CN111500614A - 高效催化l-苏氨酸合成2,5-dmp的质粒及其构建与应用 - Google Patents

高效催化l-苏氨酸合成2,5-dmp的质粒及其构建与应用 Download PDF

Info

Publication number
CN111500614A
CN111500614A CN202010426816.6A CN202010426816A CN111500614A CN 111500614 A CN111500614 A CN 111500614A CN 202010426816 A CN202010426816 A CN 202010426816A CN 111500614 A CN111500614 A CN 111500614A
Authority
CN
China
Prior art keywords
plasmid
gly
ala
ile
threonine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010426816.6A
Other languages
English (en)
Inventor
徐建中
于海波
张伟国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202010426816.6A priority Critical patent/CN111500614A/zh
Publication of CN111500614A publication Critical patent/CN111500614A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01103L-Threonine 3-dehydrogenase (1.1.1.103)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/03Oxidoreductases acting on NADH or NADPH (1.6) with oxygen as acceptor (1.6.3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种高效催化L‑苏氨酸合成2,5‑DMP的质粒及其构建与应用,属于基因工程技术领域。本发明构建了包含不同微生物来源L‑苏氨酸脱氢酶(TDH)的重组pRSFDuet‑tdhX质粒,以筛选出最高活性的TDH。然后,引入来源于Lactococcus cremoris的NADH氧化酶(NoxE),并筛选出TDH和NoxE在pRSF‑Duet1质粒中的最佳构建方式。最终得到高效催化L‑苏氨酸合成2,5‑二甲基吡嗪的质粒pRSFDuet‑tdhEcnoxELc。将该质粒转入大肠杆菌BL21中进行全细胞转化实验,在含有5g/L L‑苏氨酸的转化体系中于37℃、200r/min孵化24h,可积累605.1±56.4mg/L的2,5‑DMP。此发明通过筛选不同来源的TDH酶和优化不同基因共表达方式,从而获得了一种能高效催化L‑苏氨酸合成2,5‑二甲基吡嗪的质粒,为构建2,5‑二甲基吡嗪高效催化质粒提供了新的思路。

Description

高效催化L-苏氨酸合成2,5-DMP的质粒及其构建与应用
技术领域
本发明涉及一种高效催化L-苏氨酸合成2,5-DMP的质粒及其构建与应用,属于基因工程技术领域。
背景技术
2,5-二甲基吡嗪(2,5-DMP)是一种重要的香味化合物和药物中间体,呈刺鼻的炒花生香气和巧克力、奶油气味。其存在于咖啡、花生等50多种天然食品中。作为食品香料时,只添加1-2ppm,就可起到明显的增香作用,是国标GB2760-86规定为允许使用的香精。同时,2,5-DMP还是合成第二代磺脲类降血糖药格列吡嗪、新一代长效降血脂药阿昔莫司(Acipimox)u以及治疗结核病的有效药物5-甲基吡嗪-2-羧酸甲酯(PAE)等一系列药物的原料或药物中间体。其本身也具有潜在的抑制子宫收缩效果,小鼠实验研究表明其可能可以用于防止宫缩导致的子宫破裂和胎儿窒息。相比常用β2受体兴奋剂和钙拮抗剂类药物所可能导致的严重副作用如低血压和心脏加速或延缓,2,5-DMP将是很好的潜在替代物。因此,摸索新的2,5-DMP经济高效的生产方法无疑是非常重要的。
2,5-DMP的生产方法主要有化学合成法,添加前体物质发酵法,直接发酵法等。目前化学合成法仍是2,5-DMP的主要生产方法,但化学合成过程中所用的原料和催化剂以及形成的副产物具有一定的毒性,会对人和环境造成一定的危害。为了获得食品安全和环境友好的2,5-DMP,人们开始越来越关注于2,5-DMP生物发酵的研究。1997年,Besson等人成功利用一株从发酵大豆中分离的天然B.subtilis以大豆固体培养基发酵生产2,5-DMP。1999年,2,5-DMP源自L-苏氨酸的合成途径被提出。2019年,江南大学的徐岩团队利用同位素标记底物进行全细胞催化实验,首次阐明了2,5-DMP的合成机制。自此,通过基因工程等手段理性选育2,5-DMP高产菌株成为可能。
文献报道明确揭示出了2,5-DMP在枯草芽孢杆菌中的合成机制:L-苏氨酸首先在苏氨酸脱氢酶的催化作用下生成2-氨基-3-酮丁酸,再经自发脱羧反应,形成相对稳定的α-氨基丙酮;每两个α-氨基丙酮经过自发脱水缩合成环状的3,6-二氢-2,5-二甲基吡嗪,进而被氧化脱氢,生成2,5-DMP。其中,后三步都是可以自发进行的,而L-苏氨酸脱氢酶(Threonine dehydrogenase,TDH,编码基因tdh)则是整个生化反应的关键限速酶,因而筛选一种高活性的苏氨酸脱氢酶对于2,5-DMP的生物合成极为重要。
苏氨酸脱氢酶是一类NAD+依赖型且含Zn2+的二元醇/多元醇脱氢酶,是原核生物和真核生物中主要参与L-苏氨酸分解代谢的酶。每合成1mol 2,5-DMP,需消耗2mol NAD+,同时产生2mol NADH。然而,胞内NADH/NAD+水平在微生物生长和产物发酵过程中发挥多种生理功能,如调节胞内氧化还原水平,影响众多基因表达,细胞功能,代谢途径和物质跨膜运输等。因此,胞内NADH/NAD+供应与消耗的不平衡,必将会影响2,5-DMP的合成。这一问题可以通过引入辅因子再生相关的酶来解决,但是一般的质粒构建策略往往将消耗辅因子的酶与辅因子再生的酶分开表达,导致两种表达产物的物理距离较远,辅因子循环不畅。
2,5-DMP代谢途径解析清楚前,生物发酵法生产2,5-DMP仅仅止步于利用未经选育的天然菌株以富含L-苏氨酸的培养基进行发酵生产。如今,直接利用基因工程选育以葡萄糖为底物生产2,5-DMP的菌株已成为可能,但这一方法往往存在以下问题:1、从葡萄糖到2,5-DMP的反应途径过长,总体转化率低。2、涉及的酶反应过多,发酵条件难以同时满足所有酶反应条件的需求。3、发酵生产2,5-DMP的同时需要顾及菌体生长的需求,加大了发酵控制的难度。4、培养基成分复杂,产物分离较难。而利用全细胞转化的方法以L-苏氨酸为底物生产2,5-DMP则没有以上的问题,简化发酵过程和培养基成分的同时还能控制发酵条件以最优化TDH的酶活,实现更快的转化效率和更高的转化率。
发明内容
为解决上述问题,本发明通过构建L-苏氨酸脱氢酶种间进化树,挑选并将不同来源的TDH构建于pRSFDuet-1上转化至大肠杆菌BL21,检测酶活性,筛选得更高活性的TDH以提高关键限速步骤的反应速率。其次引入了来源于乳球菌属微生物的NoxE,改善了重组菌中辅因子不平衡的缺点。通过尝试TDH和NoxE在pRSFDuet-1上的不同构建方式,最终,得到了一种高效催化L-苏氨酸合成2,5-DMP的质粒pRSFDuet-tdhEcnoxELc,并将其转化至大肠杆菌BL21中应用于2,5-DMP的全细胞转化。
本发明的第一个目的是提供一种高效催化L-苏氨酸合成2,5-DMP的质粒,所述的质粒是以pRSFDuet-1为表达载体,在pRSFDuet-1的多克隆位点插入来源于大肠埃希氏菌属的苏氨酸脱氢酶(TDH)和来源于乳球菌属的NADH氧化酶(NoxE)组合而成的融合蛋白基因。
进一步地,所述的苏氨酸脱氢酶为以下任一:
(1)氨基酸序列如SEQ ID NO.1所示;
(2)具有苏氨酸脱氢酶活性的同工酶。
进一步地,所述的NADH氧化酶为以下任一:
(1)氨基酸序列如SEQ ID NO.2所示;
(2)具有NADH氧化酶活性的同工酶。
进一步地,所述的苏氨酸脱氢酶的碳端与NADH氧化酶的氮端之间包括柔性蛋白linker。
进一步地,所述的柔性蛋白linker的氨基酸序列如SEQ ID NO.3所示。
进一步地,所述的融合蛋白基因插入表达载体pRSFDuet-1的酶切位点BamHI和HindIII间。
本发明的第二个目的是提供所述的质粒的构建方法,包括如下步骤:
依据NADH氧化酶的氨基酸序列在氮端添加柔性蛋白linker后,按照全细胞转化的宿主菌进行密码子偏好性优化,组合至苏氨酸脱氢酶的碳端,合成并连接至质粒pRSFDuet-1的启动子后,得到质粒。
本发明的第三个目的是提供一种包含所述的质粒的重组菌。
进一步地,所述的重组菌是以大肠杆菌为宿主。
本发明的第四个目的是提供所述的重组菌全细胞转化L-苏氨酸合成2,5-二甲基吡嗪的方法,包括如下步骤:
重组菌采用诱导剂诱导培养,收集重组菌菌体,将重组菌菌体加入L-苏氨酸终浓度为3~7g/L的转化液中,在转化温度为35~40℃、转速为100~300r/min条件下转化L-苏氨酸合成2,5-二甲基吡嗪。
本发明的有益效果:
本发明通过构建L-苏氨酸脱氢酶种间进化树,挑选并筛选更高活性的TDH以提高2,5-DMP合成途径中关键限速步骤的反应速率。又引入了来源于乳球菌属微生物的NoxE,改善了重组菌中辅因子不平衡的缺点。通过尝试TDH和NoxE在pRSFDuet-1上的不同构建方式,最终,得到了一种高效催化L-苏氨酸合成2,5-DMP的质粒pRSFDuet-tdhEcnoxELc,并将其转化至大肠杆菌BL21中成功应用于2,5-DMP的高效全细胞转化。
附图说明
图1为以L-苏氨酸为底物合成2,5-DMP的生物途径;
缩写说明:TDH,L-苏氨酸脱氢酶;LcNoxE,NADH氧化酶;
图2为EcTDH、LcNoxE和融合蛋白EcTDHLcNoxE在大肠杆菌BL21中的表达;
泳道说明:M泳道为蛋白质分子量标准Marker;1号泳道为E.coli BL21(DE3);2号泳道为E.coli pRSFDuet-tdhEc;3号泳道为E.colipRSFDuet-tdhEc-noxELc;4号泳道为E.coli pRSFDuet-tdhEc-PnoxELc;5号泳道为E.coli pRSFDuet-tdhEcnoxELc
图3为20种不同来源TDH在大肠杆菌BL21中全细胞转化的L-苏氨酸消耗量;
图4为20种不同来源TDH在大肠杆菌BL21中全细胞转化的2,5-DMP产量;
图5为不同取样时间下(即8h、16h和24h),EcTDH和LcNoxE的不同表达方式在大肠杆菌BL21中全细胞转化的L-苏氨酸消耗量;
图6为不同取样时间下(即8h、16h和24h),EcTDH和LcNoxE的不同表达方式在大肠杆菌BL21中全细胞转化的2,5-DMP产量;
物种来源缩写说明:Ah A.hydrophica ATCC7966,Cc C.crenatum MT,CgCorynebacterium glutamicum ATCC13032,Bmu Burkholderia multivoransATCC17616,Bma B.mallei ATCC23344,Bl Bacillus licheniformis ATCC14580,BaB.amyloliquefaciens Y2,Bs B.subtilis 168,Fp Francisella philomiragiaATCC25017,Pp Paenibacillus polymyxa ATCC842,Ph Pyrococcus horikoshii OT3,SpeShewanella pealeana ATCC700345,Spu S.putefaciens CN-32,Se Salmonella entericaATCC9150,Tk T.kodakaraensis KOD1,Tv T.volcanium GSS1,Vt Vibrio transmaniensisLGP32,Xc Xanthomonas campestris 8004,Ef Escherichia fergusonli ATCC35469。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
底物与产物的定性与定量分析以及菌体生长情况的监测:发酵液中葡萄糖实时检测通过SBA-40B生物传感分析仪测定。2,5-二甲基吡嗪产物实时监测采用高效液相色谱仪(HLPC)测定,采用高效液相色谱仪测定标准样品和转化液各自的出峰时间和峰面积,即可以对转化液中待测物质进行定性与定量检测。菌液浓度测定:吸取样品菌液,用蒸馏水稀释一定倍数,以蒸馏水作为空白对照,采用分光光度计于1cm光程测定OD600nm
表1:实施例中所用到的引物(下划线为酶切位点)
Figure BDA0002499015720000061
实施例1:苏氨酸脱氢酶基因tdh的克隆及重组菌的构建
基于National Center for Biotechnology Information(NCBI)数据库,构建苏氨酸脱氢酶(TDH)系统进化树,并从中挑选20种具有代表性微生物来源的TDH(图2)。在GeneBank数据库中分别获取20种来源的TDH氨基酸序列,除了来源于大肠杆菌K-12的tdh基因通过引物tdhEc-F/R以大肠杆菌K-12基因组为模板经过PCR获得,其余都提交给苏州金唯智生物科技有限公司根据大肠杆菌密码子偏好性进行优化、合成并连接至表达载体pRSFDuet-1的酶切位点BamHI和EcoRI间,获得重组质粒pRSFDuet-tdhX(X表示不同微生物来源)。将重组质粒pRSFDuet-tdhX转化至感受态细胞E.coli BL21(DE3)中,通过卡那霉素(Kan)抗性筛选,获得重组菌E.coli pRSFDuet-tdhX
实施例2:苏氨酸脱氢酶TDH的酶活力测定,挑选活力最高的TDH用于后续的构建
TDH的测定:取冷冻管保藏的菌种接种至含卡那霉素(50μg/ml)的LB液体培养基中,37℃、100rpm振荡培养10h,按1%接种量放大培养至100ml含卡纳霉素(50μg/ml)的LB三角瓶(500ml)中,并于37℃、100rpm条件下诱导培养16h,4℃、8000rpm离心收集菌体。收集的菌体用0.85%生理盐水洗涤2次。随后,将菌体悬浮于含150mmol/L NaCl的Tris-HCI缓冲液(20mmol/L,pH 8.0)中并超声波破碎制备粗酶液。TDH酶活测定:NADH在340nm处有最大吸光值,TDH活力通过检测反应过程中NADH在340nm处吸光值的变化计算。酶反应体系:总体系200μl,其中50mmol/L Tris-HCI缓冲液(pH10.0),100μl;20mmol/L NAD+溶液,20μl;100mmol/L苏氨酸溶液,20μl,37℃恒温10min,加入60μl粗酶液;于37℃、100rpm反应4h。酶活单位(U)定义为在上述反应条件下每分钟催化1μmol NADH氧化所需的酶量。经测定,20种不同来源的TDH酶活如表2所示。发现来源于大肠杆菌K-12的TDH(即基因tdhEc所表达的酶)酶活最高(核酸序列如SEQ ID NO.5所示)。
表2:不同来源的TDH酶活力测定
Figure BDA0002499015720000071
Note:Ah A.hydrophica ATCC7966,Cc C.crenatum MT,Cg Corynebacteriumglutamicum ATCC13032,Bmu Burkholderia multivorans ATCC17616,Bma B.malleiATCC23344,Bl Bacillus licheniformis ATCC14580,Ba B.amyloliquefaciens Y2,BsB.subtilis 168,Fp Francisella philomiragia ATCC25017,Pp Paenibacilluspolymyxa ATCC842,Ph Pyrococcus horikoshii OT3,Spe Shewanella pealeanaATCC700345,Spu S.putefaciens CN-32,Se Salmonella enterica ATCC9150,TkT.kodakaraensis KOD1,Tv T.volcanium GSS1,Vt Vibrio transmaniensis LGP32,XcXanthomonas campestris 8004,Ef Escherichia fergusonli ATCC35469。
实施例3:NADH氧化酶基因noxE的克隆及重组菌的构建
在GeneBank数据库中获取Lactococcus cremoris MG1363中NADH氧化酶(NoxE)基因序列(Accession No.AM406671.1),并提交给苏州金唯智生物科技有限公司根据大肠杆菌密码子偏好性进行优化(优化前的核酸序列如SEQ ID NO.6所示,优化后的核酸序列如SEQ ID NO.7所示)、合成并连接至表达载体pRSFDuet-tdhEc的酶切位点EcoRI和HindIII间,获得重组质粒pRSFDuet-tdhEc-noxELc,或者连接至表达载体pRSFDuet-tdhEc的酶切位点NdeI和XhoI间,获得重组质粒pRSFDuet-tdhEc-PnoxELc。此外,根据来源于大肠杆菌K-12的TDH氨基酸序列和NoxE氨基酸序列设计融合蛋白,在两者之间加入GGGGS作为融合蛋白Linker,将拼接融合蛋白氨基酸序列提交给苏州金唯智生物科技有限公司根据大肠杆菌密码子偏好性进行优化(优化后的序列如SEQ ID NO.8所示、合成并连接至表达载体pRSFDuet-1的酶切位点BamHI和HindIII间,获得重组质粒pRSFDuet-tdhEcnoxELc。分别将重组质粒pRSFDuet-tdhEc-noxELc、pRSFDuet-tdhEc-PnoxELc和pRSFDuet-tdhEcnoxELc转化至感受态细胞E.coli BL21(DE3)中,通过Kan抗性筛选,获得重组菌E.coli pRSFDuet-tdhEc-noxELc、E.coli pRSFDuet-tdhEc-PnoxELc和E.coli pRSFDuet-tdhEcnoxELc
实施例4:不同质粒构建方式中苏氨酸脱氢酶TDH和NADH氧化酶NoxE的表达
分别将出发菌株大肠杆菌BL21和重组菌株E.coli pRSFDuet-tdhEc-noxELc、E.coli pRSFDuet-tdhEc-PnoxELc和E.coli pRSFDuet-tdhEcnoxELc接种至液体LB培养基,IPTG诱导后收集菌体经超声波破碎后,上清液SDS-PAGE电泳,检测到一条分子量约35kDa的特异性条带、一条分子量约48kDa的特异性条带和一条分子量约90kDa的特异性条带(图2),与报道的目标蛋白大小一致,说明TDH和NoxE可以在大肠杆菌BL21中正确表达。
实施例5:不同质粒构建方式的苏氨酸脱氢酶TDH及NADH氧化酶NoxE的酶活力测定
TDH的测定:同实施例2。
NoxE的测定:取冷冻管保藏的菌种接种至含卡那霉素(50μg/ml)的LB液体培养基中,37℃、100rpm振荡培养10h,按1%接种量放大培养至100ml含卡纳霉素(50μg/ml)的LB三角瓶(500ml)中,并于37℃、100rpm条件下诱导培养16h,4℃、8000rpm离心收集菌体。收集的菌体用10mmol/L磷酸盐缓冲液(pH 7.5)洗涤2次。随后,将菌体悬浮于含有2mmol/L MgCl2和1mmol/L二硫苏糖醇的磷酸盐缓冲液(100mmol/L,pH 7.5)中并超声波破碎制备粗酶液。NoxE酶活测定:NADH在340nm处有最大吸光值,NoxE活力通过检测反应过程中NADH在340nm处吸光值的变化计算。酶反应体系:1ml含有0.3mmol/L NADH和0.3mmol/L EDTA的50mmol/L磷酸盐缓冲液(pH7.0),25℃恒温10min,加入10μl粗酶液;于25℃、100rpm反应10min。酶活单位(U)定义为在上述反应条件下每分钟催化1μmol NADH氧化所需的酶量。测定结果如表3所示。
表3:不同质粒构建方式的TDH和NoxE酶活力测定
Figure BDA0002499015720000091
实施例6:大肠杆菌BL21的全细胞转化催化L-苏氨酸合成2,5-DMP
将E.coli pRSFDuet-tdhX、E.coli pRSFDuet-tdhEc-noxELc、E.coli pRSFDuet-tdhEc-PnoxELc和E.coli pRSFDuet-tdhEcnoxELc接种于TB培养基中,培养温度为37℃、转速为100r/min、接种量为1%(v/v)。在合适的情况下,添加终浓度为50μg/mL的Kan或/和终浓度为0.5mmol/L的诱导剂异丙基硫代半乳糖苷(IPTG)。培养24h后经5 000r/min、4℃离心7min收集菌体,并用生理盐水洗涤2次,最后用15mL甘氨酸-NaOH缓冲液(pH 10.4)重悬菌体。非特殊说明,转化温度为37℃、转速为200r/min,转化开始加入终浓度为5g/L的L-苏氨酸。
TB培养基为:胰蛋白胨12g/L、酵母提取物24g/L、甘油4mL/L、KH2PO42.31g/L和K2HPO4·3H2O 16.42g/L。
分时段测定转化液上清的L-苏氨酸、2,5-DMP的含量,转化结果如图3、图4、图5、图6所示。可见E.coli pRSFDuet-tdhEcnoxELc的2,5-DMP产量最高,达到605.1±56.4mg/L。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
序列表
<110> 江南大学
<120> 高效催化L-苏氨酸合成2,5-DMP的质粒及其构建与应用
<160> 8
<170> PatentIn version 3.3
<210> 1
<211> 341
<212> PRT
<213> (人工序列)
<400> 1
Met Lys Ala Leu Ser Lys Leu Lys Ala Glu Glu Gly Ile Trp Met Thr
1 5 10 15
Asp Val Pro Val Pro Glu Leu Gly His Asn Asp Leu Leu Ile Lys Ile
20 25 30
Arg Lys Thr Ala Ile Cys Gly Thr Asp Val His Ile Tyr Asn Trp Asp
35 40 45
Glu Trp Ser Gln Lys Thr Ile Pro Val Pro Met Val Val Gly His Glu
50 55 60
Tyr Val Gly Glu Val Val Gly Ile Gly Gln Glu Val Lys Gly Phe Lys
65 70 75 80
Ile Gly Asp Arg Val Ser Gly Glu Gly His Ile Thr Cys Gly His Cys
85 90 95
Arg Asn Cys Arg Gly Gly Arg Thr His Leu Cys Arg Asn Thr Ile Gly
100 105 110
Val Gly Val Asn Arg Pro Gly Cys Phe Ala Glu Tyr Leu Val Ile Pro
115 120 125
Ala Phe Asn Ala Phe Lys Ile Pro Asp Asn Ile Ser Asp Asp Leu Ala
130 135 140
Ala Ile Phe Asp Pro Phe Gly Asn Ala Val His Thr Ala Leu Ser Phe
145 150 155 160
Asp Leu Val Gly Glu Asp Val Leu Val Ser Gly Ala Gly Pro Ile Gly
165 170 175
Ile Met Ala Ala Ala Val Ala Lys His Val Gly Ala Arg Asn Val Val
180 185 190
Ile Thr Asp Val Asn Glu Tyr Arg Leu Glu Leu Ala Arg Lys Met Gly
195 200 205
Ile Thr Arg Ala Val Asn Val Ala Lys Glu Asn Leu Asn Asp Val Met
210 215 220
Ala Glu Leu Gly Met Thr Glu Gly Phe Asp Val Gly Leu Glu Met Ser
225 230 235 240
Gly Ala Pro Pro Ala Phe Arg Thr Met Leu Asp Thr Met Asn His Gly
245 250 255
Gly Arg Ile Ala Met Leu Gly Ile Pro Pro Ser Asp Met Ser Ile Asp
260 265 270
Trp Thr Lys Val Ile Phe Lys Gly Leu Phe Ile Lys Gly Ile Tyr Gly
275 280 285
Arg Glu Met Phe Glu Thr Trp Tyr Lys Met Ala Ala Leu Ile Gln Ser
290 295 300
Gly Leu Asp Leu Ser Pro Ile Ile Thr His Arg Phe Ser Ile Asp Asp
305 310 315 320
Phe Gln Lys Gly Phe Asp Ala Met Arg Ser Gly Gln Ser Gly Lys Val
325 330 335
Ile Leu Ser Trp Asp
340
<210> 2
<211> 446
<212> PRT
<213> (人工序列)
<400> 2
Met Lys Ile Val Val Ile Gly Thr Asn His Ala Gly Ile Ala Thr Ala
1 5 10 15
Asn Thr Leu Leu Glu Gln Tyr Pro Gly His Glu Ile Val Met Ile Asp
20 25 30
Arg Asn Ser Asn Met Ser Tyr Leu Gly Cys Gly Thr Ala Ile Trp Val
35 40 45
Gly Arg Gln Ile Glu Lys Pro Asp Glu Leu Phe Tyr Ala Lys Ala Glu
50 55 60
Asp Phe Glu Ala Lys Gly Val Lys Ile Leu Thr Glu Thr Glu Val Ser
65 70 75 80
Glu Ile Asp Phe Ala Asn Lys Lys Val Tyr Ala Lys Thr Lys Ser Asp
85 90 95
Asp Glu Ile Ile Glu Ala Tyr Asp Lys Leu Val Leu Ala Thr Gly Ser
100 105 110
Arg Pro Ile Ile Pro Asn Leu Pro Gly Lys Asp Leu Lys Gly Ile His
115 120 125
Phe Leu Lys Leu Phe Gln Glu Gly Gln Ala Ile Asp Ala Glu Phe Ala
130 135 140
Lys Glu Lys Val Lys Arg Ile Ala Val Ile Gly Ala Gly Tyr Ile Gly
145 150 155 160
Thr Glu Ile Ala Glu Ala Ala Lys Arg Arg Gly Lys Glu Val Leu Leu
165 170 175
Phe Asp Ala Glu Asn Thr Ser Leu Ala Ser Tyr Tyr Asp Glu Glu Phe
180 185 190
Ala Lys Gly Met Asp Glu Asn Leu Ala Gln His Gly Ile Glu Leu His
195 200 205
Phe Gly Glu Leu Ala Lys Glu Phe Lys Ala Asn Glu Glu Gly Tyr Val
210 215 220
Ser Gln Ile Val Thr Asn Lys Ala Thr Tyr Asp Val Asp Leu Val Ile
225 230 235 240
Asn Cys Ile Gly Phe Thr Ala Asn Ser Ala Leu Ala Ser Asp Lys Leu
245 250 255
Ala Thr Phe Lys Asn Gly Ala Ile Lys Val Asp Lys His Gln Gln Ser
260 265 270
Ser Asp Pro Asp Val Tyr Ala Val Gly Asp Val Ala Thr Ile Tyr Ser
275 280 285
Asn Ala Leu Gln Asp Phe Thr Tyr Ile Ala Leu Ala Ser Asn Ala Val
290 295 300
Arg Ser Gly Ile Val Ala Gly His Asn Ile Gly Gly Lys Glu Leu Glu
305 310 315 320
Ser Val Gly Val Gln Gly Ser Asn Gly Ile Ser Ile Phe Gly Tyr Asn
325 330 335
Met Thr Ser Thr Gly Leu Ser Val Lys Ala Ala Lys Lys Leu Gly Leu
340 345 350
Glu Val Ser Phe Ser Asp Phe Glu Asp Lys Gln Lys Ala Trp Phe Leu
355 360 365
His Glu Asn Asn Asp Ser Val Lys Ile Arg Ile Val Tyr Glu Thr Lys
370 375 380
Ser Arg Arg Ile Ile Gly Ala Gln Leu Ala Ser Lys Ser Glu Ile Ile
385 390 395 400
Ala Gly Asn Ile Asn Met Phe Ser Leu Ala Ile Gln Glu Lys Lys Thr
405 410 415
Ile Asp Glu Leu Ala Leu Leu Asp Leu Phe Phe Leu Pro His Phe Asn
420 425 430
Ser Pro Tyr Asn Tyr Met Thr Val Ala Ala Leu Asn Ala Lys
435 440 445
<210> 3
<211> 5
<212> PRT
<213> (人工序列)
<400> 3
Gly Gly Gly Gly Ser
1 5
<210> 4
<211> 792
<212> PRT
<213> (人工序列)
<400> 4
Met Lys Ala Leu Ser Lys Leu Lys Ala Glu Glu Gly Ile Trp Met Thr
1 5 10 15
Asp Val Pro Val Pro Glu Leu Gly His Asn Asp Leu Leu Ile Lys Ile
20 25 30
Arg Lys Thr Ala Ile Cys Gly Thr Asp Val His Ile Tyr Asn Trp Asp
35 40 45
Glu Trp Ser Gln Lys Thr Ile Pro Val Pro Met Val Val Gly His Glu
50 55 60
Tyr Val Gly Glu Val Val Gly Ile Gly Gln Glu Val Lys Gly Phe Lys
65 70 75 80
Ile Gly Asp Arg Val Ser Gly Glu Gly His Ile Thr Cys Gly His Cys
85 90 95
Arg Asn Cys Arg Gly Gly Arg Thr His Leu Cys Arg Asn Thr Ile Gly
100 105 110
Val Gly Val Asn Arg Pro Gly Cys Phe Ala Glu Tyr Leu Val Ile Pro
115 120 125
Ala Phe Asn Ala Phe Lys Ile Pro Asp Asn Ile Ser Asp Asp Leu Ala
130 135 140
Ala Ile Phe Asp Pro Phe Gly Asn Ala Val His Thr Ala Leu Ser Phe
145 150 155 160
Asp Leu Val Gly Glu Asp Val Leu Val Ser Gly Ala Gly Pro Ile Gly
165 170 175
Ile Met Ala Ala Ala Val Ala Lys His Val Gly Ala Arg Asn Val Val
180 185 190
Ile Thr Asp Val Asn Glu Tyr Arg Leu Glu Leu Ala Arg Lys Met Gly
195 200 205
Ile Thr Arg Ala Val Asn Val Ala Lys Glu Asn Leu Asn Asp Val Met
210 215 220
Ala Glu Leu Gly Met Thr Glu Gly Phe Asp Val Gly Leu Glu Met Ser
225 230 235 240
Gly Ala Pro Pro Ala Phe Arg Thr Met Leu Asp Thr Met Asn His Gly
245 250 255
Gly Arg Ile Ala Met Leu Gly Ile Pro Pro Ser Asp Met Ser Ile Asp
260 265 270
Trp Thr Lys Val Ile Phe Lys Gly Leu Phe Ile Lys Gly Ile Tyr Gly
275 280 285
Arg Glu Met Phe Glu Thr Trp Tyr Lys Met Ala Ala Leu Ile Gln Ser
290 295 300
Gly Leu Asp Leu Ser Pro Ile Ile Thr His Arg Phe Ser Ile Asp Asp
305 310 315 320
Phe Gln Lys Gly Phe Asp Ala Met Arg Ser Gly Gln Ser Gly Lys Val
325 330 335
Ile Leu Ser Trp Asp Gly Gly Gly Gly Ser Met Lys Ile Val Val Ile
340 345 350
Gly Thr Asn His Ala Gly Ile Ala Thr Ala Asn Thr Leu Leu Glu Gln
355 360 365
Tyr Pro Gly His Glu Ile Val Met Ile Asp Arg Asn Ser Asn Met Ser
370 375 380
Tyr Leu Gly Cys Gly Thr Ala Ile Trp Val Gly Arg Gln Ile Glu Lys
385 390 395 400
Pro Asp Glu Leu Phe Tyr Ala Lys Ala Glu Asp Phe Glu Ala Lys Gly
405 410 415
Val Lys Ile Leu Thr Glu Thr Glu Val Ser Glu Ile Asp Phe Ala Asn
420 425 430
Lys Lys Val Tyr Ala Lys Thr Lys Ser Asp Asp Glu Ile Ile Glu Ala
435 440 445
Tyr Asp Lys Leu Val Leu Ala Thr Gly Ser Arg Pro Ile Ile Pro Asn
450 455 460
Leu Pro Gly Lys Asp Leu Lys Gly Ile His Phe Leu Lys Leu Phe Gln
465 470 475 480
Glu Gly Gln Ala Ile Asp Ala Glu Phe Ala Lys Glu Lys Val Lys Arg
485 490 495
Ile Ala Val Ile Gly Ala Gly Tyr Ile Gly Thr Glu Ile Ala Glu Ala
500 505 510
Ala Lys Arg Arg Gly Lys Glu Val Leu Leu Phe Asp Ala Glu Asn Thr
515 520 525
Ser Leu Ala Ser Tyr Tyr Asp Glu Glu Phe Ala Lys Gly Met Asp Glu
530 535 540
Asn Leu Ala Gln His Gly Ile Glu Leu His Phe Gly Glu Leu Ala Lys
545 550 555 560
Glu Phe Lys Ala Asn Glu Glu Gly Tyr Val Ser Gln Ile Val Thr Asn
565 570 575
Lys Ala Thr Tyr Asp Val Asp Leu Val Ile Asn Cys Ile Gly Phe Thr
580 585 590
Ala Asn Ser Ala Leu Ala Ser Asp Lys Leu Ala Thr Phe Lys Asn Gly
595 600 605
Ala Ile Lys Val Asp Lys His Gln Gln Ser Ser Asp Pro Asp Val Tyr
610 615 620
Ala Val Gly Asp Val Ala Thr Ile Tyr Ser Asn Ala Leu Gln Asp Phe
625 630 635 640
Thr Tyr Ile Ala Leu Ala Ser Asn Ala Val Arg Ser Gly Ile Val Ala
645 650 655
Gly His Asn Ile Gly Gly Lys Glu Leu Glu Ser Val Gly Val Gln Gly
660 665 670
Ser Asn Gly Ile Ser Ile Phe Gly Tyr Asn Met Thr Ser Thr Gly Leu
675 680 685
Ser Val Lys Ala Ala Lys Lys Leu Gly Leu Glu Val Ser Phe Ser Asp
690 695 700
Phe Glu Asp Lys Gln Lys Ala Trp Phe Leu His Glu Asn Asn Asp Ser
705 710 715 720
Val Lys Ile Arg Ile Val Tyr Glu Thr Lys Ser Arg Arg Ile Ile Gly
725 730 735
Ala Gln Leu Ala Ser Lys Ser Glu Ile Ile Ala Gly Asn Ile Asn Met
740 745 750
Phe Ser Leu Ala Ile Gln Glu Lys Lys Thr Ile Asp Glu Leu Ala Leu
755 760 765
Leu Asp Leu Phe Phe Leu Pro His Phe Asn Ser Pro Tyr Asn Tyr Met
770 775 780
Thr Val Ala Ala Leu Asn Ala Lys
785 790
<210> 5
<211> 1026
<212> DNA
<213> (人工序列)
<400> 5
atgaaagcgt tatccaaact gaaagcggaa gagggcatct ggatgaccga cgttcctgta 60
ccggaactcg ggcataacga tctgctgatt aaaatccgta aaacagccat ctgcgggact 120
gacgttcaca tctataactg ggatgagtgg tcgcaaaaaa ccatcccggt gccgatggtc 180
gtgggccatg aatatgtcgg tgaagtggta ggtattggtc aggaagtgaa aggcttcaag 240
atcggcgatc gcgtttctgg cgaaggccat atcacctgtg gtcattgccg caactgtcgt 300
ggtggtcgta cccatttgtg ccgcaacacg ataggcgttg gtgttaatcg cccgggctgc 360
tttgccgaat atctggtgat cccggcattc aacgccttca aaatccccga caatatttcc 420
gatgacttag ccgcaatttt tgatcccttc ggtaacgccg tgcataccgc gctgtcgttt 480
gatctggtgg gcgaagatgt gctggtttct ggtgcaggcc cgattggtat tatggcagcg 540
gcggtggcga aacacgttgg tgcacgcaat gtggtgatca ctgatgttaa cgaataccgc 600
cttgagctgg cgcgtaaaat gggtatcacc cgtgcggtta acgtcgccaa agaaaatctc 660
aatgacgtga tggcggagtt aggcatgacc gaaggttttg atgtcggtct ggaaatgtcc 720
ggtgcgccgc cagcgtttcg taccatgctt gacaccatga atcacggcgg ccgtattgcg 780
atgctgggta ttccgccgtc tgatatgtct atcgactgga ccaaagtgat ctttaaaggc 840
ttgttcatta aaggtattta cggtcgtgag atgtttgaaa cctggtacaa gatggcggcg 900
ctgattcagt ctggcctcga tctttcgccg atcattaccc atcgtttctc tatcgatgat 960
ttccagaagg gctttgacgc tatgcgttcg ggccagtccg ggaaagttat tctgagctgg 1020
gattaa 1026
<210> 6
<211> 1341
<212> DNA
<213> (人工序列)
<400> 6
atgaaaatcg tagttatcgg tacaaaccac gcaggcattg ctacagcgaa tacattactt 60
gaacaatatc ccgggcatga aattgtcatg attgaccgta atagcaacat gagttatcta 120
ggttgtggca cagcaatttg ggttggaaga caaattgaaa aaccagatga attattttat 180
gccaaagcag aggattttga ggcaaaaggg gtaaaaattt tgactgaaac agaagtttca 240
gaaattgatt ttgctaataa gaaagtttat gcaaaaacta aatctgatga tgaaataatt 300
gaagcttacg acaagcttgt tttagcaaca ggttcacgtc caattattcc taatctacca 360
ggcaaagacc ttaagggaat tcattttctg aaactttttc aagaaggtca agcaattgac 420
gcagaatttg ccaaagaaaa agtcaagcgt atcgcagtca ttggtgcagg atatatcggt 480
acagagattg cggaagcagc taaacgtcgg ggtaaagaag ttcttctctt tgacgctgaa 540
aatacttcac ttgcatcata ttatgatgaa gaatttgcca aaggaatgga tgaaaacctt 600
gctcaacatg gaattgaact tcattttgga gaactggcca aagaatttaa agcgaatgag 660
gaaggttatg tatcacaaat cgtaaccaac aaggcgactt atgatgttga tcttgtcatc 720
aattgtattg gttttactgc caacagtgcc ttggcaagtg ataagttagc taccttcaaa 780
aatggcgcaa tcaaggtgga taagcatcaa caaagtagtg atccagatgt ttacgcggta 840
ggtgatgttg cgacaattta ttctaatgcc ttgcaagatt ttacttatat cgctcttgcc 900
tcaaacgctg ttcggtcagg aattgtcgca ggacacaata ttggtggaaa agaattagaa 960
tctgttggtg ttcaaggttc taatggtatt tcgatttttg gttacaatat gacttctaca 1020
ggactttctg ttaaagctgc taaaaaatta ggtttagaag tttcatttag tgattttgaa 1080
gataaacaaa aagcttggtt tcttcatgaa aacaacgata gtgtgaaaat tcgtatcgta 1140
tatgagacaa aaagtcgcag aattattgga gcacaacttg ctagtaaaag tgagataatt 1200
gcaggaaata taaatatgtt cagtttagcg attcaagaga aaaaaacaat tgatgaacta 1260
gctttgcttg atttattctt tctcccccac ttcaacagtc catataatta tatgacagtt 1320
gcagctttga atgccaaata a 1341
<210> 7
<211> 1341
<212> DNA
<213> (人工序列)
<400> 7
atgaagatag tagtgattgg caccaaccat gcgggcattg cgaccgcgaa caccctgctg 60
gaacagtatc cgggccatga aattgtgatg attgatcgca acagcaacat gagctatctg 120
ggctgcggca ccgcgatttg ggtgggccgc cagattgaga agcctgacga actgttctac 180
gcaaaggcag aggatttcga ggccaaaggt gtaaagattc ttacagaaac cgaagtgagc 240
gaaattgatt tcgccaataa gaaggtctac gcgaagacaa agtccgatga tgaaattatt 300
gaagcgtatg ataaactggt gctggcgacc ggcagccgcc cgattattcc gaacctgccg 360
ggcaaagatc tgaaaggcat tcatttcctt aagctgtttc aggaaggcca ggcgattgat 420
gcggagttcg cgaaagagaa ggtcaagcgc attgcggtga ttggcgcggg ctatattggc 480
accgaaattg cggaggcagc taagcgacga ggcaaagaag tgctgctgtt tgatgcggag 540
aatacgagcc tggcgagcta ttatgatgaa gagttcgcga aaggtatgga tgagaatctc 600
gcgcagcatg gcattgaact gcatttcgga gaacttgcga aagaatttaa agcgaacgaa 660
gaaggctatg tgagccagat tgtgaccaac aaagcgacct atgatgtgga tctggtgatt 720
aactgcattg gctttaccgc gaacagcgct ttggcatcag acaagctggc gacctttaag 780
aatggtgcga ttaaagtgga taaacatcag cagagcagcg atccggatgt gtatgcggtg 840
ggcgatgtgg cgaccattta tagcaacgcg ttacaggatt tcacatacat tgccttagcg 900
tcgaacgcag tgcgcagcgg cattgtggcg ggccataaca ttggcggcaa agaactggaa 960
agcgtgggcg tgcagggcag caacggcatt agcatattcg gatacaacat gaccagcacc 1020
ggcctgagcg tgaaggctgc aaagaagtta ggcctggaag tgagctttag cgatttcgag 1080
gacaaacaga aagcgtggtt tctgcatgag aataatgatt cagtcaagat tcgcatcgtg 1140
tatgaaacca agtcacggcg cattattggc gcgcagttgg cttcgaagag tgaaattatt 1200
gcgggcaaca ttaacatgtt tagcctggcg attcaggaga agaagacaat agatgaactg 1260
gcgctgctgg atctgttctt ccttcctcac tttaattctc cgtataacta tatgaccgtg 1320
gcggcgctga acgcgaaata a 1341
<210> 8
<211> 2376
<212> DNA
<213> (人工序列)
<400> 8
atgaaagctc tttcaaagct caaagcagag gagggtattt ggatgacaga tgttcctgtt 60
cctgaacttg gccataacga tcttcttatc aagatccgta agacggcgat ttgtggcaca 120
gatgttcata tttataactg ggatgaatgg tcacagaaga ctatacctgt tcctatggtt 180
gttggccatg aatatgttgg cgaagttgtt ggcattggcc aggaagttaa aggctttaag 240
ataggagatc gcgtttcagg cgaaggccat attacatgtg gccattgtcg caactgtcgc 300
ggcggccgca cacatctttg tcgcaacaca attggcgttg gcgttaaccg ccctggctgt 360
ttcgccgagt atcttgttat tcctgctttc aatgcattca agatccctga taacatttca 420
gatgatcttg ctgctatatt cgacccattt ggcaatgctg ttcatacagc tctttcattt 480
gatcttgttg gcgaagatgt tcttgtttca ggcgctggcc ctattggcat tatggctgct 540
gctgttgcta aacatgttgg cgctcgcaac gttgttatta cagatgttaa cgaatatcgc 600
cttgaacttg ctcgcaagat gggaattaca cgcgctgtta acgtggcgaa ggagaatctg 660
aacgatgtta tggctgaact tggcatgaca gagggtttcg acgtcggact tgaaatgtca 720
ggcgctcctc ctgctttcag aaccatgctt gatacaatga accatggcgg ccgcattgct 780
atgcttggca ttcctccttc agatatgtca attgattgga caaaggtgat cttcaagggt 840
ttattcatca agggcattta tggccgcgaa atgtttgaaa catggtataa gatggccgct 900
cttattcagt caggccttga tctttcacct attattacac atcgcttctc tatcgatgat 960
ttccagaagg gctttgacgc gatgcgctca ggccagtcag gcaaagttat tctttcatgg 1020
gatggcggcg gcggctcaat gaagatcgta gttattggca caaaccatgc tggcattgct 1080
acagctaaca cacttcttga acagtatcct ggccatgaaa ttgttatgat tgatcgcaac 1140
tcaaacatgt catatcttgg ctgtggcaca gctatttggg ttggccgcca gattgagaag 1200
ccagacgaat tattctacgc caaggccgag gactttgagg caaagggtgt aaaaatccta 1260
acggagactg aggtgtcgga gatagacttt gctaacaaga aggtttacgc caagactaaa 1320
tccgatgacg agatcattga ggcttatgat aaacttgttc ttgctacagg ctcacgccct 1380
attattccta accttcctgg caaagatctt aaaggcattc atttcctcaa gctgttccaa 1440
gagggccagg ctattgatgc tgagtttgcg aaagagaagg ttaagcgcat tgctgttatt 1500
ggcgctggct atattggcac agaaattgct gaagctgcta aacgccgcgg caaagaagtt 1560
ctgctctttg acgccgagaa tacttcactt gcttcatatt atgatgaaga gttcgcaaag 1620
ggtatggatg agaatctcgc tcagcatggc attgaacttc atttcggtga gcttgctaaa 1680
gaatttaaag ctaacgaaga aggctatgtt tcacagattg ttacaaacaa agctacttat 1740
gatgttgatc ttgttattaa ctgtattggc tttacagcta actcagccct ggcgagtgac 1800
aaacttgcta catttaagaa tggagctatt aaagttgata aacatcagca gtcatcagat 1860
cctgatgttt atgctgttgg cgatgttgct acaatttatt caaacgctct tcaggatttc 1920
acctacattg ccctcgcctc caatgcggtt cgctcaggca ttgttgctgg ccataacatt 1980
ggcggcaaag aacttgaatc agttggcgtt cagggctcaa acggcatttc aatattcggt 2040
tacaacatga catcaacagg cctttcagtt aaagctgcta agaagttagg gcttgaagtt 2100
tcattctctg acttcgagga caaacagaag gcttggtttc ttcatgagaa taatgattca 2160
gtaaagatcc ggatagtata tgaaacaaag agcagacgca ttattggcgc tcagcttgct 2220
tcaaagtctg agattattgc tggcaacatt aacatgttca gtctggctat tcaggagaag 2280
aagaccatag atgaacttgc tcttcttgat ttgttcttcc tgccacattt caatagccct 2340
tataactata tgacagttgc tgctcttaac gctaaa 2376

Claims (10)

1.一种高效催化L-苏氨酸合成2,5-DMP的质粒,其特征在于,所述的质粒是以pRSFDuet-1为表达载体,在pRSFDuet-1的多克隆位点插入来源于大肠埃希氏菌属的苏氨酸脱氢酶(TDH)和来源于乳球菌属的NADH氧化酶(NoxE)组合而成的融合蛋白基因。
2.根据权利要求1所述的质粒,其特征在于,所述的苏氨酸脱氢酶为以下任一:
(1)氨基酸序列如SEQ ID NO.1所示;
(2)具有苏氨酸脱氢酶活性的同工酶。
3.根据权利要求1所述的质粒,其特征在于,所述的NADH氧化酶为以下任一:
(1)氨基酸序列如SEQ ID NO.2所示;
(2)具有NADH氧化酶活性的同工酶。
4.根据权利要求1所述的质粒,其特征在于,所述的苏氨酸脱氢酶的碳端与NADH氧化酶的氮端之间包括柔性蛋白linker。
5.根据权利要求4所述的质粒,其特征在于,所述的柔性蛋白linker的氨基酸序列如SEQ ID NO.3所示。
6.根据权利要求1所述的质粒,其特征在于,所述的融合蛋白基因插入表达载体pRSFDuet-1的酶切位点BamHI和HindIII间。
7.一种权利要求1~6任一项所述的质粒的构建方法,其特征在于,包括如下步骤:
依据NADH氧化酶的氨基酸序列在氮端添加柔性蛋白linker后,按照全细胞转化的宿主菌进行密码子偏好性优化,组合至苏氨酸脱氢酶的碳端,合成并连接至质粒pRSFDuet-1的启动子后,得到质粒。
8.一种包含权利要求1~6任一项所述的质粒的重组菌。
9.根据权利要求8所述的重组菌,其特征在于,所述的重组菌是以大肠杆菌为宿主。
10.一种权利要求8所述的重组菌全细胞转化L-苏氨酸合成2,5-二甲基吡嗪的方法,其特征在于,包括如下步骤:
重组菌采用诱导剂诱导培养,收集重组菌菌体,将重组菌菌体加入L-苏氨酸终浓度为3~7g/L的转化液中,在转化温度为35~40℃、转速为100~300r/min条件下转化L-苏氨酸合成2,5-二甲基吡嗪。
CN202010426816.6A 2020-05-19 2020-05-19 高效催化l-苏氨酸合成2,5-dmp的质粒及其构建与应用 Pending CN111500614A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010426816.6A CN111500614A (zh) 2020-05-19 2020-05-19 高效催化l-苏氨酸合成2,5-dmp的质粒及其构建与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010426816.6A CN111500614A (zh) 2020-05-19 2020-05-19 高效催化l-苏氨酸合成2,5-dmp的质粒及其构建与应用

Publications (1)

Publication Number Publication Date
CN111500614A true CN111500614A (zh) 2020-08-07

Family

ID=71873382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010426816.6A Pending CN111500614A (zh) 2020-05-19 2020-05-19 高效催化l-苏氨酸合成2,5-dmp的质粒及其构建与应用

Country Status (1)

Country Link
CN (1) CN111500614A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411067A (zh) * 2020-04-10 2020-07-14 江南大学 一种高产2,5-二甲基吡嗪的大肠杆菌重组菌及其构建方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732488A (zh) * 2012-06-28 2012-10-17 厦门大学 一种构建辅酶氧化酶基因与脱氢酶类基因融合的方法和应用
CN107189992A (zh) * 2017-06-29 2017-09-22 江南大学 一种肝素前体合酶及其应用
CN108368523A (zh) * 2015-10-09 2018-08-03 丹麦技术大学 在代谢工程化的乳酸菌中高水平生产双乙酰
CN110172435A (zh) * 2019-06-06 2019-08-27 江南大学 一种催化合成2,5-二甲基吡嗪的重组菌
CN110205347A (zh) * 2019-06-06 2019-09-06 江南大学 一种生物催化合成含单甲基半环的烷基吡嗪方法
CN111411067A (zh) * 2020-04-10 2020-07-14 江南大学 一种高产2,5-二甲基吡嗪的大肠杆菌重组菌及其构建方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732488A (zh) * 2012-06-28 2012-10-17 厦门大学 一种构建辅酶氧化酶基因与脱氢酶类基因融合的方法和应用
CN108368523A (zh) * 2015-10-09 2018-08-03 丹麦技术大学 在代谢工程化的乳酸菌中高水平生产双乙酰
CN107189992A (zh) * 2017-06-29 2017-09-22 江南大学 一种肝素前体合酶及其应用
CN110172435A (zh) * 2019-06-06 2019-08-27 江南大学 一种催化合成2,5-二甲基吡嗪的重组菌
CN110205347A (zh) * 2019-06-06 2019-09-06 江南大学 一种生物催化合成含单甲基半环的烷基吡嗪方法
CN111411067A (zh) * 2020-04-10 2020-07-14 江南大学 一种高产2,5-二甲基吡嗪的大肠杆菌重组菌及其构建方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHEN YANG等: "Redistribution of Intracellular Metabolic Flow in E. coli Improves Carbon Atom Economy for High-Yield 2,5-Dimethylpyrazine Production", 《J. AGRIC. FOOD CHEM》 *
JIANZHONG XU等: "Accelerated Green Process of 2,5-Dimethylpyrazine Production from Glucose by Genetically Modified Escherichia coli", 《ACS SYNTH. BIOL》 *
LIJIE ZHANG等: "An Alkylpyrazine Synthesis Mechanism Involving L-Threonine3-Dehydrogenase Describes the Production of 2,5- Dimethylpyrazine and 2,3,5-Trimethylpyrazine by Bacillus subtilis", 《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》 *
NCBI: "MULTISPECIES: L-threonine 3-dehydrogenase [Proteobacteria]", 《GENBANK》 *
于海波等: "重组大肠杆菌全细胞催化L-苏氨酸合成2,5-二甲基吡嗪", 《生物工程学报》 *
居乃琥主编: "《酶工程手册》", 31 August 2011 *
张惠展编: "《基因工程 第4版》", 31 January 2017 *
曹艳丽等: "以L-苏氨酸为发酵底物的2,5-二甲基吡嗪高产菌株构建", 《食品与发酵工业》 *
曹艳丽等: "枯草芽孢杆菌合成2,5-二甲基吡嗪途径解析及高产菌株构建", 《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑(电子期刊)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411067A (zh) * 2020-04-10 2020-07-14 江南大学 一种高产2,5-二甲基吡嗪的大肠杆菌重组菌及其构建方法

Similar Documents

Publication Publication Date Title
Zhou et al. Functional replacement of the Escherichia coli D-(−)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici
US11225675B2 (en) D-lactate dehydrogenase, engineered strain containing D-lactate dehydrogenase and construction method and use of engineered strain
Riedel et al. Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production
KR101357015B1 (ko) 유기산의 증가된 생성을 위한 재조합 미생물
Zhu et al. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum
BRPI0913547A2 (pt) célula bacteriana ácido-lática recombinante, método para a produção de 2-butanol e método para a produção de 2-butanona
CN106929521B (zh) 一种醛酮还原酶基因重组共表达载体、工程菌及其应用
CN107937361B (zh) 一种丙氨酸脱氢酶突变体及其应用
Zhang et al. Characterization of the sugar alcohol-producing yeast Pichia anomala
CN112204146A (zh) 具有受抑制的乙醇产生途径的耐酸酵母及使用其生产乳酸的方法
Zhao et al. Two-step biocatalytic reaction using recombinant Escherichia coli cells for efficient production of phenyllactic acid from l-phenylalanine
Wang et al. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP+-dependent GapB from Bacillus subtilis and addition of NAD kinase
Liu et al. Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production
CN111411067A (zh) 一种高产2,5-二甲基吡嗪的大肠杆菌重组菌及其构建方法
JP2003511067A (ja) 高い収量のタンパク質発現系および方法
KR102149044B1 (ko) 2-히드록시 감마 부티로락톤 또는 2,4-디히드록시-부티레이트 의 제조 방법
Oh et al. Identification of a lactose-oxidizing enzyme in Escherichia coli and improvement of lactobionic acid production by recombinant expression of a quinoprotein glucose dehydrogenase from Pseudomonas taetrolens
CN115725537A (zh) 天冬氨酸激酶突变体及其在生产l-高丝氨酸中的应用
Ma et al. Effects of NADH availability on the Klebsiella pneumoniae strain with 1, 3‐propanediol operon over‐expression
CN111500614A (zh) 高效催化l-苏氨酸合成2,5-dmp的质粒及其构建与应用
CN110172435B (zh) 一种催化合成2,5-二甲基吡嗪的重组菌
CN105793431A (zh) 通过微生物代谢途径的遗传修饰制备延长的2-酮酸和由此生成的c6-c10化合物的方法
Nilasari et al. Expression of recombinant green fluorescent protein in Bacillus methanolicus
CN114134127B (zh) 用于合成依克多因的二氨基丁酸乙酰转移酶突变体
CN112280725B (zh) 一种高效生产琥珀酸的重组大肠杆菌及其构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200807