CN111466036A - 用来准直来自led的光发射的纳米结构的超材料和超表面 - Google Patents

用来准直来自led的光发射的纳米结构的超材料和超表面 Download PDF

Info

Publication number
CN111466036A
CN111466036A CN201880081635.5A CN201880081635A CN111466036A CN 111466036 A CN111466036 A CN 111466036A CN 201880081635 A CN201880081635 A CN 201880081635A CN 111466036 A CN111466036 A CN 111466036A
Authority
CN
China
Prior art keywords
array
light
scattering
sub
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880081635.5A
Other languages
English (en)
Other versions
CN111466036B (zh
Inventor
V.A.塔马
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bright Sharp LLC
Original Assignee
Bright Sharp LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bright Sharp LLC filed Critical Bright Sharp LLC
Publication of CN111466036A publication Critical patent/CN111466036A/zh
Application granted granted Critical
Publication of CN111466036B publication Critical patent/CN111466036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures

Abstract

公开了一种用于准直发光二极管(LED)的输出的系统、方法和设备。该系统、方法和设备包括包含顶表面(光从其发射)的LED基板和位于发射光路径内的亚波长散射天线阵列,该亚波长散射天线阵列被配置为选择LED发射光的散射方向,以提供来自设备的准直光输出。该阵列可以垂直于从LED发射的光的传播平面排列,并且可以位于邻近顶表面。该阵列可以至少部分或完全位于LED基板内。该阵列可以与顶表面间隔一距离,并且该间隔可以使用与顶表面相邻的电介质间隔物来实现。该阵列可以位于电介质间隔物内。

Description

用来准直来自LED的光发射的纳米结构的超材料和超表面
相关申请的交叉引用
本申请要求2017年10月17日提交的美国临时申请第62/573,372号和2018年10月16日提交的美国非临时申请第16/161,875号的权益,其标题为“用来准直来自LED的光发射的纳米结构的超材料和超表面”(“Nanostructured Meta-Materials and Meta- Surfaces ToCollimate Light Emission from LEDS”),以及2018年2月23日提交的欧洲专利申请第18158381.6号的权益,这两个申请通过引用被并入本文,如同被完全阐述一样。
技术领域
本发明涉及用于准直来自光源的光发射的方法和系统,并且更具体地,涉及用于准直来自发光二极管(LED)的光发射的纳米结构的超材料和超表面。
背景技术
无论发射波长如何,标准发光二极管(LED)管芯通常具有朗伯角发射图案。对于某些LED应用,基本上准直LED发射的光可能是有益的或需要的。例如,从红外(IR)LED发射的用于虹膜扫描的光需要准直。用于提供准直光发射的系统使用耦合到LED的透镜来准直远场中的光束。使用透镜是因为典型的LED具有发射光的朗伯角分布,透镜准直从LED输出的光。这种透镜或其他类型的光学组件通常是与LED管芯不同的构件和/或部件。该附加的部件需要集成到将LED保持在适当位置的封装中。通常,透镜是模制塑料部件,但准直光学设备也可以是反射表面或反射器和透镜两者的组合。外部透镜组件的使用增加了发光组件的尺寸。例如,对于典型的IR LED而言,封装(其是LED连同反射器和/或塑料透镜)高度通常约为3 mm。包括基板的LED管芯通常只有几个100微米厚。对于现有的商业IR LED,封装厚度与LED管芯厚度的比率约为10。随着IR LED越来越多地作为模块(诸如虹膜识别模块)的一部分用于智能电话,并且随着增加的构件密度,智能电话被不断制造地越来越薄,减少IR LED的厚度非常重要。因此,存在对如下技术的需求:允许LED发射具有更薄轮廓的准直光,减少对于用来准直光的外部透镜的需求,缩窄LED发射的辐射轮廓,并提高将光耦合到外部光学设备的效率。
发明内容
公开了一种用于准直发光二极管(LED)的输出的系统、方法和设备。该系统、方法和设备包括:包含顶表面的LED基板,光从该顶表面发射;以及位于发射光路径内的亚波长散射天线阵列,该亚波长散射天线阵列被配置为改变LED发射光的散射的相位和振幅,以提供来自设备的准直光输出。该阵列可以垂直于从LED发射的光的传播平面排列,并且可以位于邻近顶表面。该系统、方法和设备还可以包括阵列位于其内的嵌入介质。该阵列可以至少部分或完全位于LED基板内。该阵列可以与顶表面间隔一距离,并且该间隔可以使用与顶表面相邻的电介质间隔物来实现。该阵列可以位于电介质间隔物内。可替代地,阵列可以是分立元件。
该系统、方法和设备可以包括位于发射的光路径内的亚波长散射天线的第二阵列,该亚波长散射天线的第二阵列被配置为选择LED发射光的散射方向,以提供来自设备的准直光输出。该阵列和第二阵列可以间隔一距离。该阵列和第二阵列可以是相同或不同的阵列。
附图说明
通过以下结合附图以示例的方式给出的描述可以得到更详细的理解,在附图中:
图1示出了放置在LED管芯之上的亚波长散射天线的布置,该亚波长散射天线用于在远场准直LED发射的光;
图2总体上示出了亚波长散射天线的阵列的示例布置,包括图2a、图2b以及图2c,在图2a中该阵列被放置在LED顶表面之上,在图2b中该阵列被浸没和/或部分浸没在LED顶表面中/上,在图2c中该阵列使用放置在该阵列和LED顶表面之间的电介质间隔物与LED顶表面偏移;
图3总体上示出了亚波长散射元件的阵列的示例布置,包括图3a、图3b、图3c以及图3d,在图3a中该阵列放置在LED顶表面之上,在图3b中该阵列放置在LED的顶表面上,各个散射天线之间具有z偏移,在图3c中多个阵列放置在LED表面上,每个阵列具有散射天线的不同布置,各层中的每一个之间没有间隙,在图3d中多个阵列被放置在LED表面上,每个阵列具有散射天线的不同布置,在设计厚度的层之间具有电介质间隔物;
图4示出了准直来自LED基板的光输出的方法;
图5a示出了应用散射天线来准直来自LED的光的示例;
图5b示出了设计为具有块反射材料且没有磷光体层的LED的设备;
图5c示出了具有侧反射涂层且没有磷光体的LED;
图5d示出了具有块反射材料和磷光体层的LED;
图5e示出了具有侧反射涂层和磷光体层的LED;
图6示出了1 mm×1 mm的LED尺寸上的散射天线的相位分布φ(x,y)图;
图7示出了在25 μm×25 μm的较小区域(当与如图6所示的每侧通常为1-2 mm的LED的尺寸相比时是较小的)上的散射天线的相位分布φ(x,y)图;
图8示出了散射天线的相位函数的图;
图9示出了对应于图7的相位分布图的蓝宝石基板上的10 μm×10 μm的较小面积上的散射天线的布置的俯视图;
图10示出了散射天线的放大图像;以及
图11示出了散射天线的另一放大图像。
具体实施方式
在以下描述中,阐述了许多具体细节,诸如特定结构、构件、材料、尺寸、处理步骤和技术,以便提供对本实施例的透彻理解。然而,本领域普通技术人员将会理解,可以在没有这些具体细节的情况下实施这些实施例。在其他情况下,为了避免模糊实施例,没有详细描述公知的结构或处理步骤。将理解,当诸如层、区域或基板的元件被称为“在另一个元件上”或“在另一个元件上方”时,它可以直接在另一个元件上,或者也可以存在中间元件。相反,当元件被称为“直接在另一个元件上”或“直接在另一个元件上方”时,则不存在中间元件。还将理解,当元件被称为在另一个元件“之下”、“下面”或“下方”时,它可以直接在另一个元件之下或下方,或者可以存在中间元件。相反,当元件被称为“直接在另一个元件之下”或“直接在另一个元件下方”时,则不存在中间元件。
为了不模糊以下详细描述中对实施例的呈现,本领域中已知的一些结构、构件、材料、尺寸、处理步骤和技术可能为了呈现和说明的目的而被组合在一起,并且在一些情况下可能没有被详细描述。在其他情况下,本领域中已知的一些结构、构件、材料、尺寸、处理步骤和技术可能根本没有被描述。应当理解,以下描述相当集中于本文描述的各种实施例的不同特征或元件。
具有纳米级结构和化学性质的空间变化的人工结构化、亚波长、纳米结构的光学超材料、超表面和光子晶体准直从诸如发光二极管(LED)的平面发光设备发射的光,以提供平坦、超薄、紧凑的LED,这些LED能够在不使用反射器和/或透镜组件的情况下将准直光发射到远场中。在某些应用中,诸如照相手机和小型化个人电子设备,带有反射器和透镜的LED的厚度可能是一重要的限制。本准直光学设备可以构建在LED芯片本身上,而不需要单独的光学组件。
所提出的方法通过将亚波长纳米结构结合到LED架构中来减小LED的厚度(不限于IR LED,而且还适用于可见LED)。亚波长纳米结构可以被定尺寸为在横向尺寸(x,y)和z高度上小于光的自由空间波长,并且沿传播方向可以是或可以不是亚波长。对于谐振实施方式,z也可以是亚波长。对于非谐振实施方式,z在尺寸上可以是亚波长或可以是大约一个波长。亚波长指参考波长,诸如在指定的设计波长处。这些亚波长纳米结构影响照射它们的光的振幅和相位,并导致由纳米结构的一个或多个阵列透射或散射的光在LED的远场中被准直。这些亚波长纳米粒子共同表现为用于准直来自LED的光输出的光学准直元件或薄而平的光学透镜。这消除了对外部反射器和透镜组合的需要,从而显著减小了LED封装的厚度。亚波长纳米结构在本文中可以称为散射元件和/或散射天线。
图1示出了放置在LED管芯110之上的亚波长散射天线或纳米结构的布置100,其用于在远场中准直由LED发射的光。亚波长散射天线的布置100可以形成亚波长散射天线120的阵列。LED管芯110产生具有朗伯角发射图案的光。虽然图1具体描绘了LED管芯110,但是如本领域普通技术人员所理解的,本文的描述包括放置在具有阵列120的LED管芯110上方的磷光体。
嵌入介质130可以耦合到LED管芯110。该嵌入介质130可以采用电介质的形式,该电介质包括但不限于硅(诸如聚二甲基硅氧烷(PDMS))、玻璃或丙烯酸(诸如聚甲基丙烯酸甲酯(PMMA))和二氧化硅。嵌入介质130被设计成当使用多层时为每层提供宿主介质。嵌入介质130的一般目的是机械支持纳米结构。例如,如果纳米结构被实现为不是通过光刻技术制造的纳米粒子,则嵌入介质130充当宿主介质。嵌入介质130可以是具有可调性质的介质,诸如液晶,以调节纳米结构的光学散射性质,或者是具有热可变折射率的介质,以能够实现通过温度对散射性质的调节。
亚波长散射天线120可以被设计在嵌入介质130内。这些亚波长散射天线120可以放置在LED发射区域的近场或远场中,并且被特别设计成与光源发射的光相互作用。近场和远场是led发射区域周围的电磁场区域。发射的非辐射“近场”行为在led发射区域附近占主导地位,而电磁辐射“远场”行为在更远的距离处占主导地位。亚波长散射天线120也可以被称为人造电磁和/或光学材料。通过设计散射天线120的结构和化学参数,这些材料可以被独特地设计成以特定的方式与光相互作用。相互作用是指光物质相互作用,并且特别地,光与每个纳米结构的相互作用。入射电场可以在特征明确的方向上散射入射光的纳米结构中诱导偶极子(电的或/和磁的)和多极子(电的或/和磁的)。散射天线120的结构参数可以包括例如可能在一个或两个轴中出现的形状、尺寸和周期性。
这些亚波长散射天线120可以形成通常在x-y平面中延伸的阵列。散射天线120可以包括或者可以是纳米结构。散射天线120的阵列可以以周期性结构光学地起作用,该周期性结构将光分成并衍射成沿不同方向行进的几个光束。散射天线120可以对LED发射光的振幅和/或相位起作用。输出光的(多个)方向取决于散射天线的间隔、形状和尺寸以及由LED发射的光的波长。本系统的各种图示包括在透射中使用的散射天线120的使用,尽管很容易理解这种散射天线120也可以用于反射。
被散射天线120占据的平面上的区域A被选择得很大,并且与由LED发射的尽可能多的光相交。然而,例如,区域A可能受到LED的尺寸的限制。准直层的工作原理如下:亚波长散射天线120在表面上被布置成阵列,使得散射天线120的结构属性中的一些随着区域A或区域A的一部分在空间上变化。结构属性可以包括:任何维度的尺寸、任何维度的形状和相邻亚波长散射天线120之间的间隔,或其组合。
形状可以包括矩形、正方形、金字塔形、三角形、立方体、圆柱形和其他具有2D截面的形状,包括正方形、矩形、圆形、椭圆形、六边形等。例如,如示出的,随着散射天线120从LED管芯的中心向外行进,形状可以包括变化的尺寸。形状可以随着结构参数而变化,例如作为(x,y)的函数的边或半径。仅通过非限制性示例的方式,中心散射元件可以被选择为某种形状,其中在两个轴上与其紧邻的散射元件是z轴上尺寸的110%,在x轴和y轴上具有相同的占用区域。这种图案可以持续到LED管芯110的边缘。
该尺寸可以包括散射天线120的各方面的各种尺寸,并且可以被设计成以特定方式与来自LED管芯110的光相互作用。尺寸可以随着结构参数而变化,例如作为(x,y)的函数的边或半径。仅通过示例的方式,散射天线120的中心结构在x轴和y轴占用区域上可以是最大的,并且然后从其向外行进的每个结构可以具有90%的x/y轴占用区域,直到到达LED管芯110的边缘。
散射天线120的周期性也可以变化。该变化可以包括通过某一因素改变散射天线120的周期性,或者产生额外的间隔,或者缩小向外辐射到LED管芯110的边缘的渐进散射天线120的间隔。散射天线120可以在x、y空间维度上以适当设计的周期性阵列。散射元件可以包括在z方向上具有特定周期性的纳米结构,诸如例如双曲超材料。
散射天线120的化学参数可以包括所使用的材料。如本领域普通技术人员将理解的,散射天线120的化学变化可以使得能够选择散射体的折射率和损耗,从而改变散射光振幅和相位。这种变化可以用在亚波长散射天线120的设计中,以对从LED管芯110发射的光产生适当的影响。
使用这些亚波长散射天线120的设备的示例包括超材料、光子晶体和超表面。材料的选择可以包括但不限于金属(包括但不限于金、银、铜、铝)和电介质(包括但不限于硅、二氧化硅、二氧化钛、砷化镓、砷化镓铝)以及用于在可见波长范围内实现低损耗等离子体的混合金属-电介质材料组合。这些亚波长散射天线120共同表现为光学准直元件。这消除了对外部反射器和透镜组合的需要,从而显著减小LED封装的厚度。
亚波长散射天线120的布置的实施方式以及阵列中每个元件的形状、尺寸和材料性质可以取决于阵列的位置相对于LED顶表面的位置和期望的输出准直轮廓、工作波长范围以及还有任何制造考虑和限制。由于远离LED发射体区域的光场分布的变化(任何平面上的场分布都是该平面的x、y、z位置的函数),所以阵列与入射到其上的光子的相互作用将会变化,并且是散射天线120的z位置的函数。因此,特定的设计可以适配为通过根据散射元件阵列与LED发射体区域的距离同时考虑来自LED顶表面的反射来改变其结构和材料性质以准直光。
每个亚波长散射元件120表现为纳米级天线,并且以已知的振幅和相位将来自某一入射角范围的入射光散射到某些方向。散射天线作为一组可以被设计成选择散射方向,或者以其他方式引起散射方向,以提供准直的光输出。通过在z轴上将大量这种散射天线适当地布置在LED的表面上或靠近LED的表面,入射到亚波长散射天线120阵列上的光可以被准直到远场。具有空间变化参数的亚波长散射天线120的设计取决于入射到散射元件阵列上的光的场分布的知识。亚波长散射天线阵列120在光学上表现为用于准直由LED发射的光的纳米级准直薄膜透镜。
图2示出了亚波长散射天线阵列的几个示例布置,包括图2a、图2b以及图2c,图2a中阵列220放置在LED 210顶表面之上,图2b中阵列260浸没和/或部分浸没在LED 250顶表面中或LED 250顶表面上,图2c中阵列290使用放置在阵列290和LED 280顶表面之间的电介质间隔物285偏移LED 280顶表面。
在图2a中,亚波长散射天线220的阵列耦合到LED 210顶表面。也就是说,阵列220在嵌入介质230中沿z轴与LED 210的表面相邻放置。位于邻近LED 210顶表面的阵列220的空间定位可以用于作为一组来选择散射方向,或者以其他方式引起散射方向,以提供准直的光输出。附加地,该空间定位可以提供进一步的益处,包括其他光束成形配置。
在图2b中,亚波长散射天线260的阵列完全或部分浸没在LED 250顶表面中或LED250顶表面上。也就是说,阵列260在z轴方向上被放置在或部分放置在LED 250顶表面内,其被嵌入介质270覆盖或部分地覆盖。阵列260至少部分地或完全地在LED 250基板内的这种空间定位可以用于选择散射方向,或以其他方式引起散射方向,以提供准直的光输出。特别地,将阵列260放置在或部分放置在LED 250基板内可以消除或至少控制关于来自LED 250顶表面的杂散射和其他到准直设计中的输入。
在图2c中,亚波长散射天线290的阵列偏移LED 280顶表面。该偏移可以在z轴方向上。该偏移可以通过在阵列290和LED 280顶表面之间放置电介质间隔物285来在嵌入介质295中的z轴上发生。电介质间隔物285在z轴上的厚度(表示为h)可以确定阵列290在z轴上的定位。与LED 280基板间隔开的阵列290的这种空间定位可以用于选择散射方向,或者以其他方式引起散射方向,以提供准直的光输出。特别地,使用电介质间隔物285将阵列290与LED 280顶表面间隔开可以控制来自LED 280顶表面的反射的输入,并且可以通过选择电介质间隔物285来实现工艺中的另一因素。间隔物285可以用于辅助组件的制造,例如在透镜将被制造在磷光体之上的配置中。
电介质间隔物285尺寸和材料的这种选择提供了额外的变量,这些变量可以被调整以提供或增强所产生光的远场中的准直。电介质材料的选择还可以能够实现嵌入介质295的较好过渡,从而操作为从LED 280基板到嵌入介质295的过渡,而不是图2a中嵌入介质230和LED 210基板基本接触并产生光传播通过的界面的情况。如将理解的,这种间隔可能消耗封装中的额外空间。附加地,这种空间定位可以提供进一步的益处,包括来自LED的光的提取效率的改进。
附加地,散射天线可以布置在多层(未示出)中,其中在各层之间可能存在电介质间隔物,该电介质间隔物被设计成辅助光散射的选择。附加层可以用于通过将一些参数分成每个层来提供宽参数范围的操作,其中参数可以是波长和/或偏振,例如任何像差误差的校正,以及向准直结构的任何多功能性的添加。
散射天线的连续层中的一些或全部也可以直接与其他层相邻放置。尽管通常各个散射天线与其他散射天线在z轴上可能具有偏移,但是各散射天线位于平行于LED顶表面的平面上。图3示出了亚波长散射元件阵列的几个示例布置,包括图3a、图3b、图3c和图3d,图3a中阵列320放置在LED 310顶表面之上,图3b中阵列340放置在LED 330的顶表面上,各个散射天线之间具有z偏移,图3c中多个阵列360、370放置在LED 350表面上,每个阵列具有散射天线的不同布置,在各层中的每一个之间没有间隙,图3d中多个阵列390、395放置在LED380表面上,每个阵列具有散射天线的不同布置,在设计厚度的层之间具有电介质间隔物385。
图3a示出了位于邻近LED 310基板的顶表面的散射天线320的单个阵列。这提供了一基本示例,图3的附加示例由此导出,因为不同阵列之间的间隙可以为零或大于零。
