CN111484038B - 一种多级孔富铝Beta分子筛及其制备方法 - Google Patents

一种多级孔富铝Beta分子筛及其制备方法 Download PDF

Info

Publication number
CN111484038B
CN111484038B CN202010272979.3A CN202010272979A CN111484038B CN 111484038 B CN111484038 B CN 111484038B CN 202010272979 A CN202010272979 A CN 202010272979A CN 111484038 B CN111484038 B CN 111484038B
Authority
CN
China
Prior art keywords
molecular sieve
beta molecular
aluminum
kong
multistage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010272979.3A
Other languages
English (en)
Other versions
CN111484038A (zh
Inventor
边超群
朱合圣
费正新
裘建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhua Polytechnic
Original Assignee
Jinhua Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinhua Polytechnic filed Critical Jinhua Polytechnic
Priority to CN202010272979.3A priority Critical patent/CN111484038B/zh
Publication of CN111484038A publication Critical patent/CN111484038A/zh
Application granted granted Critical
Publication of CN111484038B publication Critical patent/CN111484038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于分子筛技术领域,具体涉及一种多级孔富铝Beta分子筛及其制备方法,包括以下步骤:(1)将硅源、铝源、模板剂、氢氧化钾和水,搅拌混匀,得到凝胶;(2)将凝胶转移至反应釜中进行晶化反应,得到多级孔富铝Beta分子筛。本发明利用简单的硅源、铝源和碱源,用小分子模板剂混合,简单操作即可获得具有螺旋结构的Beta分子筛,形貌特殊,同时具有微孔介孔大孔结构,吸附量大。

Description

一种多级孔富铝Beta分子筛及其制备方法
技术领域
本发明属于分子筛技术领域,具体涉及一种多级孔富铝Beta分子筛及其制备方法。
背景技术
沸石分子筛是一种具有骨架结构的微孔晶体材料。由于其结构与性能上的特点,已被广泛应用在催化、吸附及离子交换等各个领域。减小分子筛颗粒尺寸、在分子筛中引入较大孔道,均有利于提高物质在分子筛反应中的扩散,从而提高反应效果。
Beta分子筛作为一种最常见的12元环分子筛,在各个催化应用中都有非常好的催化表现。而纳米Beta因具有更大的比表面积、更短的扩散路径和更多的可接近活性位点而受到关注。肖丰收团队、Moller团队以及Hong等都通过不同的手段制备了纳多级孔的Beta分子筛。此外,唐毅团队也使用相似的1,5-二(N-甲基吡咯烷基)戊基氢氧化铵作为模板剂,获得雪花状的ZSM-12分子筛。
因此,本领域亟需对分子筛进一步研究,以开发新型的分子筛结构,提升分子筛的应用效果。
发明内容
基于现有技术中存在的上述不足,本发明提供一种多级孔富铝Beta分子筛及其制备方法。
为了达到上述发明目的,本发明采用以下技术方案:
一种多级孔富铝Beta分子筛的制备方法,包括以下步骤:
(1)将硅源、铝源、模板剂、氢氧化钾和水,搅拌混匀,得到凝胶;
(2)将凝胶转移至反应釜中进行晶化反应,得到多级孔富铝Beta分子筛。
作为优选方案,所述模板剂为1,5-二(N-甲基哌啶烷基)戊基氢氧化铵。
作为优选方案,所述凝胶的反应体系中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.014~0.027:0.064~0.109:0.09~0.29:18~45。
作为优选方案,所述模板剂的水溶液质量浓度为10%。
作为优选方案,所述硅源为40%浓度的硅溶胶。
作为优选方案,所述铝源为十八水硫酸铝。
作为优选方案,所述晶化反应的条件包括:反应温度为100~140℃,反应时间为6~20天。
作为优选方案,所述晶化反应的产物经过抽滤、烘干,得到多级孔富铝Beta分子筛。
本发明还提供如上任一项方案所述制备方法制得的多级孔富铝Beta分子筛,所述Beta分子筛为螺旋状结构。
作为优选方案,所述Beta分子筛晶粒为纳米Beta分子筛颗粒组成的团聚体。
作为优选方案,所述Beta分子筛纯度为100%。
本发明与现有技术相比,有益效果是:
(1)利用简单的硅源、铝源和碱源,用小分子模板剂混合,简单操作即可获得具有螺旋结构的Beta分子筛,形貌特殊,同时具有微孔介孔大孔结构,吸附量大。
(2)本发明的USY转晶的方法得到的Beta分子筛纯度好,结晶度高,分散均匀,其形貌表现为由大小为60纳米左右的Beta分子筛颗粒组成1.0微米的团聚体。
(3)本发明的制备方法制得的Beta分子筛,其微孔体积为0.14~0.16cm3/g,比表面积为653~750m2/g。
(4)本发明的Beta分子筛,不仅保持了良好的结晶度和纯度,还具有相当的催化活性。
附图说明
图1为标准Beta分子筛的XRD谱图;
图2为标准Beta分子筛的SEM谱图;
图3为本发明实施例1的多级孔Beta分子筛的XRD谱图;
图4为本发明实施例1的多级孔Beta分子筛的SEM谱图;
图5为本发明实施例1的多级孔Beta分子筛的另一倍数的SEM谱图;
图6为本发明实施例12的分子筛的SEM谱图;
图7为本发明实施例13的分子筛的XRD谱图;
图8为本发明实施例13的分子筛的SEM谱图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
除非另作定义,本发明所使用的技术术语或者科学术语应当为本发明所属领域内有一般技能的人士所理解的通常意义。
一、模板剂的合成:
模板剂1,5-二(N-甲基哌啶烷基)戊基氢氧化铵的合成
具体合成方法为:
首先,将150mL甲醇、0.5mol的1,5-二溴戊烷和0.25mol N-甲基哌啶加入到500mL的圆底烧瓶中,80℃下回流搅拌反应12小时;
其次,向上述混合溶液中加入乙醚,析出的白色晶体即为1,5-二(N-甲基哌啶烷基)戊基溴化铵;
最后,将获得的白色晶体烘干后溶于水,用OH型离子交换树脂进行交换,获得1,5-二(N-甲基哌啶烷基)戊基氢氧化铵的水溶液。
其中,模板剂的水溶液质量浓度为10%。
实施例1:
本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.02:0.088:0.145:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天,即完全晶化,产物抽滤、烘干后得到产品,即多级孔富铝Beta分子筛。
如图3所示,与图1对比可知,本实施例的多级孔富铝Beta分子筛具有典型的Beta沸石分子筛结构,且XRD峰具有一定的宽化,这是因为分子筛颗粒太小造成的。
如图4和5所示,与图2对比可知,本实施例的多级孔富铝Beta分子筛的形貌完全不同于传统的Beta分子筛颗粒,本实施例的多级孔富铝Beta分子筛由大小为60纳米左右的Beta分子筛颗粒组成1.0微米的团聚体。
本实施例的多级孔富铝Beta分子筛,其微孔体积为0.16cm3/g,比表面积为750m2/g。
实施例2:
相对高温条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.02:0.088:0.145:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态140℃晶化6天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
本实施例的多级孔富铝Beta分子筛,其微孔体积为0.15cm3/g,比表面积为706m2/g。
实施例3:
相对低温条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.02:0.088:0.145:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态100℃晶化20天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
本实施例的多级孔富铝Beta分子筛,其微孔体积为0.14cm3/g,比表面积为653m2/g。
实施例4:
相对低碱条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.02:0.064:0.145:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
实施例5:
相对高碱条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.02:0.109:0.145:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
实施例6:
相对低硅条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.027:0.066:0.145:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
实施例7:
相对高硅条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.014:0.066:0.145:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
实施例8:
相对少模板剂条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.025:0.066:0.09:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
实施例9:
相对多模板剂条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.025:0.066:0.29:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
实施例10:
相对少水条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.025:0.066:0.09:18;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
实施例11:
相对多水条件下合成Beta分子筛。
具体地,本实施例的多级孔富铝Beta分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.025:0.066:0.09:45;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化10天,即完全晶化,产物抽滤,烘干后得到产品,即多级孔富铝Beta分子筛。
本实施例的多级孔富铝Beta分子筛的形貌可以参考实施例1。
实施例12:
在过长时间条件下合成分子筛。
具体地,本实施例的分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.02:0.088:0.145:36;
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化24天,即完全晶化,产物抽滤,烘干后得到产品。
如图6所示,本实施例在得到Beta分子筛之外,还混有ZSM-12分子筛杂质。
实施例13:
在过碱条件下合成分子筛。
具体地,本实施例的分子筛的制备方法,包括以下步骤:
首先,将十八水硫酸铝、40%浓度的硅溶胶、氢氧化钾、10%浓度的模板剂水溶液和水混合,继续搅拌直到溶液变均匀后,使得获得的凝胶中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.02:x:0.145:36(x大于0.5);
然后,将反应原料加入聚四氟乙烯不锈钢反应釜中,静态120℃晶化12天,即完全晶化,产物抽滤,烘干后得到产品,即分子筛。
如图7所示,本实施例的分子筛,除了Beta分子筛的特征峰之外,还有少量MOR的特征峰。
如图8所示,本实施例的分子筛,除了典型的Beta分子筛的形貌外,还有少量棒状的MOR分子筛,得到的分子筛并不具备多级孔螺旋结构。
以上所述仅是对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。

Claims (6)

1.一种多级孔富铝Beta分子筛的制备方法,其特征在于,包括以下步骤:
(1)将硅源、铝源、模板剂、氢氧化钾和水,搅拌混匀,得到凝胶;
(2)将凝胶转移至反应釜中进行晶化反应,得到多级孔富铝Beta分子筛;
所述模板剂为1,5-二(N-甲基哌啶烷基)戊基氢氧化铵;
所述凝胶的反应体系中SiO2:Al2O3:K2O:SDA:H2O的摩尔比为1:0.014~0.027:0.064~0.109:0.09~0.29:18~45;
所述晶化反应的条件包括:反应温度为100~120℃,反应时间为6~20天;
所述Beta分子筛为螺旋结构。
2.根据权利要求1所述的一种多级孔富铝Beta分子筛的制备方法,其特征在于,所述模板剂的水溶液质量浓度为10%。
3.根据权利要求1所述的一种多级孔富铝Beta分子筛的制备方法,其特征在于,所述硅源为40%浓度的硅溶胶。
4.根据权利要求1所述的一种多级孔富铝Beta分子筛的制备方法,其特征在于,所述铝源为十八水硫酸铝。
5.根据权利要求1所述的一种多级孔富铝Beta分子筛的制备方法,其特征在于,所述晶化反应的产物经过抽滤、烘干,得到多级孔富铝Beta分子筛。
6.根据权利要求1所述的一种多级孔富铝Beta分子筛的制备方法,其特征在于,所述Beta分子筛晶粒为纳米Beta分子筛颗粒组成的团聚体。
CN202010272979.3A 2020-04-09 2020-04-09 一种多级孔富铝Beta分子筛及其制备方法 Active CN111484038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010272979.3A CN111484038B (zh) 2020-04-09 2020-04-09 一种多级孔富铝Beta分子筛及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010272979.3A CN111484038B (zh) 2020-04-09 2020-04-09 一种多级孔富铝Beta分子筛及其制备方法

Publications (2)

Publication Number Publication Date
CN111484038A CN111484038A (zh) 2020-08-04
CN111484038B true CN111484038B (zh) 2023-05-23

Family

ID=71810935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010272979.3A Active CN111484038B (zh) 2020-04-09 2020-04-09 一种多级孔富铝Beta分子筛及其制备方法

Country Status (1)

Country Link
CN (1) CN111484038B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031092B (zh) * 2021-12-16 2023-03-24 中节能万润股份有限公司 一种sapo-20分子筛的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418353A (zh) * 2013-08-20 2015-03-18 中国科学院大连化学物理研究所 一种具有多级孔道结构的Beta分子筛及其制备方法
FR3052449A1 (fr) * 2016-06-08 2017-12-15 Ifp Energies Now Procede de preparation d'une zeolithe beta
CN109399660A (zh) * 2018-11-07 2019-03-01 太原理工大学 多级孔Beta分子筛、多级孔Beta分子筛Ca-Ni型催化剂及制备方法
WO2019224091A1 (fr) * 2018-05-24 2019-11-28 IFP Energies Nouvelles Procédé de synthèse d'un matériau composite composé d'un mélange de zéolithes de type structural afx et de type structural bea en présence d'un structurant organique azoté

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632415B2 (en) * 2001-04-09 2003-10-14 Chevron U.S.A. Inc. Methods for making molecular sieves
US20150158020A1 (en) * 2013-12-11 2015-06-11 Uop Llc Synthesis of zeolites using an organoammonium compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418353A (zh) * 2013-08-20 2015-03-18 中国科学院大连化学物理研究所 一种具有多级孔道结构的Beta分子筛及其制备方法
FR3052449A1 (fr) * 2016-06-08 2017-12-15 Ifp Energies Now Procede de preparation d'une zeolithe beta
WO2019224091A1 (fr) * 2018-05-24 2019-11-28 IFP Energies Nouvelles Procédé de synthèse d'un matériau composite composé d'un mélange de zéolithes de type structural afx et de type structural bea en présence d'un structurant organique azoté
CN109399660A (zh) * 2018-11-07 2019-03-01 太原理工大学 多级孔Beta分子筛、多级孔Beta分子筛Ca-Ni型催化剂及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. Jackowski et al..A study on zeolite synthesis from diquaternary ammonium compounds *
Fractal MTW Zeolite Crystals: Hidden Dimensions in Nanoporous Materials;Lei Wang et al.;《Crystal Growth》;20171231;第129卷;第11926-11930 *
Synthesis of hierarchical Beta using piperidine based multi-ammonium surfactants;Rajkumar Kore et al.;《RSC Advances》;20131231;第3卷;第1317–1322页 *
the effect of changing endgroup heterocycles in the HF/SiO2 synthesis of molecular sieves.《Studies in Surface Science and Catalysis》.2008,第174卷第111-116页. *

Also Published As

Publication number Publication date
CN111484038A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
JP5689890B2 (ja) ナノ結晶性zsm−5核を用いたzsm−5ゼオライトの製造方法
CN104043477B (zh) 一种zsm‑5/mcm‑48复合分子筛及其制备方法和应用
CN105692644A (zh) 一种制备多级孔沸石的方法
CN111704145A (zh) 一种原位合成纳米氢型Cu-SSZ-13分子筛的方法
CN106219569B (zh) 一种无二次模板一步制备多级孔沸石的方法
CN110860307A (zh) Beta分子筛催化剂、制备方法及其在酰基化法制备芳香酮中的应用
CN113044853A (zh) 一种合成纳米高硅铝比zsm-5分子筛的方法
CN111484038B (zh) 一种多级孔富铝Beta分子筛及其制备方法
CN113135578B (zh) 一种硅锗isv沸石分子筛的制备方法
CN100390060C (zh) 一种高硅八面沸石及其制备方法
CN107758688B (zh) 不同致密性的纳米聚集盘状丝光沸石
EP3838843A1 (en) Hierarchical zeolites and preparation method therefor
CN112408418A (zh) 一种酸性温和的超细纳米zsm-5分子筛的合成方法
CN111017942B (zh) 一种合成l型分子筛的晶种及其制备方法和应用
CN101654259B (zh) 高质量高活性zsm-5分子筛制备方法
CN111921553A (zh) 一种甲醇制丙烯催化剂的直接成型方法
CN105905919A (zh) 一种中孔eu-1沸石分子筛及其制备方法
CN115010146B (zh) 一种多级孔zsm-5纳米团聚体分子筛及其制备方法
CN110844919A (zh) NaY分子筛的制备方法及其制备的NaY分子筛
JP4488691B2 (ja) フォージャサイト型ゼオライトの製造方法
CN114560482A (zh) 一种拟薄水铝石粉体、成型载体及其制备方法
CN112645350A (zh) 一种纳米zsm-5沸石的合成方法
CN112062137A (zh) 一种maz沸石分子筛的制备方法
CN100431961C (zh) 一种八面沸石的合成方法
CN116639705A (zh) 一种含有晶体孔壁结构复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant