CN111508829B - 一种能够匹配se+碱抛的单晶硅电池片扩散提效工艺 - Google Patents

一种能够匹配se+碱抛的单晶硅电池片扩散提效工艺 Download PDF

Info

Publication number
CN111508829B
CN111508829B CN202010344852.8A CN202010344852A CN111508829B CN 111508829 B CN111508829 B CN 111508829B CN 202010344852 A CN202010344852 A CN 202010344852A CN 111508829 B CN111508829 B CN 111508829B
Authority
CN
China
Prior art keywords
temperature
furnace
time
small
500sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010344852.8A
Other languages
English (en)
Other versions
CN111508829A (zh
Inventor
王奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Guyang New Energy Technology Co ltd
Original Assignee
Xuzhou Guyang New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Guyang New Energy Technology Co ltd filed Critical Xuzhou Guyang New Energy Technology Co ltd
Priority to CN202010344852.8A priority Critical patent/CN111508829B/zh
Publication of CN111508829A publication Critical patent/CN111508829A/zh
Application granted granted Critical
Publication of CN111508829B publication Critical patent/CN111508829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L21/2256Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种能够匹配SE+碱抛的单晶硅电池片扩散提效工艺,属于太阳能电池技术领域。本发明可以将太阳能电池片扩散后的方阻由125‑130/sq,提升至140‑150Ω/sq,具体结果根据使用的扩散炉会有所不同,开压提升2毫伏,效率提升0.1%以上。可匹配选择性发射极(SE)+碱抛,实现规模化量产。

Description

一种能够匹配SE+碱抛的单晶硅电池片扩散提效工艺
技术领域
本发明涉及一种能够匹配SE+碱抛的单晶硅电池片扩散提效工艺,属于太阳能电池技术领域。
背景技术
目前市场中的太阳能电池片普遍采用的是较低方阻(80-90Ω)的工艺。这种工艺的电池片适用于常规组件生产。于此同时,申请人也开展了选择性发射极(SE)+碱抛匹配太阳能电池片的大规模生产,在常规电池片的基础上,应用了选择性发射极技术的电池片的效率可以提升0.3%左右、这种技术的设计初衷是减少磷的扩散浓度,以此降低少子复合速率,降低补源步温度,减少间隙式掺杂的发生、同时增PSG层中储备P的含量,再采用激光掺杂的方法,构造浓掺杂区域,用以降低与金属栅线接触的电阻。而降低磷掺杂量,最直接的影响就是需要提高电池片的方阻。现有太阳能电池片的方阻显然不能与选择性发射极(SE)+碱抛匹配。
发明内容
本发明的目的是针对现有技术存在的缺陷,提出一种能够匹配SE+碱抛的单晶硅电池片扩散提效工艺,可规模化,低成本的量产用于更高的高方阻(140-150Ω)匹配激光SE+碱抛的太阳能电池片。
本发明通过以下技术方案解决技术问题:一种能够匹配SE+碱抛的单晶硅电池片扩散提效工艺,包括以下步骤:
第一步、将待扩散的硅片置于扩散炉中,升温至775-795℃;
第二步、待温度稳定后,将炉内各温区的温度升至790-795℃,同时通入475-525sccm 大N2,855-945sccm O2和475-525sccm的小N2,时间为285-315s;
第三步、继续将炉内各温区的温度控制在790-805℃,同时通入475-525sccm 大N2,617-683sccm O2和665-735sccm携带POCl3的小N2,时间为171-189s;
第四步、待温度稳定后,将炉内各温区的温度升至800-815℃,通入475-525sccm大N2,617-683sccm O2和665-735sccm携带POCl3的小N2,时间为171-189s;
第五步、继续将炉内各温区的温度升至870-885℃,同时通入1330-1470sccm 大N2和475-525sccm的小N2,时间为456-504s;
第六步、待温度稳定后,将炉内各温区的稳定至870-885℃,同时通入1805-1995sccm 大N2,时间为570-630s;
第七步、将炉内各温区的温度降至810-815℃,同时通入1330-1470sccm 大N2和475-525sccm的小N2,时间为798-882s;
第八步、继续将炉内各温区的温度控制在810-815℃,同时通入380-420sccm 大N2, 665-735sccm O2和665-735sccm携带POCl3的小N2,时间为171-189s;
第九步、将炉内各温区的温度降至780-795℃,同时通入1330-1470sccm 大N2和475-525sccm的小N2,时间为342-378s;
第十步、继续将炉内各温区的温度控制在780-795℃,同时通入475-525sccm 大N2, 475-525sccm O2和1140-1260sccm携带POCl3的小N2,时间为456-504s;
第十一步、将炉内各温区的温度降至780℃,同时通入950-1050sccm 大N2,2375-2625sccm的O2,时间为171-189s;
第十二步、继续降温,回压,取出硅片。
以上方法基于的原理是:在管式扩散炉中,磷源由氮气从一头带入。由于磷会先沉积在预先制备的氧化层中,先接触到磷的电池片可以沉积更多的磷,因此在这个过程中管内会形成浓度梯度。为了消除这种影响,需要降低沉积时的温度,以此减少反应前区磷在氧化层中的沉积,同时增加前氧工艺步骤,使得更多的磷能够被氮气带入到反应后区。同时PN结的物理性质同时受推结时间和推结温度的影响。同步降低补源步温度,减少间隙式掺杂的发生、同时增PSG层中储备P的含量,再采用激光掺杂的方法,构造浓掺杂区域,用以降低与金属栅线接触的电阻。
本发明的有益效果:可以将太阳能电池片扩散后的方阻由125-130/sq,提升至140-150Ω/sq,具体结果根据使用的扩散炉会有所不同,开压提升2毫伏,效率提升0.1%以上。可匹配选择性发射极(SE)+碱抛,实现规模化量产。
具体实施方式
实施例1
一种单晶硅选择性发射极太阳能电池片扩散工艺,具体的制备方
法如下步骤:
1.将待扩散的硅片放于扩散炉中,升温至790℃;
2.待温度稳定后,将炉内各温区的温度升至790℃,同时通入500sccm 大N2,900sccm O2和500sccm的小N2(暂不通磷源),时间为300s;
3.继续将炉内各温区的温度控制在790℃,同时通入500sccm 大N2,650sccm O2和700sccm携带POCl3的小N2,时间为180s;
4.温度稳定后,将炉内各温区的温度升至800℃,通入500sccm 大N2,650sccm O2和700sccm携带POCl3的小N2,时间为180s;
5.继续将炉内各温区的温度升至870℃,同时通入1400sccm 大N2和500sccm的小N2(暂不通磷源),时间为480s;
6.温度稳定后,将炉内各温区的稳定至870℃,同时通入1900sccm 大N2,时间为600s;
7.将炉内各温区的温度降至810℃,同时通入1400sccm 大N2和500sccm的小N2(暂不通磷源),时间为840s;
8.继续将炉内各温区的温度控制在810℃,同时通入400sccm 大N2,700sccm O2和700sccm携带POCl3的小N2,时间为180s;
9.将炉内各温区的温度降至780℃,同时通入1400sccm 大N2和500sccm的小N2(暂不通磷源),时间为360s;
10. 继续将炉内各温区的温度控制在780℃,同时通入500sccm 大N2,500sccm O2和1200sccm携带POCl3的小N2,时间为480s;
11. 将炉内各温区的温度降至780℃,同时通入1000sccm 大N2,2500sccm的O2,时间为180s;
12. 继续降温,回压,取出硅片。
上述待扩散的硅片为单晶硅片,使用此扩散工艺制造出的选择性发射极电池,重掺方阻为80-90Ω/sq,浅掺方阻为140-145Ω/sq;选择隆基片源(p型硅)电池片作为传统对比组,利用IV测试机:Halm测试机,对本实施例所得硅片和隆基片源(p型硅)电池片进行检测,性能如表1所示,
表1
Uoc Isc Rs Rsh FF Ncell 备注
实施实例1 0.6773 10.2818 0.0023 1110 80.5276 22.2528 145方阻
传统对比组 0.6752 10.2739 0.0024 1049 80.4140 22.1355 125方阻
由表1可知,工艺优化的高方阻实验组较对比组效率增益0.117%,主要为开压提升2.1毫伏,电流提升8毫安。
除上述实施外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (2)

