CN111484000A - 一种纳米炭球的制备方法和应用 - Google Patents

一种纳米炭球的制备方法和应用 Download PDF

Info

Publication number
CN111484000A
CN111484000A CN202010305033.2A CN202010305033A CN111484000A CN 111484000 A CN111484000 A CN 111484000A CN 202010305033 A CN202010305033 A CN 202010305033A CN 111484000 A CN111484000 A CN 111484000A
Authority
CN
China
Prior art keywords
straw
water
nano carbon
ibr
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010305033.2A
Other languages
English (en)
Other versions
CN111484000B (zh
Inventor
夏涛
卢宪芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202010305033.2A priority Critical patent/CN111484000B/zh
Publication of CN111484000A publication Critical patent/CN111484000A/zh
Application granted granted Critical
Publication of CN111484000B publication Critical patent/CN111484000B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种纳米炭球的制备方法,其包括作物秸秆粉碎、酸性溴化锂水解、生物炭分离与干燥等步骤,制得纳米炭球;具有较高的反应活性和更大的应用潜能,尤其是处理象草制备的纳米炭球,均匀、分散、直径约100nm,具有更广的应用潜力。

Description

一种纳米炭球的制备方法和应用
技术领域
本发明属于生物质利用技术领域,具体涉及一种纳米炭球的制备方法和应用。
背景技术
目前,关于制备生物炭的报道较多,制得的生物炭结构多种多样,制备过程中有很多因素都会造成生物炭结构的不同,比如原料成分、制备条件、后期处理条件等因素。
纳米级球形、线状、管状及胶囊等结构的功能性炭材料,被广泛的用做模板剂,催化剂载体,电极材料及复合材料的制备等。
纳米炭球以其各向同性、化学性质稳定、孔隙发达和良好的生物相容性等特点,在储能、催化、吸附、载药等领域具有重要应用。
外文文献Lu,X.,Liu,X.,Zhang,W.,Wang,X.,Wang,S.,Xia,T.,The residue fromthe acidic concentrated lithium bromide treated crop residue as biochar toremove Cr(VI),Bioresource Technology(2019),公开了酸性浓缩溴化锂水解(acidicconcentrated LiBr hydrolysis,ALBH)法制备生物炭,见图3,但是该方法制备的生物炭是网状结构,并不是纳米炭球。
中国文献《生物质热解炭化的关键影响因素分析》(王茹、侯书林等,《可再生能源》第31卷第6期,2013年6月)公开了热解炭化所得生物炭的特性随着生物质原料类型和热解条件等因素的差异而产生很大的变化,反应参数对热解炭化的过程及产物生物炭的影响最大,原料种类和催化剂对热解炭化产物也有一定的影响,不同研究者采用的热解原料与反应参数存在广泛的可变性,热解炭化是受各因素的综合影响。
以生物质为炭前体制备纳米炭球的报道较少,因为炭球的性质高度依赖于合成方法,因此在过去的几十年中,许多研究者在炭球合成方法上做出巨大的努力,其中以模板法(硬模板法和软模板法),水热炭化法和微乳液聚合法等制备炭球的方法为主:模板方法步骤较为繁琐,包括:a)模板的合成,b)炭前体的制备,c)热解炭化过程,d)后处理去除模板。硬模板法的复杂模板合成过程和苛刻的后处理条件限制了其广泛的应用。软模板方法省略了苛刻的后处理过程,但对模板也提出了很高的要求:许多软模板前体都以乳液液滴,胶束或表面活性剂为模板,其可在炭化过程中会分解。但是,这就要求软模板承受炭化之前的温度,并在炭化过程中分解。此外,炭前体的高交联趋势很难制备单分散的炭球;与模板法相比,水热炭化法(HTC)具有许多优点,例如环境友好,处理条件温和等。水热炭化法通常在200℃至250℃的温度下进行约12h至48h。许多生物质衍生的炭前体可以通过HTC方法转化为球形炭,例如葡萄糖,果糖和蔗糖。然而,在HTC过程中木质纤维素几乎不形成炭球,形成均匀的粒径更难。由此,纳米炭球的特征受原料、制备方法不同的影响,目前还没有系统、经济有效的,通过生物质材料制备纳米炭球的方法。
发明内容
针对现有技术的不足,本发明提供了一种纳米炭球的制备方法和应用。
本发明中涉及的纳米炭球是指纳米级的生物炭球。
一种纳米炭球的制备方法,包括如下步骤:
(1)将秸秆干燥,制成秸秆粉末;
(2)将步骤(1)中的秸秆粉末与LiBr-HCl溶液混合均匀制得混合物,所述LiBr-HCl溶液中HCl的摩尔浓度为0.4-0.5M,所述混合物包括组分按重量份比计为秸秆粉末:LiBr:水=(5~20):(40~66.5):(28.5~40),将混合物在密封条件下加热,加热升温速度为2~10℃/min,至120~140℃,恒温90~150min,然后降温至室温,制得水解反应物;
(3)将步骤(2)制得的水解反应物进行固液分离,将固态反应物用水冲洗至pH值5~7,干燥制得纳米炭球。
根据本发明优选的,步骤(1)中的秸秆为象草、芦苇秸秆、小麦秸秆、玉米秸秆之一或两者以上混合。
进一步优选的,步骤(1)中的秸秆为象草。
根据本发明优选的,步骤(1)中的秸秆在40℃的烘箱中烘干,粉碎后,过20目筛子制备成粉末。
根据本发明优选的,步骤(2)中加热升温速度为2℃/min。
根据本发明优选的,步骤(2)中加热至140℃。
根据本发明优选的,步骤(2)中恒温150min。
根据本发明优选的,步骤(2)中,所述混合物中包括组分按重量份比计为秸秆粉末:LiBr:水=5:57:38。
进一步优选的,LiBr-HCl溶液中HCl的摩尔浓度为0.5M。
根据本发明优选的,步骤(3)中的水解反应物采用砂芯漏斗进行固液分离。
根据本发明优选的,步骤(3)中冲洗后的固态反应物在40℃烘箱中进行干燥。
上述纳米炭球作为吸附载体的应用。
上述纳米炭球在吸附水中重金属的应用。
根据本发明优选的,上述纳米炭球在吸附水中重金属Cr离子的应用。
本发明技术方案的有益效果
1、本发明制备的纳米炭球均匀、分散,纳米炭球上具有较多的纳米孔,所述纳米炭球比表面积大,具有多种功能基团。
2、本发明制备的纳米炭球具有显著的吸附作用,可以有效去除水中的重金属Cr(VI)。
3、本发明涉及的技术方案是一种绿色、高效、可持续的利用农作物秸秆制备功能纳米炭球的方法,可广泛应用于土壤改良、农作物生物量提升、空气和水污染治理等领域。
4、本发明涉及的技术方案中利用象草制备的纳米炭球,本身特性以及应用效果都优于其它秸秆制备的纳米炭球。
附图说明
图1.不同处理条件下处理象草,小麦秸秆,玉米秸秆和芦苇秸秆制备的生物炭形貌的扫描电子显微镜图片;
图2.实施例1处理象草(Elephant grass),小麦秸秆(Wheat straw),玉米秸秆(Corn stover)和芦苇秸秆(Reed straw)制备的生物炭的傅里叶红外光图谱;
图3.为公开文献中酸性浓缩溴化锂水解法制备象草(Elephant grass),小麦秸秆(Wheat straw),玉米秸秆(Corn stover)生物炭的扫描电子显微镜图片。
具体实施方式
下面通过具体的实施例对本发明作进一步的阐述,但保护范围不限于此。
实施例1
一种纳米炭球的制备方法,包括如下步骤:
普通市售秸秆,所述秸秆分别为象草,芦苇秸秆,小麦秸秆和玉米秸秆,各自单独处理,处理条件为:在40℃的烘箱中烘干,然后用粉碎机粉碎并过20目筛子制备成粉末;将粉末与LiBr-HCl溶液混合均匀制得混合物,所述LiBr-HCl溶液中HCl的摩尔浓度为0.5M,所述混合物包括组分按重量份比计为粉末:LiBr:水=5:57:38,将所述混合物加入压力溶弹中,将压力溶弹放入烘箱中,控制升温速度设定为2℃/min,升温至反应温度140℃后,恒温150min,然后降温到50℃,将压力容弹从烘箱中取出,待温度降至室温;采用砂芯漏斗对反应物进行固液分离,将固体反应物用水冲洗至pH7,然后在40℃下干燥24小时,制得固态产物。
实施例2
一种纳米炭球的制备方法,包括如下步骤:
普通市售秸秆,所述秸秆分别为象草,芦苇秸秆,小麦秸秆和玉米秸秆,各自单独处理,处理条件为:在40℃的烘箱中烘干,然后用粉碎机粉碎并过20目筛子制备成粉末;将粉末与LiBr-HCl溶液混合均匀制得混合物,所述LiBr-HCl溶液中HCl的摩尔浓度为0.5M,所述混合物包括组分按重量份比计为粉末:LiBr:水=10:54:36,将所述混合物加入压力溶弹中,将压力溶弹放入烘箱中,控制升温速度设定为2℃/min,升温至反应温度120℃后,恒温90min后,然后降温到50℃,将压力溶弹从烘箱中取出,待温度降至室温;采用砂芯漏斗对反应物进行固液分离,将固体反应物用水冲洗至pH7,然后在40℃下干燥24小时,制得固态产物。
实施例3
一种纳米炭球的制备方法,包括如下步骤:
普通市售秸秆,所述秸秆分别为象草,芦苇秸秆,小麦秸秆和玉米秸秆,各自单独处理,处理条件为:在40℃的烘箱中烘干,然后用粉碎机粉碎并过20目筛子制备成粉末;将粉末与LiBr-HCl溶液混合均匀制得混合物,所述LiBr-HCl溶液中HCl的摩尔浓度为0.5M,所述混合物包括组分按重量份比计为粉末:LiBr:水=20:48:32,将所述混合物加入压力溶弹中,将压力溶弹放入烘箱中,控制升温速度设定为2℃/min,升温至反应温度140℃后,恒温120min后,然后降温到50℃,将压力溶弹从烘箱中取出,待温度降至室温;采用砂芯漏斗对反应物进行固液分离,将固体反应物用水冲洗至pH7,然后在40℃下干燥24小时,制得固态产物。
对比例1
与实施例1的不同之处在于,处理温度由140℃改为110℃,其它均相同。
对比例2
与实施例1的不同之处在于,用H2SO4代替HCl,其它均相同。
效果例
实施例1-3与对比例1-2制得固态产物(即为生物炭)的检测结果,表1。
用Regulus 8220(日立,日本)扫描电子显微镜(SEM)和JEM 2100(日立,日本)透射电子显微镜观察上述条件下获得的纳米炭球的形貌。
表1
Figure BDA0002455435480000051
Figure BDA0002455435480000061
图1为不同处理条件下,处理象草,小麦秸秆,玉米秸秆和芦苇秸秆制备的固体产物(即为生物炭)形貌的扫描电子显微镜图片;
图中:
A显示了实施例1处理象草、小麦秸秆、玉米秸杆和芦苇秸秆产生纳米炭球的形态;
B显示了实施例1,实施例2和实施例3条件下处理象草产生纳米炭球的形态;
C显示了对比例1条件下处理象草、小麦秸杆、玉米秸杆和芦苇秸杆产生的生物炭的形态。
由图1可以看出,在实施例1条件下,处理形成了纳米炭球,由象草和芦苇秸秆制成的纳米炭球效果较好,尤其是由象草制备的纳米炭球均匀、分散、直径约100nm,但由小麦秸秆和玉米秸秆制备的纳米炭球自组装不足,炭球之间出现交联;
对比例1条件下处理象草、小麦秸杆、玉米秸杆和芦苇秸杆产生的生物炭的形态,该处理条件下,生物炭表面出现纳米孔,但是几乎没有纳米炭球的出现。
实施例1-3条件下,处理象草产生纳米炭球,在实施例2和3条件下,可以制备纳米炭球,但是制备的纳米炭球量少,纳米炭球的分散性较差;实施例1条件下处理象草是制备纳米炭球的最佳条件。
应用例
实施例1-3与对比例1-2制备的固体产物(即为生物炭)对水中Cr(VI)的吸附,具体步骤如下:
1)将K2Cr2O7溶解于蒸馏水中,制备出130mg/L的Cr(VI)溶液,用盐酸将溶液的pH值调节到pH3。
2)将0.1g上述制备的固体产物作为吸附剂和50ml步骤1制备的Cr(VI)溶液混合,分别在150rpm、37℃下振荡24h,检测各时间吸附结果,即用砂芯漏斗将反应液固液分离,用可见分光光度计定量过滤上清中的Cr(VI)含量,以不加吸附剂的Cr(VI)溶液作为对照。
测定生物炭对初始剂量为130mg/L的Cr(VI)的吸附能力,发现:每克实施例1处理象草、小麦秸杆、玉米秸杆和芦苇秸杆制备的固体产物分别吸附了60.61mg、60.59mg、60.55mg和60.60mg的Cr(VI);每克实施例2处理象草、小麦秸杆、玉米秸杆和芦苇秸杆制备的固体产物分别吸附了60.36mg、59.13mg、58.12mg和60.57mg的Cr(VI)。每克实施例3处理象草、小麦秸秆制备的固体产物分别吸附了60.51mg和60.45mg的Cr(VI),仅低于实施例1制备的生物炭的吸附能力。
每克对比例1处理象草、小麦秸杆和玉米秸杆制备的生物炭分别吸附了57.75mg,56.34mg和55.19mg的Cr(VI)。
结果表明,本发明实施例1条件下,利用象草制备的纳米炭球对Cr(VI)具有较强的吸附能力。
实验例1
实施例1-3制备的纳米炭球检测分析
采用ASAP 2460型物理吸附分析仪对实施例1,实施例2、实施例3和对比例1制备固体产物(即为生物炭)的Brunauer-Emmett-Teller(BET)表面进行了检测。
实施例1处理象草、小麦秸杆、玉米秸杆和芦苇秸杆制备的固体产物的BET比表面积分别为115.68m2/g、115.68m2/g、101.24m2/g和97.79m2/g。实施例3处理象草、小麦秸杆制备的生物炭的BET比表面积小于实施例1制备的生物炭,分别为78.49m2/g和75.60m2/g。实施例2处理象草、小麦秸秆、玉米秸杆和芦苇秸杆制备的生物炭的BET比表面积分别为19.42m2/g、21.23m2/g、40.60m2/g和42.35m2/g。
对比例1处理象草、小麦秸秆和玉米秸杆制备的固体产物的BET比表面积分别为17.40m2/g,4.53m2/g and 7.79m2/g。
结果表明,本发明实施例条件下制备的固体产物的比较面积较大。
实验例2
利用美国热科学公司Nicolet iS10的傅里叶变换红外光谱(FTIR)对上述纳米炭球表面的化学官能团进行了分析。
图2显示了实施例1处理象草、小麦秸杆、玉米秸杆和芦苇秸杆制备的固体产物(即生物炭)的红外光谱图,固体产物的红外光谱中,2900cm-1到3400cm-1处的光谱带代表羧基、醇和酚的O-H;1600-1700cm-1处的光谱带代表羧基双键(-C=O)、羰基、酯基和酮基;1030cm-1,1022cm-1、1107cm-1和1089cm-1处的峰值归因于醚、脂肪族、羧基和酚O-H基团。
结果表明,实施例1制备的固体产物表面具有较为丰富的氧官能团,由于氧官能基团是介导生物炭进一步修饰-应用的潜在位点,表面丰富的氧官能团赋予了本发明涉及的实施例制备的固体产物具有较高的反应活性和更大的应用潜能,尤其是在实施例1条件下,处理象草制备的纳米炭球,均匀,分散,直径约100nm,具有更广的应用潜力。
综上,由于现有技术中热解炭化所得生物炭的特性随着生物质原料类型和热解条件等因素的差异而产生很大的变化,不同研究者采用的热解原料与反应参数存在广泛的可变性,热解炭化是受各因素的综合影响(引自文献:生物质热解炭化的关键影响因素分析,王茹、侯书林等,《可再生能源》,第31卷第6期,2013年6月);本领域技术人员由现有技术可以得知,以生物质为炭前体制备纳米炭球的报道较少,并且现有纳米炭球的制备方法差异极大,而纳米炭球具有独特的性质,例如表面丰富的官能团,较大的表面积和可控的粒径,因此纳米炭球在催化,电化学转化,能量存储和环境净化等方面具有广阔的应用前景,在该背景条件下,本发明涉及的技术方案通过处理农业副产物获得了粒径均匀,分散性好的纳米炭球,超出了本领域技术人员的预料,本发明涉及的技术方案丰富了纳米炭球的制备方法,具有良好的应用前景。

Claims (10)

1.一种纳米炭球的制备方法,其特征在于,包括如下步骤:
(1)将秸秆干燥,制成秸秆粉末;
(2)将步骤(1)中的秸秆粉末与LiBr-HCl溶液混合均匀制得混合物,所述LiBr-HCl溶液中HCl的摩尔浓度为0.4-0.5M,所述混合物包括组分按重量份比计为秸秆粉末:LiBr:水=(5~20):(40~66.5):(28.5~40),将混合物在密封条件下加热,加热升温速度为2~10℃/min,至120~140℃,恒温90~150min,然后降温至室温,制得水解反应物;
(3)将步骤(2)制得的水解反应物进行固液分离,将固态反应物用水冲洗至pH值5~7,干燥制得纳米炭球。
2.如权利要求1所述纳米炭球的制备方法,其特征在于,步骤(1)中的秸秆为象草、芦苇秸秆、小麦秸秆、玉米秸秆之一或两者以上混合。
3.如权利要求2所述纳米炭球的制备方法,其特征在于,步骤(1)中的秸秆为象草。
4.如权利要求1所述纳米炭球的制备方法,其特征在于,步骤(1)中的秸秆在40℃的烘箱中烘干,粉碎后,过20目筛子制备成粉末。
5.如权利要求1所述纳米炭球的制备方法,其特征在于,步骤(2)中加热升温速度为2℃/min;
优选的,步骤(2)中加热至140℃;
优选的,步骤(2)中恒温150min。
6.如权利要求1所述纳米炭球的制备方法,其特征在于,步骤(2)中,所述混合物中包括组分按重量份比计为秸秆粉末:LiBr:水=5:57:38。
7.如权利要求6所述纳米炭球的制备方法,其特征在于,步骤(2)中,LiBr-HCl溶液中HCl的摩尔浓度为0.5M。
8.如权利要求1所述纳米炭球的制备方法,其特征在于,步骤(3)中的水解反应物采用砂芯漏斗进行固液分离;
优选的,步骤(3)中冲洗后的固态反应物在40℃烘箱中进行干燥。
9.权利要求1-8制备的纳米炭球作为吸附载体的应用。
10.如权利要求9所述纳米炭球的应用,其特征在于,纳米炭球用于吸附水中重金属的应用;
优选的,纳米炭球在吸附水中重金属Cr离子的应用。
CN202010305033.2A 2020-04-17 2020-04-17 一种纳米炭球的制备方法和应用 Active CN111484000B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010305033.2A CN111484000B (zh) 2020-04-17 2020-04-17 一种纳米炭球的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010305033.2A CN111484000B (zh) 2020-04-17 2020-04-17 一种纳米炭球的制备方法和应用

Publications (2)

Publication Number Publication Date
CN111484000A true CN111484000A (zh) 2020-08-04
CN111484000B CN111484000B (zh) 2021-12-17

Family

ID=71792730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010305033.2A Active CN111484000B (zh) 2020-04-17 2020-04-17 一种纳米炭球的制备方法和应用

Country Status (1)

Country Link
CN (1) CN111484000B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006340913A1 (en) * 2006-03-29 2007-10-04 Virginia Tech Intellectual Properties, Inc. Cellulose-solvent-based lignocellulose fractionation with modest reaction conditions and reagent cycling
CN102989013A (zh) * 2012-12-13 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 一种淋巴管识别的碳纳米球的制备方法
CN103588190A (zh) * 2013-10-31 2014-02-19 中国科学院过程工程研究所 一种由木质纤维素制备碳微球的方法
CN104649246A (zh) * 2013-11-18 2015-05-27 湖南师范大学 一种生物质碳微/纳米球的低温水热制备方法
US20150203461A1 (en) * 2011-10-31 2015-07-23 E I Du Pont Nemours And Company Processes for producing 5-(hydroxymethyl)furfural
TW201545976A (zh) * 2014-02-28 2015-12-16 Kureha Corp 非水電解質二次電池用碳質材料之製造方法
CN106629661A (zh) * 2016-12-22 2017-05-10 泉州师范学院 一种甘蔗渣制备碳纳米球工艺
CN106938190A (zh) * 2017-04-19 2017-07-11 东北农业大学 一种具有强吸附功能的片层多孔生物炭的制备方法
CN108408761A (zh) * 2018-05-21 2018-08-17 西南科技大学 三维蜂窝结构ZnO纳米材料的可控制备方法
CN109516458A (zh) * 2018-12-05 2019-03-26 华南师范大学 一种生物质基分级多孔碳及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006340913A1 (en) * 2006-03-29 2007-10-04 Virginia Tech Intellectual Properties, Inc. Cellulose-solvent-based lignocellulose fractionation with modest reaction conditions and reagent cycling
US20150203461A1 (en) * 2011-10-31 2015-07-23 E I Du Pont Nemours And Company Processes for producing 5-(hydroxymethyl)furfural
CN102989013A (zh) * 2012-12-13 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 一种淋巴管识别的碳纳米球的制备方法
CN103588190A (zh) * 2013-10-31 2014-02-19 中国科学院过程工程研究所 一种由木质纤维素制备碳微球的方法
CN104649246A (zh) * 2013-11-18 2015-05-27 湖南师范大学 一种生物质碳微/纳米球的低温水热制备方法
TW201545976A (zh) * 2014-02-28 2015-12-16 Kureha Corp 非水電解質二次電池用碳質材料之製造方法
CN106629661A (zh) * 2016-12-22 2017-05-10 泉州师范学院 一种甘蔗渣制备碳纳米球工艺
CN106938190A (zh) * 2017-04-19 2017-07-11 东北农业大学 一种具有强吸附功能的片层多孔生物炭的制备方法
CN108408761A (zh) * 2018-05-21 2018-08-17 西南科技大学 三维蜂窝结构ZnO纳米材料的可控制备方法
CN109516458A (zh) * 2018-12-05 2019-03-26 华南师范大学 一种生物质基分级多孔碳及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NING LI: "A facile and fast method for quantitating lignin in lignocellulosic biomass using acidic lithium bromide trihydrate (ALBTH)", 《GREEN CHEMISTRY》 *
WEIHUA DENG: "Cellulose Hydrolysis in Acidified LiBr Molten Salt Hydrate Media", 《INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH》 *
孙蔷: "核壳限域空间内纳米炭球的合成和结构调控", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
朱平国: "《居有其所:美丽乡村建设》", 30 September 2016 *

Also Published As

Publication number Publication date
CN111484000B (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
Thomas et al. Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications
Masoumi et al. Optimized production and characterization of highly porous activated carbon from algal-derived hydrochar
CN109967072B (zh) 一种木质素基纳米花多孔碳载体负载Ru基催化剂及其制备方法和在木质素解聚中的应用
Wang et al. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review
US11332371B2 (en) Methods for creation of sub-micron biocarbon materials from biomass and their fields of application
Yang et al. Development of high surface area mesoporous activated carbons from herb residues
CN101780955B (zh) 壳聚糖质活性炭及其制备方法
Zuo et al. Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation
CA2895630C (en) Process for the hydrothermal treatment of high molar mass biomaterials
Jaruwat et al. Effects of hydrothermal temperature and time of hydrochar from Cattail leaves
CN109364972B (zh) 一种用于木质素加氢解聚的钌基复合氮化碳纳米催化剂及制备方法和在木质素解聚上的应用
Son et al. The development of biomass-derived carbon-based photocatalysts for the visible-light-driven photodegradation of pollutants: a comprehensive review
Mahmud et al. Enzymatic saccharification of oil palm mesocarp fiber (OPMF) treated with superheated steam
Xu et al. Enhanced catalytic conversion of camelina oil to hydrocarbon fuels over Ni-MCM-41 catalysts
Li et al. Development and assessment of a functional activated fore-modified bio-hydrochar for amoxicillin removal
Yu et al. Preparation and formation mechanism of size-controlled lignin based microsphere by reverse phase polymerization
Zakaria et al. A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials
Liu et al. Chemical and morphological mechanisms of synthesizing rectangular cesium tungsten bronze nanosheets with broadened visible-light absorption and strong photoresponse property
Wang et al. Green preparation of porous corncob microcrystalline cellulose, and its properties and applications
Zhang et al. Hierarchically porous tobacco midrib-based biochar prepared by a simple dual-templating approach for highly efficient Rhodamine B removal
CN111484000B (zh) 一种纳米炭球的制备方法和应用
Priyan et al. Size‐controlled synthesis of mesoporous silica nanoparticles using rice husk by microwave‐assisted sol–gel method
Sayğılı et al. Hydrothermal conversion of lignocellulosic waste to value-added biomaterial for high-performance contaminant removal: Focusing on synthesis route and uptake mechanism
Thithai et al. Physicochemical properties of activated carbon produced from corn stover by chemical activation under various catalysts and temperatures
Xue et al. Fabrication modulation of lignin-derived carbon nanosphere supported Pd nanoparticle via lignin fractionation for improved catalytic performance in vanillin hydrodeoxygenation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant