which leads to complex technical problems in the feeding system.
为了实现上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种极化和方向图复合可重构天线,包括上下层叠的第一介质基板1和第二介质基板2:A polarization and pattern composite reconfigurable antenna, comprising a first
所述第一介质基板1上表面的中心位置印制有驱动单元3,该驱动单元3的周边印制有多个周期性排布的寄生像素贴片4;所述驱动单元3包括十字型金属贴片31和位于该十字型金属贴片31四个角空间位置的矩形贴片32,所述的四个矩形贴片32分别通过一个或多个等效射频开关33与十字型金属贴片31连接,且每个矩形贴片32各连接一个射频扼流电感34,通过对等效射频开关33连通与断开状态的控制,实现天线的极化可重构特性;所述寄生像素贴片4采用矩形结构,相邻寄生像素贴片4之间通过理想射频开关5连接,通过对理想射频开关5连通与断开状态的控制,实现天线的方向图可重构特性;A
所述第二介质基板2的上表面印制有金属微带线6,下表面印制有金属地板7和位于第一射频扼流电感34在第二介质基板2下表面的投影位置的第二射频扼流电感8;The upper surface of the second
所述第一射频扼流电感34通过金属化过孔与第二介质基板2下表面的第二射频扼流电感8的一端相连,第二射频扼流电感8的另一端与金属地板7连接。The first
上述一种极化和方向图复合可重构天线,所述十字型金属贴片31的中心,位于第一介质基板1的中心法线上。In the above-mentioned composite reconfigurable antenna with polarization and pattern, the center of the
上述一种极化和方向图复合可重构天线,所述矩形贴片32的中心,位于十字型金属贴片31的对角线上,且四个矩形贴片32与十字型金属贴片31中心的距离相等。In the above-mentioned composite reconfigurable antenna with polarization and pattern, the center of the
上述一种极化和方向图复合可重构天线,所述多个周期性排布的寄生像素贴片4,其所形成的寄生像素贴片阵列的四个角的位置,各空缺一个寄生像素贴片4,且寄生像素贴片阵列的中心与十字型金属贴片31的中心重合。In the above-mentioned composite reconfigurable antenna with polarization and pattern, the plurality of periodically arranged
上述一种极化和方向图复合可重构天线,所述寄生像素贴片4的形状为矩形,其每个边的中点位置设置有矩形凸起。In the above-mentioned composite reconfigurable antenna with polarization and pattern, the shape of the
上述一种极化和方向图复合可重构天线,所述等效射频开关33和理想射频开关5,采用微电子机械系统开关、PIN型二极管开关和场效应管开关中的任意一种。In the above-mentioned composite reconfigurable antenna with polarization and pattern, the
上述一种极化和方向图复合可重构天线,所述第一介质基板1和第二介质基板2,采用相对介电常数为2.65的板材。In the above-mentioned composite reconfigurable antenna with polarization and pattern, the first
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
①本发明通过控制加载在十字型金属贴片和矩形贴片之间的等效射频开关的通断状态,可以实现天线的左旋圆极化、右旋圆极化和线极化特性;通过控制加载在不同寄生像素贴片之间的理想射频开关的通断状态,可以实现天线的方向图可重构特性。解决了现有技术中存在的可重构极化状态少的技术问题;① The present invention can realize the left-hand circular polarization, right-hand circular polarization and linear polarization characteristics of the antenna by controlling the on-off state of the equivalent radio frequency switch loaded between the cross-shaped metal patch and the rectangular patch; The on-off state of an ideal RF switch loaded between different parasitic pixel patches can achieve the pattern reconfigurable characteristic of the antenna. The technical problem of few reconfigurable polarization states existing in the prior art is solved;
②本发明只有一个馈电端口,避免了现有技术中存在的由于天线单元馈电端口多,导致的馈电系统复杂的技术问题,使得本发明结构简单,易于实现。② The present invention has only one feeding port, which avoids the technical problem of complex feeding system due to the many feeding ports of the antenna unit in the prior art, and makes the present invention simple in structure and easy to implement.
附图说明Description of drawings
图1是本发明实施例的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the embodiment of the present invention;
图2是本发明第一介质基板上表面的俯视图;2 is a top view of the upper surface of the first dielectric substrate of the present invention;
图3是本发明第二介质基板的结构示意图;3 is a schematic structural diagram of the second dielectric substrate of the present invention;
图4是本发明实施例工作在左旋圆极化状态下,四种偏转角度对应的第一介质基板上表面的拓扑结构图;4 is a topological structure diagram of the upper surface of the first dielectric substrate corresponding to four deflection angles when working in a left-handed circular polarization state according to an embodiment of the present invention;
图5是本发明实施例工作在右旋圆极化状态下,四种偏转角度对应的第一介质基板上表面的拓扑结构图;5 is a topological structure diagram of the upper surface of the first dielectric substrate corresponding to four deflection angles when working in a right-handed circular polarization state according to an embodiment of the present invention;
图6是本发明实施例工作在线极化状态下,三种偏转角度对应的第一介质基板上表面的拓扑结构图;6 is a topological structure diagram of the upper surface of the first dielectric substrate corresponding to three deflection angles when working in a linearly polarized state according to an embodiment of the present invention;
图7是本发明实施例在天线方向图不发生偏转的情况下,天线工作在三种极化状态下的反射系数、轴比和增益仿真结果图;7 is a simulation result diagram of reflection coefficient, axial ratio and gain of the antenna working in three polarization states under the condition that the antenna pattern is not deflected according to an embodiment of the present invention;
图8是本发明实施例工作在左旋圆极化状态下,四种偏转角度对应的反射系数和轴比仿真结果图;8 is a simulation result diagram of reflection coefficients and axial ratios corresponding to four deflection angles when an embodiment of the present invention works in a left-handed circular polarization state;
图9是本发明实施例工作在左旋圆极化状态下,四种偏转角度在频率f=4.72GHz时phi=0°面的辐射方向图;Fig. 9 is the radiation pattern of the phi=0° plane when the embodiment of the present invention works in a left-handed circularly polarized state, and four deflection angles are at a frequency f=4.72 GHz;
图10是本发明实施例工作在右旋圆极化状态下,四种偏转角度对应的反射系数和轴比仿真结果图;10 is a simulation result diagram of reflection coefficients and axial ratios corresponding to four deflection angles when working in a right-handed circular polarization state according to an embodiment of the present invention;
图11是本发明实施例工作在右旋圆极化状态下,四种偏转角度在频率f=4.72GHz时phi=0°面的辐射方向图;11 is the radiation pattern of the phi=0° plane when the embodiment of the present invention works in a right-handed circularly polarized state, and four deflection angles are at a frequency f=4.72 GHz;
图12是本发明实施例工作在线极化状态下,三种偏转角度对应的反射系数仿真结果图;FIG. 12 is a simulation result diagram of reflection coefficients corresponding to three deflection angles when working in a linearly polarized state according to an embodiment of the present invention;
图13是本发明实施例工作在线极化状态下,三种偏转角度在频率f=4.72GHz时phi=0°面的辐射方向图。FIG. 13 is a radiation pattern on a plane with phi=0° when the frequency f=4.72 GHz is used for three deflection angles when the embodiment of the present invention works in a linearly polarized state.
具体实施方式Detailed ways
下面结合附图和具体实施例,对本发明作进一步详细描述:Below in conjunction with accompanying drawing and specific embodiment, the present invention is described in further detail:
参考图1,本发明包括上下层叠的第一介质基板1和第二介质基板2,其中,第一介质基板1的厚度为1mm,采用介电常数为2.65,损耗角正切为0.002的方形F4BM材料,其边长为80mm;第二介质基板2的厚度为1mm,采用与第一介质基板1相同的材料,其物理尺寸为80mm×86mm;考虑到实测过程同轴头的焊接,因此,设计的第二介质基板2的长边要比第一介质基板1长,就图中坐标系而言,第二介质基板2沿x轴正向的一端与第一介质基板1沿x轴正向的一端对齐;Referring to FIG. 1 , the present invention includes a first
所述第一介质基板1上表面的中心位置印制有驱动单元3,该驱动单元3的周边印制有28个周期性排布的寄生像素贴片4,其具体结构如图2所示;A
所述驱动单元3包括十字型金属贴片31和位于该十字型金属贴片31四个角空间位置的边长为w3=2.2mm的矩形贴片32,所述十字型金属贴片31的中心,位于第一介质基板1的中心法线上,所述矩形贴片32的中心,位于十字型金属贴片31的对角线上,且四个矩形贴片32与十字型金属贴片31中心的距离相等,所述十字型金属贴片31和四个矩形贴片32组成一个带有4个槽宽为wr=0.8mm的“L”型槽的边长为(2×w3+2×wr+l2)=17.8mm的方形贴片,并且在4个“L”型槽的对角上加载有用于连接十字型金属贴片31和矩形贴片32的4个等效射频开关33,另外,每个矩形贴片32各连接一个电感值为100nH的第一射频扼流电感34,通过对4个等效射频开关33连通与断开状态的控制,实现天线的极化可重构特性;The driving
所述寄生像素贴片4由边长为9.4mm的方形金属贴片经过变形得到,变形过程为在方形金属贴片每个边的中点位置设置有一个尺寸为2mm×1mm的矩形凸起,且设置的矩形凸起的长边与方形金属贴片相连;相邻寄生像素贴片4之间通过理想射频开关5连接,通过对理想射频开关5连通与断开状态的控制,实现天线的方向图可重构特性;设计过程中,为了减少理想射频开关5的使用数量以及在更大的偏转角度下实现天线的圆极化特性,在由寄生像素贴片4所形成的寄生像素贴片阵列的四个角的位置,各空缺一个寄生像素贴片4,以模拟切角,产生微扰,另外,寄生像素贴片阵列的中心与十字型金属贴片31的中心重合;The
所述等效射频开关33和理想射频开关5,采用微电子机械系统开关、PIN型二极管开关和场效应管开关中的任意一种,这里采用PIN型二极管开关;其中,等效射频开关33,用阻值为3.5Ω的电阻模拟开关导通状态,用阻值为2.6kΩ的电阻和容值为0.17pF的电容的并联模拟开关断开状态;理想射频开关5,用金属片理想等效;The
所述第二介质基板2的上表面印制有尺寸为41mm×1.5mm的金属微带线6,下表面印制有尺寸为86mm×80mm的金属地板7和位于第一射频扼流电感34在第二介质基板2下表面的投影位置的第二射频扼流电感8,具体结构如图3所示,其中,第二射频扼流电感8的电感值为100nH;The upper surface of the second
所述第一射频扼流电感34通过金属化过孔与第二介质基板2下表面的第二射频扼流电感8的一端相连,第二射频扼流电感8的另一端与金属地板7连接,通过在地板一侧设置偏置电路,减小了偏置电路对天线辐射性能的影响;The first
对天线进行加工,焊接同轴头,其内芯与印制在第二介质基板2上表面的金属微带线6相连,外皮与印制在第二介质基板2下表面的金属地板7相连。The antenna is processed, and the coaxial head is welded.
本发明的工作原理如下:The working principle of the present invention is as follows:
本发明通过金属微带线6对第一介质基板上表面的驱动单元3进行耦合馈电,通过控制加载在“L”型槽对角上的两对等效射频开关33的通断状态,实现天线的极化可重构状态。参考图2中的坐标系,当位于第一象限和第三象限的等效射频开关33断开,位于第二象限和第四象限的等效射频开关33导通时,天线工作在左旋圆极化状态下;当位于第一象限和第三象限的等效射频开关33导通,位于第二象限和第四象限的等效射频开关33断开时,天线工作在右旋圆极化状态下;当位于第一象限、第二象限、第三象限和第四象限的等效射频开关33都断开时,天线工作在线极化状态下;The present invention couples and feeds the
通过控制连接在不同寄生像素贴片4之间的理想射频开关5的通断,实现天线在phi=0°面的方向图可重构。当天线工作在左旋圆极化状态时,通过控制理想射频开关5的通断,对天线的辐射特性进行了探索,在phi=0°面上实现了四种可切换的方向图,对应的第一介质基板上表面的拓扑结构分别如图4(a)、4(b)、4(c)和4(d)所示;当天线工作在右旋圆极化状态时,通过控制理想射频开关5的通断,对天线的辐射特性进行了探索,在phi=0°面上实现了四种可切换的方向图,对应的第一介质基板上表面的拓扑结构分别如图5(a)、5(b)、5(c)和5(d)所示;当天线工作在线极化状态时,通过控制理想射频开关5的通断,对天线的辐射特性进行了探索,在phi=0°面上实现了三种可切换的方向图,对应的第一介质基板上表面的拓扑结构分别如图6(a)、6(b)和6(c)所示。By controlling the on-off of the ideal
本发明的效果可结合仿真结果作进一步说明:The effect of the present invention can be further described in combination with the simulation results:
1、仿真内容1. Simulation content
1.1利用商业仿真软件HFSS_15.0对本发明实施例在天线方向图不发生偏转的情况下,天线工作在三种极化状态下的反射系数、轴比和增益进行仿真计算,结果如图7(a)和7(b)所示。1.1 Use the commercial simulation software HFSS_15.0 to simulate the reflection coefficient, axial ratio and gain of the antenna working in three polarization states without deflection of the antenna pattern according to the embodiment of the present invention. The results are shown in Figure 7(a) ) and 7(b).
1.2利用商业仿真软件HFSS_15.0对本发明实施例工作在左旋圆极化状态下,四种偏转角度对应的反射系数和轴比进行仿真计算,结果如图8(a)和8(b)所示。1.2 Use the commercial simulation software HFSS_15.0 to simulate and calculate the reflection coefficients and axial ratios corresponding to the four deflection angles when the embodiment of the present invention works in a left-handed circular polarization state. The results are shown in Figures 8(a) and 8(b). .
1.3利用商业仿真软件HFSS_15.0对本发明实施例工作在左旋圆极化状态下,四种偏转角度在频率f=4.72GHz时phi=0°面的辐射方向图进行仿真计算,结果如图9(a)、9(b)、9(c)和9(d)所示。1.3 Use the commercial simulation software HFSS_15.0 to simulate and calculate the radiation pattern of the phi=0° plane when the embodiment of the present invention works under the left-handed circular polarization state, and the four deflection angles are at the frequency f=4.72GHz, and the results are shown in Figure 9 ( a), 9(b), 9(c) and 9(d).
1.4利用商业仿真软件HFSS_15.0对本发明实施例工作在右旋圆极化状态下,四种偏转角度对应的反射系数和轴比进行仿真计算,结果如图10(a)和10(b)所示。1.4 Use the commercial simulation software HFSS_15.0 to simulate and calculate the reflection coefficients and axial ratios corresponding to the four deflection angles when the embodiment of the present invention works in the state of right-handed circular polarization. The results are shown in Figures 10(a) and 10(b). Show.
1.5利用商业仿真软件HFSS_15.0对本发明实施例工作在右旋圆极化状态下,四种偏转角度在频率f=4.72GHz时phi=0°面的辐射方向图进行仿真计算,结果如图11(a)、11(b)、11(c)和11(d)所示1.5 Use the commercial simulation software HFSS_15.0 to simulate and calculate the radiation pattern of the phi=0° plane when the embodiment of the present invention works in the state of right-handed circular polarization and the frequency f=4.72GHz with four deflection angles, and the results are shown in Figure 11 (a), 11(b), 11(c) and 11(d)
1.6利用商业仿真软件HFSS_15.0对本发明实施例工作在线极化状态下,三种偏转角度对应的反射系数进行仿真计算,结果如图12所示。1.6 Use the commercial simulation software HFSS_15.0 to simulate and calculate the reflection coefficients corresponding to the three deflection angles under the linear polarization state of the embodiment of the present invention, and the results are shown in FIG. 12 .
1.7利用商业仿真软件HFSS_15.0对本发明实施例工作在线极化状态下,三种偏转角度在频率f=4.72GHz时phi=0°面的辐射方向图进行仿真计算,结果如图13(a)、13(b)和13(c)所示。1.7 Use the commercial simulation software HFSS_15.0 to simulate and calculate the radiation pattern of the phi=0° plane at the frequency f=4.72GHz for the three deflection angles under the linear polarization state of the embodiment of the present invention, and the result is shown in Figure 13(a) , 13(b) and 13(c).
2、仿真结果2. Simulation results
参照图7,在4.72GHz左右,线极化态和圆极化态的反射系数都在-10dB以下,且在该工作频率附近,左旋圆极化、右旋圆极化和线极化三种极化状态下的侧向增益分别约为7.02dBi、7.05dBi和6.32dBi。另外,圆极化状态的轴比在4.72GHz左右均低于3dB。Referring to Figure 7, at around 4.72 GHz, the reflection coefficients of the linear polarization state and the circular polarization state are both below -10dB, and around the operating frequency, there are three types of left-hand circular polarization, right-hand circular polarization and linear polarization. The lateral gains in the polarization state are about 7.02dBi, 7.05dBi and 6.32dBi, respectively. In addition, the axial ratio of the circularly polarized state is all lower than 3 dB around 4.72 GHz.
参照图8,四种波束指向下的天线反射系数在4.5GHz~4.85GHz的工作频率下均低于-10dB,公共带宽为350MHz。另外,由图还可知,四种波束指向下,天线工作在频率4.72GHz下的轴比都低于3dB。Referring to FIG. 8 , the reflection coefficients of the antennas under the four beam directions are all lower than -10 dB at the operating frequencies of 4.5 GHz to 4.85 GHz, and the common bandwidth is 350 MHz. In addition, it can also be seen from the figure that the axial ratios of the antennas operating at the frequency of 4.72 GHz are all lower than 3 dB with the four beams pointing downward.
参照图9,当偏转0°时,主极化方式为左旋圆极化,最大增益为7.02dBi,交叉极化抑制比为20dB;当偏转-21°时,主极化方式不变,最大增益为6.95dBi,交叉极化抑制比为18.9dB;当偏转23°时,主极化方式仍保持不变,此时,最大增益为6.46dBi,交叉极化抑制比为18.4dB;当偏转31°时,主极化方式仍为左旋圆极化,此时,最大增益为6.14dBi,交叉极化抑制比为16.1dB。由此可知,保证了方向图可重构时的极化和频率的一致性。Referring to Figure 9, when the deflection is 0°, the main polarization mode is left-handed circular polarization, the maximum gain is 7.02dBi, and the cross-polarization suppression ratio is 20dB; when the deflection is -21°, the main polarization mode remains unchanged, and the maximum gain is 6.95dBi, and the cross-polarization rejection ratio is 18.9dB; when the deflection is 23°, the main polarization mode remains unchanged. At this time, the maximum gain is 6.46dBi, and the cross-polarization rejection ratio is 18.4dB; when the deflection is 31° At this time, the main polarization mode is still left-handed circular polarization. At this time, the maximum gain is 6.14dBi, and the cross-polarization suppression ratio is 16.1dB. It can be seen from this that the consistency of polarization and frequency when the pattern can be reconfigured is guaranteed.
参照图10,四种波束指向下的天线反射系数在4.5GHz~4.85GHz的工作频率下均低于-10dB,公共带宽为350MHz。另外,由图还可知,四种波束指向下,天线工作在频率4.72GHz下的轴比都低于3dB。Referring to FIG. 10 , the reflection coefficients of the antennas under the four beam directions are all lower than -10 dB at the operating frequencies of 4.5 GHz to 4.85 GHz, and the common bandwidth is 350 MHz. In addition, it can also be seen from the figure that the axial ratios of the antennas operating at the frequency of 4.72 GHz are all lower than 3 dB with the four beams pointing downward.
参照图11,在四种偏转角度下,天线的主极化方式都为右旋圆极化,且当偏转0°时,主极化最大增益为7.05dBi,交叉极化抑制比为23.7dB;当偏转-16°时,主极化最大增益为6.21dBi,交叉极化抑制比为21.2dB;当偏转18°时,主极化最大增益为7.47dBi,交叉极化抑制比为20.2dB;当偏转31°时,此时,主极化最大增益为6.17dBi,交叉极化抑制比为15.34dB。由此可知,保证了方向图可重构时的极化和频率的一致性。11, under four deflection angles, the main polarization mode of the antenna is right-hand circular polarization, and when the deflection is 0°, the maximum gain of the main polarization is 7.05dBi, and the cross-polarization suppression ratio is 23.7dB; When the deflection is -16°, the maximum gain of the main polarization is 6.21dBi, and the cross-polarization rejection ratio is 21.2dB; when the deflection is 18°, the maximum gain of the main polarization is 7.47dBi, and the cross-polarization rejection ratio is 20.2dB; when When the deflection is 31°, at this time, the maximum gain of the main polarization is 6.17dBi, and the cross-polarization suppression ratio is 15.34dB. It can be seen from this that the consistency of polarization and frequency when the pattern can be reconfigured is guaranteed.
参照图12,三种波束指向下的天线反射系数在4.64GHz~4.74GHz的工作频率下均低于-10dB,公共带宽为100MHz。Referring to FIG. 12 , the reflection coefficients of the antennas under the three beam directions are all lower than -10 dB at the operating frequencies of 4.64 GHz to 4.74 GHz, and the common bandwidth is 100 MHz.
参照图13,在三种偏转角度下,天线的极化方式均为线极化,且当偏转0°时,主极化最大增益为6.32dBi,交叉极化抑制比为54.2dB;当偏转-35°时,主极化最大增益为8.4dBi,交叉极化抑制比为20.3dB;当偏转35°时,主极化最大增益为7.99dBi,交叉极化抑制比为14.1dB。由此可知,保证了方向图可重构时的极化和频率的一致性。Referring to Figure 13, under the three deflection angles, the polarization modes of the antenna are all linear polarization, and when the deflection is 0°, the maximum gain of the main polarization is 6.32dBi, and the cross-polarization suppression ratio is 54.2dB; when the deflection - At 35°, the maximum gain of the main polarization is 8.4dBi, and the cross-polarization rejection ratio is 20.3dB; when the deflection is 35°, the maximum gain of the main polarization is 7.99dBi, and the cross-polarization rejection ratio is 14.1dB. It can be seen from this that the consistency of polarization and frequency when the pattern can be reconfigured is guaranteed.
以上是对本发明的一个具体实施例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,再了解接本发明内容和原理后,都可能在不背离本发明原理和结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求和保护范围内。The above is a specific embodiment of the present invention, and does not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the content and principle of the present invention, it is possible to do so without departing from the principle and structure of the present invention. Hereinafter, various corrections and changes in form and details are made, but these corrections and changes based on the idea of the present invention are still within the scope of the claims and protection of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010397728.8A CN111509406A (en) | 2020-05-12 | 2020-05-12 | Polarization and directional diagram composite reconfigurable antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010397728.8A CN111509406A (en) | 2020-05-12 | 2020-05-12 | Polarization and directional diagram composite reconfigurable antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111509406A true CN111509406A (en) | 2020-08-07 |
Family
ID=71865055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010397728.8A Pending CN111509406A (en) | 2020-05-12 | 2020-05-12 | Polarization and directional diagram composite reconfigurable antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111509406A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112290228A (en) * | 2020-12-29 | 2021-01-29 | 成都信息工程大学 | Linear-circularly polarized reconfigurable antenna and lightning protection method |
CN112736483A (en) * | 2020-12-25 | 2021-04-30 | 北京大学 | Polarization reconfigurable two-dimensional beam scanning holographic antenna and implementation method thereof |
CN112886272A (en) * | 2021-01-14 | 2021-06-01 | 西安电子科技大学 | Dual-frequency dual-polarization Fabry-Perot resonant cavity antenna |
CN113097745A (en) * | 2021-04-08 | 2021-07-09 | 电子科技大学 | Wide-beam parasitic pixel layer antenna for one-dimensional large-angle scanning |
CN113363710A (en) * | 2021-04-23 | 2021-09-07 | 南京航空航天大学 | Light-operated reconfigurable microstrip pixel antenna |
CN113437533A (en) * | 2021-06-10 | 2021-09-24 | 深圳技术大学 | Miniaturized directional diagram reconfigurable pixel antenna and application method |
CN113708075A (en) * | 2021-08-20 | 2021-11-26 | 西安电子科技大学 | Multi-beam super-surface folded antenna with frequency triggering directional diagram and polarization simultaneously reconstructed |
CN114171910A (en) * | 2021-12-10 | 2022-03-11 | 合肥师范学院 | Broadband polarization and directional diagram mixed reconfigurable antenna |
CN114256629A (en) * | 2021-11-18 | 2022-03-29 | 电子科技大学 | A Ka-band broadband reconfigurable reflection unit and array antenna |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020101391A1 (en) * | 2000-09-15 | 2002-08-01 | Sarnoff Corporation | Reconfigurable adaptive wideband antenna |
US20130176177A1 (en) * | 2012-01-09 | 2013-07-11 | Utah State University | Reconfigurable antennas utilizing parasitic pixel layers |
CN103682610A (en) * | 2013-12-06 | 2014-03-26 | 中国科学院深圳先进技术研究院 | Reconfigurable antenna and system thereof |
CN203574102U (en) * | 2013-10-30 | 2014-04-30 | 北京临近空间飞行器系统工程研究所 | Optically-controlled polarized re-constructible GPS receiving antenna |
CN204905443U (en) * | 2015-07-17 | 2015-12-23 | 深圳市华颖泰科电子技术有限公司 | Circular polarization reconfigurable microstrip antenna |
CN107887694A (en) * | 2017-09-25 | 2018-04-06 | 北京航空航天大学 | A kind of frequency/polarization/direction figure independence restructural paster antenna for strengthening polarization reconfigurable ability using liquid crystal material |
US20180102593A1 (en) * | 2016-10-12 | 2018-04-12 | University Of Central Florida Research Foundation, Inc. | Reconfigurable antenna array and associated method of use |
CN108493603A (en) * | 2018-04-24 | 2018-09-04 | 南京信息工程大学 | A kind of polarization of ele reconfigurable antenna cover |
CN108963472A (en) * | 2018-06-20 | 2018-12-07 | 东南大学 | A kind of directional diagram, polarization reconfigurable antenna |
CN110518338A (en) * | 2019-08-20 | 2019-11-29 | 西安电子科技大学 | A kind of frequency and the restructural broad-band antenna that polarizes |
CN110611161A (en) * | 2019-09-16 | 2019-12-24 | 清华大学 | A Parametric Hybrid Reconfigurable Antenna |
-
2020
- 2020-05-12 CN CN202010397728.8A patent/CN111509406A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020101391A1 (en) * | 2000-09-15 | 2002-08-01 | Sarnoff Corporation | Reconfigurable adaptive wideband antenna |
US20130176177A1 (en) * | 2012-01-09 | 2013-07-11 | Utah State University | Reconfigurable antennas utilizing parasitic pixel layers |
CN203574102U (en) * | 2013-10-30 | 2014-04-30 | 北京临近空间飞行器系统工程研究所 | Optically-controlled polarized re-constructible GPS receiving antenna |
CN103682610A (en) * | 2013-12-06 | 2014-03-26 | 中国科学院深圳先进技术研究院 | Reconfigurable antenna and system thereof |
CN204905443U (en) * | 2015-07-17 | 2015-12-23 | 深圳市华颖泰科电子技术有限公司 | Circular polarization reconfigurable microstrip antenna |
US20180102593A1 (en) * | 2016-10-12 | 2018-04-12 | University Of Central Florida Research Foundation, Inc. | Reconfigurable antenna array and associated method of use |
CN107887694A (en) * | 2017-09-25 | 2018-04-06 | 北京航空航天大学 | A kind of frequency/polarization/direction figure independence restructural paster antenna for strengthening polarization reconfigurable ability using liquid crystal material |
CN108493603A (en) * | 2018-04-24 | 2018-09-04 | 南京信息工程大学 | A kind of polarization of ele reconfigurable antenna cover |
CN108963472A (en) * | 2018-06-20 | 2018-12-07 | 东南大学 | A kind of directional diagram, polarization reconfigurable antenna |
CN110518338A (en) * | 2019-08-20 | 2019-11-29 | 西安电子科技大学 | A kind of frequency and the restructural broad-band antenna that polarizes |
CN110611161A (en) * | 2019-09-16 | 2019-12-24 | 清华大学 | A Parametric Hybrid Reconfigurable Antenna |
Non-Patent Citations (3)
Title |
---|
MING LI: "A Novel Linear Sparse Array with Reconfigurable Pixel Antenna Elements", 《INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION》 * |
PARISA LOTFI: "Broadside Beam-Steerable Planar Parasitic Pixel Patch Antenna", 《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》 * |
姚远: "《光透明薄膜天线技术》", 31 July 2016 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112736483A (en) * | 2020-12-25 | 2021-04-30 | 北京大学 | Polarization reconfigurable two-dimensional beam scanning holographic antenna and implementation method thereof |
CN112290228B (en) * | 2020-12-29 | 2021-03-16 | 成都信息工程大学 | Lightning protection method of line-circular polarization reconfigurable antenna |
CN112290228A (en) * | 2020-12-29 | 2021-01-29 | 成都信息工程大学 | Linear-circularly polarized reconfigurable antenna and lightning protection method |
CN112886272A (en) * | 2021-01-14 | 2021-06-01 | 西安电子科技大学 | Dual-frequency dual-polarization Fabry-Perot resonant cavity antenna |
CN113097745B (en) * | 2021-04-08 | 2022-11-29 | 电子科技大学 | Wide-beam parasitic pixel layer antenna for one-dimensional large-angle scanning |
CN113097745A (en) * | 2021-04-08 | 2021-07-09 | 电子科技大学 | Wide-beam parasitic pixel layer antenna for one-dimensional large-angle scanning |
CN113363710A (en) * | 2021-04-23 | 2021-09-07 | 南京航空航天大学 | Light-operated reconfigurable microstrip pixel antenna |
CN113437533A (en) * | 2021-06-10 | 2021-09-24 | 深圳技术大学 | Miniaturized directional diagram reconfigurable pixel antenna and application method |
CN113708075A (en) * | 2021-08-20 | 2021-11-26 | 西安电子科技大学 | Multi-beam super-surface folded antenna with frequency triggering directional diagram and polarization simultaneously reconstructed |
CN113708075B (en) * | 2021-08-20 | 2023-09-08 | 西安电子科技大学 | Multi-beam super-surface folded antenna capable of simultaneously reconstructing frequency triggering pattern and polarization |
CN114256629A (en) * | 2021-11-18 | 2022-03-29 | 电子科技大学 | A Ka-band broadband reconfigurable reflection unit and array antenna |
CN114171910A (en) * | 2021-12-10 | 2022-03-11 | 合肥师范学院 | Broadband polarization and directional diagram mixed reconfigurable antenna |
CN114171910B (en) * | 2021-12-10 | 2023-11-17 | 合肥师范学院 | Broadband polarization and directional diagram mixed reconfigurable antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111509406A (en) | Polarization and directional diagram composite reconfigurable antenna | |
CN104600425B (en) | A kind of wide band high-gain double-circle polarization paster antenna | |
CN109599657A (en) | It is a kind of based on antenna array and function divide feeding network integrated design towards 5G base-station antenna array and its design method | |
CN114284736B (en) | A millimeter-wave broadband high-gain dual-polarized magnetoelectric dipole filter antenna | |
CN105490018A (en) | Patch antenna | |
CN108666768B (en) | Self-adaptive radiation unit with multi-phase center and array antenna | |
CN106654511B (en) | A miniaturized transceiver and shared wide beam coverage antenna | |
CN109301489B (en) | Low-profile high-isolation differential dual-polarized slot antenna applied to 5G communication | |
CN114300857A (en) | A metamaterial-loaded wide-beam antenna and its array | |
CN113594688B (en) | Circularly polarized antenna unit and antenna array | |
CN117594969B (en) | Novel resonator structure and directional diagram reconfigurable antenna | |
CN108134197A (en) | Integrated 4 differential feed low section dual polarization vibrator units and antenna for base station | |
CN112670704A (en) | Oblique 45-degree polarized radiation broadband tile-type phased array antenna | |
CN207559068U (en) | Low Gain Low Sidelobe Micro Base Station Antenna | |
US9893430B2 (en) | Short coincident phased slot-fed dual polarized aperture | |
CN114361788A (en) | High-radiation-efficiency circularly polarized antenna unit suitable for millimeter wave frequency band | |
CN113193384A (en) | Array antenna | |
CN112768882A (en) | Dual-beam circularly polarized array antenna based on dual-patch loading | |
CN115732915A (en) | W-band single-circular-polarization glass-based antenna unit and radiation method thereof | |
CN110518350A (en) | A kind of circularly-polarized patch antenna of high-gain miniaturization | |
CN110611161A (en) | A Parametric Hybrid Reconfigurable Antenna | |
CN115084873A (en) | Dual-polarization 1-bit antenna based on electromagnetic metamaterial and digital bit array | |
CN111628286B (en) | Dual-frequency dual-circularly polarized antenna | |
CN114725667B (en) | A Magnetoelectric Dipole Antenna for Autopilot Radar | |
CN115347359B (en) | A Broadband High Gain Circularly Polarized Magnetoelectric Dipole Antenna Array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200807 |
|
WD01 | Invention patent application deemed withdrawn after publication |