1.一种能够匹配SE+碱抛的单晶硅电池片扩散提效工艺,包括以下步骤:
第一步、将待扩散的硅片置于扩散炉中,升温至775-795℃;
第二步、待温度稳定后,将炉内各温区的温度升至790-795℃,同时通入475-525sccm大N2,855-945sccm O2和475-525sccm的小N2,时间为285-315s;
第三步、继续将炉内各温区的温度控制在790-805℃,同时通入475-525sccm 大N2,617-683sccm O2和665-735sccm携带POCl3的小N2,时间为171-189s;
第四步、待温度稳定后,将炉内各温区的温度升至800-815℃,通入475-525scc大N2,617-683sccm O2和665-735sccm携带POCl3的小N2,时间为171-189s;
第五步、继续将炉内各温区的温度升至870-885℃,同时通入1330-1470sccm 大N2和475-525sccm的小N2,时间为456-504s;
第六步、待温度稳定后,将炉内各温区的稳定至870-885℃,同时通入1805-1995sccm大N2,时间为570-630s;
第七步、将炉内各温区的温度降至810-815℃,同时通入1330-1470sccm 大N2和475-525sccm的小N2,时间为798-882s;
第八步、继续将炉内各温区的温度控制在810-815℃,同时通入380-420sccm 大N2,665-735sccm O2和665-735sccm携带POCl3的小N2,时间为171-189s;
第九步、将炉内各温区的温度降至780-795℃,同时通入1330-1470sccm 大N2和475-525sccm的小N2,时间为342-378s;
第十步、继续将炉内各温区的温度控制在780-795℃,同时通入475-525sccm 大N2,475-525sccm O2和1140-1260sccm携带POCl3的小N2,时间为456-504s;
第十一步、将炉内各温区的温度降至780℃,同时通入950-1050sccm 大N2,2375-2625sccm的O2,时间为171-189s;
第十二步、继续降温,回压,取出硅片。
2.根据权利要求1所述能够匹配SE+碱抛的单晶硅电池片扩散提效工艺,其特征在于:
第一步、将待扩散的硅片置于扩散炉中,升温至790℃;
第二步、待温度稳定后,将炉内各温区的温度升至790-795℃,同时通入500sccm 大N2,900sccm O2和500sccm的小N2,时间为300s;
第三步、继续将炉内各温区的温度控制在790-805℃,同时通入500sccm 大N2,650sccmO2和700sccm携带POCl3的小N2,时间为180s;
第四步、待温度稳定后,将炉内各温区的温度升至800-815℃,通入500sccm 大N2,650sccm O2和700sccm携带POCl3的小N2,时间为180s;
第五步、继续将炉内各温区的温度升至870-885℃,同时通入1400sccm 大N2和500sccm的小N2,时间为480s;
第六步、待温度稳定后,将炉内各温区的稳定至870-885℃,同时通入1900sccm 大N2,时间为600s;
第七步、将炉内各温区的温度降至810-815℃,同时通入1400sccm 大N2和500sccm的小N2,时间为840s;
第八步、继续将炉内各温区的温度控制在810-815℃,同时通入400sccm 大N2,700sccmO2和700sccm携带POCl3的小N2,时间为180s;
第九步、将炉内各温区的温度降至780-795℃,同时通入1400sccm 大N2和500sccm的小N2,时间为360s;
第十步、继续将炉内各温区的温度控制在780-795℃,同时通入500sccm 大N2,500sccmO2和1200sccm携带POCl3的小N2,时间为480s;
第十一步、将炉内各温区的温度降至780℃,同时通入1000sccm 大N2,2500sccm的O2,时间为180s;
第十二步、继续降温,回压,取出硅片。
CN202010344852.8A 2020-04-27 2020-04-27 一种能够匹配se+碱抛的单晶硅电池片扩散提效工艺 Active CN111508829B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010344852.8A CN111508829B (zh) 2020-04-27 2020-04-27 一种能够匹配se+碱抛的单晶硅电池片扩散提效工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010344852.8A CN111508829B (zh) 2020-04-27 2020-04-27 一种能够匹配se+碱抛的单晶硅电池片扩散提效工艺

Publications (2)

Publication Number Publication Date
CN111508829A CN111508829A (zh) 2020-08-07
CN111508829B true CN111508829B (zh) 2022-04-08

Family

ID=71876487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010344852.8A Active CN111508829B (zh) 2020-04-27 2020-04-27 一种能够匹配se+碱抛的单晶硅电池片扩散提效工艺

Country Status (1)

Country Link
CN (1) CN111508829B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618023A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种高方阻扩散工艺
CN109103081A (zh) * 2018-07-02 2018-12-28 浙江启鑫新能源科技股份有限公司 一种晶体硅太阳能电池的扩散工艺
CN109449246A (zh) * 2018-09-05 2019-03-08 浙江爱旭太阳能科技有限公司 一种硅晶体片磷扩散方法
CN109616543A (zh) * 2017-09-04 2019-04-12 通威太阳能(成都)有限公司 太阳能电池片扩散工艺
CN109786511A (zh) * 2019-03-22 2019-05-21 韩华新能源(启东)有限公司 一种适用于选择性发射极的扩散方法
CN109860334A (zh) * 2019-01-16 2019-06-07 晶科能源科技(海宁)有限公司 一种匹配hf/hno3体系选择性刻蚀的高质量磷扩散方法
CN109873042A (zh) * 2019-03-28 2019-06-11 深圳市拉普拉斯能源技术有限公司 一种适用于选择发射极太阳能电池扩散工艺
CN109888054A (zh) * 2019-01-16 2019-06-14 晶科能源科技(海宁)有限公司 一种光伏电池无损伤选择性发射极的制备方法
CN110190153A (zh) * 2019-05-31 2019-08-30 江苏顺风光电科技有限公司 高效选择性发射极太阳能电池扩散工艺
CN110379885A (zh) * 2019-06-28 2019-10-25 徐州谷阳新能源科技有限公司 一种提高电池片效率的扩散工艺
CN110459646A (zh) * 2019-08-07 2019-11-15 山西潞安太阳能科技有限责任公司 一种适用于碱抛激光选择性发射极的新型工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151410A1 (en) * 2011-05-03 2012-11-08 Sandvik Thermal Process, Inc Novel doping process for solar cell manufacture
CN109713084A (zh) * 2018-12-29 2019-05-03 江苏日托光伏科技股份有限公司 一种改善太阳能电池扩散工艺中方阻均匀性的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618023A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种高方阻扩散工艺
CN109616543A (zh) * 2017-09-04 2019-04-12 通威太阳能(成都)有限公司 太阳能电池片扩散工艺
CN109103081A (zh) * 2018-07-02 2018-12-28 浙江启鑫新能源科技股份有限公司 一种晶体硅太阳能电池的扩散工艺
CN109449246A (zh) * 2018-09-05 2019-03-08 浙江爱旭太阳能科技有限公司 一种硅晶体片磷扩散方法
CN109860334A (zh) * 2019-01-16 2019-06-07 晶科能源科技(海宁)有限公司 一种匹配hf/hno3体系选择性刻蚀的高质量磷扩散方法
CN109888054A (zh) * 2019-01-16 2019-06-14 晶科能源科技(海宁)有限公司 一种光伏电池无损伤选择性发射极的制备方法
CN109786511A (zh) * 2019-03-22 2019-05-21 韩华新能源(启东)有限公司 一种适用于选择性发射极的扩散方法
CN109873042A (zh) * 2019-03-28 2019-06-11 深圳市拉普拉斯能源技术有限公司 一种适用于选择发射极太阳能电池扩散工艺
CN110190153A (zh) * 2019-05-31 2019-08-30 江苏顺风光电科技有限公司 高效选择性发射极太阳能电池扩散工艺
CN110379885A (zh) * 2019-06-28 2019-10-25 徐州谷阳新能源科技有限公司 一种提高电池片效率的扩散工艺
CN110459646A (zh) * 2019-08-07 2019-11-15 山西潞安太阳能科技有限责任公司 一种适用于碱抛激光选择性发射极的新型工艺

Also Published As

Publication number Publication date
CN111508829A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN109449246B (zh) 一种硅晶体片磷扩散方法
CN110164759B (zh) 一种区域性分层沉积扩散工艺
CN105895738A (zh) 一种钝化接触n型太阳能电池及制备方法和组件、系统
CN103618023B (zh) 一种高方阻扩散工艺
CN101241954A (zh) 晶体硅太阳能电池的热处理方法
CN106057980A (zh) 一种晶体硅太阳能电池的磷扩散方法
CN109786511B (zh) 一种适用于选择性发射极的扩散方法
CN105780127B (zh) 一种晶体硅太阳能电池的磷扩散方法
CN109103081A (zh) 一种晶体硅太阳能电池的扩散工艺
CN102130211B (zh) 一种改善太阳能电池表面扩散的方法
CN112820801A (zh) 一种减小se激光损伤的厚氧化层扩散工艺
CN110190153B (zh) 高效选择性发射极太阳能电池扩散工艺
CN112164733A (zh) 一种太阳能电池扩散深结制备方法
CN113594299B (zh) 一种n型硅片p++结构的制作工艺
CN114373674A (zh) 一种高效的硼扩散工艺
CN112510112B (zh) 一种高致密性氧化层的扩散工艺方法
CN111508829B (zh) 一种能够匹配se+碱抛的单晶硅电池片扩散提效工艺
CN108110090B (zh) 一种n型双面电池制备方法
CN109755330A (zh) 用于钝化接触结构的预扩散片及其制备方法和应用
CN114156169B (zh) 用于se太阳能电池的磷扩散方法及其应用
CN110931598A (zh) 一种二次退火的单晶硅se-perc电池的制造方法
CN116053353A (zh) 硼掺杂选择性发射极的制备方法及n型晶体硅太阳能电池
CN113571602B (zh) 一种二次扩散的选择性发射极及其制备方法和应用
CN114023635A (zh) 一种提效降本的太阳能电池硼扩散方法
CN216698398U (zh) 应用高方阻选择性发射极技术的太阳能电池片的制备装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant