CN111485196A - 一种高温红外辐射陶瓷涂层及其制备方法 - Google Patents

一种高温红外辐射陶瓷涂层及其制备方法 Download PDF

Info

Publication number
CN111485196A
CN111485196A CN202010292007.0A CN202010292007A CN111485196A CN 111485196 A CN111485196 A CN 111485196A CN 202010292007 A CN202010292007 A CN 202010292007A CN 111485196 A CN111485196 A CN 111485196A
Authority
CN
China
Prior art keywords
ceramic coating
temperature
target
infrared radiation
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010292007.0A
Other languages
English (en)
Inventor
王爱平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Jiapeng Technology Co ltd
Original Assignee
Guangzhou Jiapeng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Jiapeng Technology Co ltd filed Critical Guangzhou Jiapeng Technology Co ltd
Priority to CN202010292007.0A priority Critical patent/CN111485196A/zh
Publication of CN111485196A publication Critical patent/CN111485196A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种高温红外辐射陶瓷涂层及其制备方法,涂层组成包括氧化铪、碳化铌、氧化镍、氧化铬、硼化钛、尖晶石结构氧化铬镍;其通过非平衡磁控溅射方法溅射陶瓷靶材制备。所述陶瓷靶材密度为4‑5g/cm3,相对密度≥97%、电阻率≤0.5Ω·cm。所述高温红外辐射陶瓷涂层厚度为10‑20μm、表面粗糙度Ra为0.5‑1μm。本发明通过采用非平衡磁控溅射制备得到高辐射率、热稳定性良好且涂层致密、结合强度高的红外辐射陶瓷涂层,1000‑1600℃范围内的辐射率范围在0.90‑0.93之间。

Description

一种高温红外辐射陶瓷涂层及其制备方法
技术领域
本发明属于功能涂层材料与制备技术领域,更具体的涉及一种高温红外辐射陶瓷涂层及其制备方法。
背景技术
高红外发射率的陶瓷涂层在民用以及军用领域具有广泛的应用,是研发的重点。随着航空事业的高速发展,对航空飞行器性能,特别是飞行距离、飞行速度及安全性等要求也提出了新的要求。红外辐射陶瓷涂层作为一种可以对航空飞行器散热的涂层材料,对其综合性能也提出了更加高的要求。所以制备能在超高温环境下(>1200℃)稳定应用的陶瓷涂层是研究人员研究重点。
现有技术中对该方面做了大量的研究,也取得了良好的效果。武汉理工大学程旭东团队也着重研究了红外辐射粉末组成的选择,并对红外辐射粉末、利用等离子喷涂技术制备了红外辐射涂层。尽管发射率能够达到0.9作用,且具有良好的耐高温特性,但是现有技术主要采用等离子喷涂工艺。等离子喷涂陶瓷涂层在结合力、表面致密性仍然存在不足,此外如何将其应用与其他工艺并未涉及。
发明内容
本发明针对现有技术中的不足,对红外辐射材料和制备方法两方面展开改进,本发明采用。通过靶材材料的选取以及制备步骤、磁控溅射工艺参对红外辐射涂层的耐高温、辐射率等影响的研究,发明了一种高辐射率、热稳定性良好且涂层致密、结合强度高的红外辐射陶瓷涂层。
为实现上述目,本发明采用的技术方案如下:
一种高温红外辐射陶瓷涂层,涂层组成包括氧化铪、碳化铌、氧化镍、氧化铬、硼化钛、尖晶石结构氧化铬镍;其通过非平衡磁控溅射方法溅射陶瓷靶材制备。
进一步地,所述陶瓷靶材包括氧化铪、碳化铌、氧化镍、氧化铬、硼化钛。
进一步地,所述陶瓷靶材密度为4-5g/cm3,相对密度≥97%、电阻率≤0.5Ω·cm。
一种高温红外辐射陶瓷涂层的制备方法,其包括以下步骤:
(a)混合粉末:将质量比为(40-50):(10-20):(1-5):(5-10):(0.5-1)的20-50μm氧化铪粉末、20-50μm碳化铌粉末、60-80μm氧化镍粉末、60-80μm氧化铬粉末、10-20μm硼化钛粉末放置于行星式球磨机中、加入相对于混合粉末质量1-5%的分散剂、不锈钢球,在保护气氛下进行球磨2-3h;冷等静压成型:将上述混合粉末在150-200℃下干燥、筛分,将筛分后的混合粉末装入模具中冷等静压预压成型为靶材坯体;压制压力为100-200MPa,保压时间5-10min。真空热压烧结:将靶材坯体放入石墨模具中进行真空热压烧结,将靶材坯体置于真快烧结炉中,以10~20℃/min的升温速率升到1500~2000℃,保温60~120min,最后,以20~40℃/min的降温速率降至室温;对靶材坯体机械加工,即得到所述陶瓷靶材。
(b)预处理:将基底依次用金相砂纸打磨、喷砂、除油、水洗。
(c)离子轰击清洗:将预处理后的基底安装在基座上、两个陶瓷靶材相对放置在非平衡磁控溅射设备的反应腔中,抽真空至2-5×10-4Pa;通入高纯氩气使反应腔内的工作气压达到2-5Pa,其流量控制为150-200sccm;打开基体偏压电源,使其负偏压设置为100-200V,对基底进行离子轰击清洗,清洗时间控制在5-10min,关闭偏压电源。
(d)持续通入高纯氩气60-120s,打开靶材电源、基体偏压电源,工艺参数设置为:Ar压力0.3-0.5Pa、负偏压200-300V、靶材电流80-120A、基体温度500-600℃、溅射时间10-30min。
(e)关闭电源、Ar,自然冷却至室温,打开反应腔,取出基底,获得高温红外辐射陶瓷涂层。
进一步地,所述分散剂为聚乙烯醇、丙烯酸乳液中的一种或多种。
进一步地,步骤(2)中所述保护气氛为Ar或N2
进一步地,步骤(2)中所述不锈钢球的加入量为球料质量比7:1-10:1。
进一步地,所述喷砂采用30-50目棕刚玉、喷砂角度60-80°、喷砂距离150-200mm、压缩空气0.5-0.8MPa。
进一步地,所述陶瓷靶材密度为4-5g/cm3,相对密度≥97%、电阻率≤0.5Ω·cm。
进一步地,所述高温红外辐射陶瓷涂层厚度为10-20μm、表面粗糙度Ra为0.5-1μm。
本发明以氧化铪、碳化铌作为红外辐射陶瓷涂层的主要组成,其具有很高的熔点,可以满足高温环境的需求;尖晶石结构氧化铬镍在2.5-20μm波段具有较高的红外发射率,同时采用氧化镍、氧化铬作为辅助组分,靶材制备过程原料中的氧化镍和氧化铬部分在1500~2000℃的高温下生成尖晶石结构氧化铬镍,从而在整体上提高红外发射率。而硼化钛也有利于红外发射率的提高。
与现有技术相比,本发明的有益效果为:(1)本发明通过对靶材组成合理的优化,并制备得到了密度为4-5g/cm3,相对密度≥97%、电阻率≤0.5Ω·cm的陶瓷靶材,为磁控溅射制备高温红外辐射陶瓷涂层奠定了基础。(2)采用非平衡磁控溅射制备得到高辐射率、热稳定性良好且涂层致密、结合强度高的红外辐射陶瓷涂层,1000-1600℃范围内的辐射率范围在0.90-0.93之间。(3)本发明高温红外辐射陶瓷涂层可广泛应用于航空航天、工业窑炉等高温应用环境。
附图说明
图1为实施例1-4中高温红外辐射陶瓷涂层表面SEM图。
图2为实施例1-4中高温红外辐射陶瓷涂层温度-发射率曲线。
具体实施方式
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
实施例1
一种高温红外辐射陶瓷涂层,其制备方法其包括以下步骤:
(a)混合粉末:将质量比为40:10:1:5:0.5的20μm氧化铪粉末、20μm碳化铌粉末、60μm氧化镍粉末、60μm氧化铬粉末、10μm硼化钛粉末放置于行星式球磨机中、加入相对于混合粉末质量1%的聚乙烯醇分散剂、球料质量比为7:1的不锈钢球,在Ar保护气氛下进行球磨2h。冷等静压成型:将上述混合粉末在200℃下干燥、筛分,将筛分后的混合粉末装入模具中冷等静压预压成型为靶材坯体;压制压力为200MPa,保压时间5min。真空热压烧结:将靶材坯体放入石墨模具中进行真空热压烧结,将靶材坯体置于真快烧结炉中,以20℃/min的升温速率升到1800℃,保温90min,最后,以40℃/min的降温速率降至室温;对靶材坯体机械加工,即得到所述陶瓷靶材。
(b)预处理:将基底依次用金相砂纸打磨、喷砂、除油、水洗;所述喷砂采用50目棕刚玉、喷砂角度60°、喷砂距离150mm、压缩空气0.5MPa。
(c)离子轰击清洗:将预处理后的基底安装在基座上、两个陶瓷靶材相对放置在非平衡磁控溅射设备的反应腔中,抽真空至5×10-4Pa;通入高纯氩气使反应腔内的工作气压达到5Pa,其流量控制为200sccm;打开基体偏压电源,使其负偏压设置为150V,对基底进行离子轰击清洗,清洗时间控制在5min,关闭偏压电源。
(d)持续通入高纯氩气60s,打开靶材电源、基体偏压电源,工艺参数设置为:Ar压力0.5Pa、负偏压200V、靶材电流80A、基体温度500℃、溅射时间20min。
(e)关闭电源、Ar,自然冷却至室温,打开反应腔,取出基底,获得高温红外辐射陶瓷涂层。
实施例2
一种高温红外辐射陶瓷涂层,其制备方法其包括以下步骤:
(a)混合粉末:将质量比为50:20:5:10:1的50μm氧化铪粉末、50μm碳化铌粉末、80μm氧化镍粉末、80μm氧化铬粉末、20μm硼化钛粉末放置于行星式球磨机中、加入相对于混合粉末质量5%的聚乙烯醇分散剂、球料质量比为10:1的不锈钢球,在Ar保护气氛下进行球磨3h。冷等静压成型:将上述混合粉末在150℃下干燥、筛分,将筛分后的混合粉末装入模具中冷等静压预压成型为靶材坯体;压制压力为200MPa,保压时间10min。真空热压烧结:将靶材坯体放入石墨模具中进行真空热压烧结,将靶材坯体置于真快烧结炉中,以15℃/min的升温速率升到1600℃,保温60min,最后,以30℃/min的降温速率降至室温;对靶材坯体机械加工,即得到所述陶瓷靶材。
(b)预处理:将基底依次用金相砂纸打磨、喷砂、除油、水洗;所述喷砂采用50目棕刚玉、喷砂角度70°、喷砂距离200mm、压缩空气0.5MPa。
(c)离子轰击清洗:将预处理后的基底安装在基座上、两个陶瓷靶材相对放置在非平衡磁控溅射设备的反应腔中,抽真空至2×10-4Pa;通入高纯氩气使反应腔内的工作气压达到3Pa,其流量控制为150sccm;打开基体偏压电源,使其负偏压设置为200V,对基底进行离子轰击清洗,清洗时间控制在6min,关闭偏压电源。
(d)持续通入高纯氩气80s,打开靶材电源、基体偏压电源,工艺参数设置为:Ar压力0.4Pa、负偏压250V、靶材电流120A、基体温度550℃、溅射时间30min。
(e)关闭电源、Ar,自然冷却至室温,打开反应腔,取出基底,获得高温红外辐射陶瓷涂层。
实施例3
一种高温红外辐射陶瓷涂层,其制备方法其包括以下步骤:
(a)混合粉末:将质量比为40:20:2:8:0.8的40μm氧化铪粉末、40μm碳化铌粉末、70μm氧化镍粉末、70μm氧化铬粉末、15μm硼化钛粉末放置于行星式球磨机中、加入相对于混合粉末质量3%的丙烯酸乳液分散剂、球料质量比为8:1的不锈钢球,在N2保护气氛下进行球磨3h。冷等静压成型:将上述混合粉末在200℃下干燥、筛分,将筛分后的混合粉末装入模具中冷等静压预压成型为靶材坯体;压制压力为180MPa,保压时间10min。真空热压烧结:将靶材坯体放入石墨模具中进行真空热压烧结,将靶材坯体置于真快烧结炉中,以20℃/min的升温速率升到2000℃,保温120min,最后,以40℃/min的降温速率降至室温;对靶材坯体机械加工,即得到所述陶瓷靶材。
(b)预处理:将基底依次用金相砂纸打磨、喷砂、除油、水洗;所述喷砂采用50目棕刚玉、喷砂角度60°、喷砂距离200mm、压缩空气0.8MPa。
(c)离子轰击清洗:将预处理后的基底安装在基座上、两个陶瓷靶材相对放置在非平衡磁控溅射设备的反应腔中,抽真空至4×10-4Pa;通入高纯氩气使反应腔内的工作气压达到4Pa,其流量控制为180sccm;打开基体偏压电源,使其负偏压设置为100V,对基底进行离子轰击清洗,清洗时间控制在10min,关闭偏压电源。
(d)持续通入高纯氩气120s,打开靶材电源、基体偏压电源,工艺参数设置为:Ar压力0.4Pa、负偏压300V、靶材电流100A、基体温度550℃、溅射时间30min。
(e)关闭电源、Ar,自然冷却至室温,打开反应腔,取出基底,获得高温红外辐射陶瓷涂层。
实施例4
一种高温红外辐射陶瓷涂层,其制备方法其包括以下步骤:
(a)混合粉末:将质量比为45:15:3:7:0.8的30μm氧化铪粉末、40μm碳化铌粉末、60μm氧化镍粉末、80μm氧化铬粉末、15μm硼化钛粉末放置于行星式球磨机中、加入相对于混合粉末质量4%的丙烯酸乳液分散剂、球料质量比为9:1的不锈钢球,在N2保护气氛下进行球磨2.5h。冷等静压成型:将上述混合粉末在160℃下干燥、筛分,将筛分后的混合粉末装入模具中冷等静压预压成型为靶材坯体;压制压力为100MPa,保压时间10min。真空热压烧结:将靶材坯体放入石墨模具中进行真空热压烧结,将靶材坯体置于真快烧结炉中,以15℃/min的升温速率升到1500℃,保温80min,最后,以30℃/min的降温速率降至室温;对靶材坯体机械加工,即得到所述陶瓷靶材。
(b)预处理:将基底依次用金相砂纸打磨、喷砂、除油、水洗;所述喷砂采用50目棕刚玉、喷砂角度70°、喷砂距离180mm、压缩空气0.6MPa。
(c)离子轰击清洗:将预处理后的基底安装在基座上、两个陶瓷靶材相对放置在非平衡磁控溅射设备的反应腔中,抽真空至3×10-4Pa;通入高纯氩气使反应腔内的工作气压达到3Pa,其流量控制为160sccm;打开基体偏压电源,使其负偏压设置为130V,对基底进行离子轰击清洗,清洗时间控制在7min,关闭偏压电源。
(d)持续通入高纯氩气100s,打开靶材电源、基体偏压电源,工艺参数设置为:Ar压力0.3Pa、负偏压250V、靶材电流90A、基体温度600℃、溅射时间15min。
(e)关闭电源、Ar,自然冷却至室温,打开反应腔,取出基底,获得高温红外辐射陶瓷涂层。
陶瓷靶材的密度是陶瓷靶材的质量除以体积;相对密度基于阿基米德法来测定;另外,用串联4探针法测定电阻率,在陶瓷靶材表面选取5个进行测量,将各测量值的平均值定义为该陶瓷靶材的电阻率。将实施例1-4制备的陶瓷靶材上述物理参数记录于下表1。
表1
密度(g/cm<sup>3</sup>) 相对密度 电阻率(Ω·cm)
实施例1 4.35 98.5% 0.25
实施例2 4.68 97.2% 0.44
实施例3 4.27 98.1% 0.29
实施例4 4.51 97.8% 0.37
图1中(a)-(d)对应实施例1-4制备的高温红外辐射陶瓷涂层表面的SEM图,并通过SEM测量各涂层的厚度,通过表面轮廓仪测量各涂层的表面粗糙度Ra,涂层厚度、Ra结果记录与表2。从图1可以看出,本发明所制备的高温红外辐射陶瓷涂层具有致密的结构,且具有较平均的粗糙度这与轮廓仪测量得到的表面粗糙度Ra趋势一致。而良好的粗糙度在一定程度上有利于提高高温红外辐射陶瓷涂层的红外发射率。
另外,根据拉伸法测量高温红外辐射陶瓷涂层与基体之间的结合强度,结果记录于表2。由此可以判断,本发明制备的高温红外辐射陶瓷涂层与基体之间具有良好的结合强度,可以在高温应用环境中保持较好的防脱落效果。
表2
厚度(μm) Ra(μm) 结合强度(MPa)
实施例1 15.2 0.58 66.4
实施例2 12.7 0.74 58.7
实施例3 17.5 0.65 60.2
实施例4 16.9 0.81 59.8
红外辐射性能的测试范围是2.5-25微米的波段,采用红外辐射测试仪测量涂层的辐射性能。图2对应1-4为实施例1-4所制备高温红外辐射陶瓷涂层的辐射率-温度曲线。高温红外辐射陶瓷涂层在1000-1600℃范围内的辐射率范围在0.90-0.93之间。由此可见,本发明所制备的高温红外辐射陶瓷涂层在高温范围内的辐射性能良好,可以满足高温环境的应用。
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种高温红外辐射陶瓷涂层,其特征在于,涂层组成包括氧化铪、碳化铌、氧化镍、氧化铬、硼化钛、尖晶石结构氧化铬镍;所述高温红外辐射陶瓷涂层通过非平衡磁控溅射方法溅射陶瓷靶材制备。
2.根据权利要求1所述的一种高温红外辐射陶瓷涂层,其特征在于,所述陶瓷靶材包括氧化铪、碳化铌、氧化镍、氧化铬、硼化钛。
3.根据权利要求1所述的一种高温红外辐射陶瓷涂层,其特征在于,所述陶瓷靶材密度为4-5g/cm3,相对密度≥97%、电阻率≤0.5Ω·cm。
4.权利要求1-3任意一项所述一种高温红外辐射陶瓷涂层的制备方法,其特征在于,其包括以下步骤:
(a)混合粉末:将质量比为(40-50):(10-20):(1-5):(5-10):(0.5-1)的20-50μm氧化铪粉末、20-50μm碳化铌粉末、60-80μm氧化镍粉末、60-80μm氧化铬粉末、10-20μm硼化钛粉末放置于行星式球磨机中、加入相对于混合粉末质量1-5%的分散剂、不锈钢球,在保护气氛下进行球磨2-3h;冷等静压成型:将上述混合粉末在150-200℃下干燥、筛分,将筛分后的混合粉末装入模具中冷等静压预压成型为靶材坯体;压制压力为100-200MPa,保压时间5-10min。真空热压烧结:将靶材坯体放入石墨模具中进行真空热压烧结,将靶材坯体置于真快烧结炉中,以10~20℃/min的升温速率升到1500~2000℃,保温60~120min,最后,以20~40℃/min的降温速率降至室温;对靶材坯体机械加工,即得到所述陶瓷靶材;
(b)预处理:将基底依次用金相砂纸打磨、喷砂、除油、水洗;
(c)离子轰击清洗:将预处理后的基底安装在基座上、两个陶瓷靶材相对放置在非平衡磁控溅射设备的反应腔中,抽真空至2-5×10-4Pa;通入高纯氩气使反应腔内的工作气压达到2-5Pa,其流量控制为150-200sccm;打开基体偏压电源,使其负偏压设置为100-200V,对基底进行离子轰击清洗,清洗时间控制在5-10min,关闭偏压电源;
(d)持续通入高纯氩气60-120s,打开靶材电源、基体偏压电源,工艺参数设置为:Ar压力0.3-0.5Pa、负偏压200-300V、靶材电流80-120A、基体温度500-600℃、溅射时间10-30min。
(e)关闭电源、Ar,自然冷却至室温,打开反应腔,取出基底,获得高温红外辐射陶瓷涂层。
5.根据权利要求4所述的一种高温红外辐射陶瓷涂层的制备方法,其特征在于,所述分散剂为聚乙烯醇、丙烯酸乳液中的一种或多种。
6.根据权利要求4-5任一项所述的一种高温红外辐射陶瓷涂层的制备方法,其特征在于,步骤(2)中所述保护气氛为Ar或N2
7.根据权利要求4-6任一项所述的一种高温红外辐射陶瓷涂层的制备方法,其特征在于,步骤(2)中所述不锈钢球的加入量为球料质量比7:1-10:1。
8.根据权利要求4-7任一项所述的一种高温红外辐射陶瓷涂层的制备方法,其特征在于,所述喷砂采用30-50目棕刚玉、喷砂角度60-80°、喷砂距离150-200mm、压缩空气0.5-0.8MPa。
9.根据权利要求4-8任一项所述的一种高温红外辐射陶瓷涂层的制备方法,其特征在于,所述陶瓷靶材密度为4-5g/cm3,相对密度≥97%、电阻率≤0.5Ω·cm。
10.根据权利要求4-9任一项所述的一种高温红外辐射陶瓷涂层的制备方法,其特征在于,所述高温红外辐射陶瓷涂层厚度为10-20μm、表面粗糙度Ra为0.5-1μm。
CN202010292007.0A 2020-04-14 2020-04-14 一种高温红外辐射陶瓷涂层及其制备方法 Withdrawn CN111485196A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010292007.0A CN111485196A (zh) 2020-04-14 2020-04-14 一种高温红外辐射陶瓷涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010292007.0A CN111485196A (zh) 2020-04-14 2020-04-14 一种高温红外辐射陶瓷涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN111485196A true CN111485196A (zh) 2020-08-04

Family

ID=71810974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010292007.0A Withdrawn CN111485196A (zh) 2020-04-14 2020-04-14 一种高温红外辐射陶瓷涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN111485196A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739282A (zh) * 2014-01-06 2014-04-23 武汉理工大学 一种微量元素复合掺杂改性氧化锡锑陶瓷靶材的制备方法
CN108411263A (zh) * 2018-03-13 2018-08-17 东莞理工学院 一种梯度复合润滑涂层及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739282A (zh) * 2014-01-06 2014-04-23 武汉理工大学 一种微量元素复合掺杂改性氧化锡锑陶瓷靶材的制备方法
CN108411263A (zh) * 2018-03-13 2018-08-17 东莞理工学院 一种梯度复合润滑涂层及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
奚同庚 等: "《新型无机涂层》", 31 March 1981, 上海科学技术出版社 *
徐芳等: "热喷涂用镍铬尖晶石型红外辐射陶瓷粉末材料及其制备方法", 《表面工程资讯》 *
李恒德 等: "《现代材料科学与工程辞典》", 31 August 2001, 山东科学技术出版社 *

Similar Documents

Publication Publication Date Title
CN108383527B (zh) 一种石墨烯/碳化硼陶瓷复合材料的制备方法
CN106435489B (zh) 一种铌基表面抗氧化自愈合Cr/NiCr涂层的制备方法
CN112830769B (zh) 一种高发射率高熵陶瓷粉体材料及涂层制备方法
CN110976893B (zh) 陶瓷基材表面复合金属层的制备方法
CN111005018B (zh) 喷涂金属粉末在陶瓷基材表面形成金属涂层的制备方法
CN106977223A (zh) 陶瓷改性及具有陶瓷涂层的c/c复合材料及其制备方法
Haoliang et al. Study on process and performance of thermal protective coating on polyimide resin matrix composite
CN115353373A (zh) 一种氧化铝靶材及其制备方法与应用
Li et al. Heat-induced interface-coupling behaviour of thermally sprayed Cu/ceramic coatings
CN107675120A (zh) 一种在钼或钼合金表面制备硅化钼涂层的方法
CN101037333A (zh) 一种制备氮化铝/石墨叠层复合陶瓷材料的方法
CN109721356A (zh) 热障涂层用大尺寸氧化锆陶瓷靶材的制备方法
CN111485196A (zh) 一种高温红外辐射陶瓷涂层及其制备方法
CN101285136A (zh) 一种多孔钛与多孔钛合金的制备方法
CN107419213A (zh) 一种金属基体的表面防腐方法
CN110872713B (zh) 一种y/y2o3金属陶瓷防护涂层的冷喷涂制备方法
CN109402480A (zh) 一种WCoB金属陶瓷材料及其制备方法
CN109112460B (zh) 一种热喷涂耐高温陶瓷涂层的制备方法
CN110616424A (zh) 一种冷喷涂技术制备耐蚀耐磨铝基非晶复合涂层的方法
CN106007808B (zh) 陶瓷表面镀膜方法
CN103122443A (zh) 一种提高热喷涂涂层耐磨损性能的处理方法
CN106191751B (zh) 碳‐碳复合材料工装表面制抗氧化涂层的方法及所制工装
CN108085526A (zh) 一种低密度铌基复合材料及制备方法
CN109957763A (zh) 一种应用于五金表面的纳米薄涂层制作工艺
Jeon et al. Manufacturing of Cu Repair Coating Material Using the Kinetic Spray Process and Changes in the Microstructures and Properties by Heat Treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200804