图3b示出了散射天线340的单个阵列,其中阵列中的散射天线中的一些被移位到来自LED的光输出内的不同位置(包括z轴偏移)。如图3b所示,散射天线340中的几个部分浸没在LED 330基板内。如将理解的,虽然未示出,但是这些元件中的一些可以完全浸没在LED330基板中。散射天线340中的几个位于邻近LED 330基板,类似于它们在图3a中的相应位置。散射天线340中的几个也在z轴上与LED 330基板的顶表面移位一距离。散射天线340中的其他在z轴上与LED 330基板的顶表面移位到不同的距离。
图3c示出了放置在LED 350顶表面上的散射天线360、370的多个阵列(示出了两个阵列),每个阵列具有散射天线的不同布置,尽管可以使用相同的布置,阵列之间没有间隙。通常,第一阵列360可以位于与图3a中描绘的相同。第二阵列370可以位于邻近第一阵列360。
图3d示出了散射天线390、395的多个阵列(同样示出了两个阵列)。每个阵列390、395可以具有散射天线的不同布置,尽管可以使用相同的布置。通常,第一阵列390可以位于与图3a中描绘的相同。第二阵列395可以定位成在z轴上与第一阵列390偏移距离h 1 。如果使用更多的阵列,则阵列之间的间隔可以相同或者可以变化,诸如例如通过包括第二和第三阵列之间的距离h 2
图4示出了准直来自LED基板的光输出的方法400。该方法包括以下步骤:在步骤410处识别LED输出和LED基板顶表面。该方法还包括在步骤420处提供亚波长散射天线阵列,以与LED输出的光相互作用。该方法可以包括在步骤430处在z轴上布置散射天线,以提供与光的适当相互作用,从而在远场中产生准直光。该方法可以包括在步骤440处根据对LED基板、嵌入介质和电介质间隔物的选择来改变嵌入散射天线的介质,并且包括在该基板内的部分嵌入。该方法还可以包括在步骤450处改变散射天线的尺寸和/或形状,以提供输出光的期望效果。该方法还可以包括在步骤460处改变散射天线的材料,以提供输出光的期望效果。
散射天线被设计成使得在与没有散射天线的LED相比时,LED远场处的光(基本上)是准直的。可以选择每个元件来使散射赋予光一定的振幅和相位。因此,散射天线可以使用许多不同的设计来实现。
散射天线可以基于操作模式被广泛分类为谐振散射体或非谐振散射体。对于给定的一组结构、材料参数和给定的波长,谐振散射体支持电磁谐振。例如,散射天线可以支持三重谐振,包括电和磁偶极子谐振和四极子谐振。举例来说,这种散射天线可以包括支持电偶极子和磁偶极子二者的硅纳米柱。
可替代地,散射天线可以是非谐振散射体。该散射元件可以通过不同的手段影响散射光的振幅和相位,比如例如通过使用波导模式。在这种情况下,当入射波通过散射天线传播时,每个散射元件可以为入射波提供不同的相移。当入射波通过阵列传播时,散射天线作为整体调节入射波的振幅和相位。在这两种情况下,散射场中的振幅和相位变化可以通过例如基于特定的图案或轮廓改变散射天线的尺寸来获得。
在共同参考图5中示出了应用散射天线来准直来自LED的光的一系列示例。在图5a中,LED架构可以包括半导体层502,诸如氮化镓(GaN)和蓝宝石基板504。尽管图5a中未示出,但是在蓝宝石基板504和散射天线506之间也可以包括磷光体层。在最终的设备中,发射的光从半导体层502发射到蓝宝石基板504中,并最终到达周围介质。如图5a所示,散射天线506可以设置在蓝宝石基板504之上。在图5a中,蓝宝石基板504大于半导体层502的尺寸。
散射天线506可以包括高介电常数(或高折射率)和低损耗材料,诸如例如二氧化钛、氮化镓、氮化硅、近IR波长的非晶硅或晶体硅等。材料的低损耗性质为设备提供了高传输效率。二氧化钛可以用作实现非谐振散射天线506的材料。实现散射天线506的材料的折射率可以具有其损耗小于1 × 10-3的至少2.5的折射率。
具体而言,散射天线506可以包括在450 nm和620 nm波长下使用的二氧化钛,其折射率约为2.5,损耗小于1×10-3。可替代地,硅可以用作移动设备中近红外(NIR)应用的散射天线506(诸如例如,用于面部识别和虹膜识别),其折射率约为3.66(在3.6到3.7的范围内),且损耗小于3×10-3
散射元件图案可以布置成矩形或六边形晶格。在图5a的示例中,图案可以布置成矩形晶格。晶格周期可以小于400 nm。在图5a的示例中,晶格周期可以是250 nm。散射天线内的棒的半径可以从40 nm变化到110 nm。所用半径的上限和下限可以由制造公差决定,并且设计可以变化以适应制造公差。在非谐振设备设计中,散射天线506的高度可以是几个100 nm并且受到棒纵横比的限制,棒纵横比可以通过实际手段来实现。在一个特定的设计中,纳米结构的高度可以小于700 nm。该特定设计可以具有以620 nm为中心的波长。该设计概念可以扩展到其他波长,包括用于窄带和宽带(白光)两者操作的可见光。在该示例中,蓝宝石基板504的厚度可以选择为100 μm,但是从本说明书中可以理解,该厚度可以通过制造和处理过程改变和限制。不同材料和制造工艺的选择可以允许用于基板502的更薄材料的使用。在一个示例中,准直纳米结构阵列506的焦距可以被定义为100 μm。焦距可以被设计成构造LED芯片的有效光区域的图像。
在图5的示例中,棒的半径可以作为沿着蓝宝石基板的位置(x,y)的函数而变化。棒半径可以作为(x,y)的函数而变化,使得在远场中所得的光被准直。可替代地,代替根据(x,y)改变半径,半径可以保持恒定并且高度可以作为(x,y)的函数而变化。这种设计导致散射天线506的阵列用作准直透镜。可以选择钛散射天线506的半径以提供类似于准直透镜的相位分布的结构的整体相位分布φ(x,y)。该影响可以通过选择改变散射天线506的阵列中的每个棒的半径来控制由棒散射的光的振幅和相位来实现。
仅通过示例的方式,非谐振散射天线506的设计可以包括矩形和六边形晶格,每个单位单元具有一个天线。该结构可以用空气背景介质制造在蓝宝石基板504之上。焦距可以被设计成构造来自LED芯片的有效发光区域的图像。例如,可以具有使用高度为600 nm的二氧化钛非散射天线506在450 nm处设计的周期性为250 nm的设备500,其半径在空间上从25nm变化到110 nm。620 nm的另一种设计可以用于发射红色的LED,该LED发射红色而不使用磷光体。这种设备500可以包括300 nm的周期性,具有高度为700 nm的二氧化钛非散射天线506,其半径在空间上从25 nm变化到130 nm。
通过附加示例的方式,谐振散射天线506的设计可以包括矩形和六边形晶格两者,每个单位单元具有一个天线。使用半径从25 nm变化到180 nm的高度为150 nm的棒,工作波长可以是850 nm,其周期性为400 nm。可以使用玻璃基板。
这些天线层可以减少对用来准直光的外部透镜的需要,用于缩窄由LED发射的辐射轮廓,以便在将光耦合到外部光学器件时提供增加的效率,从而提高整体系统效率。这种技术可以应用于现有的LED结构的应用,该LED结构使用LED侧面上的块反射材料或薄反射层。
图5b至图5e提供了结合散射天线的设备的附加示例。在图5b中,设备520被设计为具有块反射材料且没有磷光体层的LED。设备520包括位于设备520的核心端部处的块反射材料522。设备520的核心包括位于LED芯片526和散射天线(纳米结构层)528之间的蓝宝石基板524。LED 520发射某些颜色/波长的光,诸如发射蓝色、绿色的InGaN LED。
图5c示出了具有侧反射涂层542并且没有磷光体的LED 540。设备540包括位于设备540的核心端部处的侧反射器542。例如,侧反射器542可以包括布拉格光栅、电介质镜、金属镜。设备540的核心包括蓝宝石基板544,其位于LED芯片546和散射天线(纳米结构层)548之间。LED 540发射某些颜色/波长的光,诸如发射蓝色、绿色的InGaN LED。
纳米结构层548可以被施加到磷光体550的顶部,以便准直从磷光体550发射的光。磷光体550可以被选择来发射宽带黄光(如在白色LED的情况下——白色是蓝色+黄色)或者完全转换来自LED芯片546的所有蓝光以在(多个)窄波长带中发射(例如发射琥珀色、深红色的LED)。纳米结构层548可以被设计成准直白光(黄色+蓝色)或某些特定的颜色/波长。
图5d示出了具有块反射材料562和磷光体层570的LED 560。设备560包括位于设备560的核心端部处的块反射材料562。设备560的核心包括位于LED芯片566和磷光体层570之间的蓝宝石基板564,并且散射天线(纳米结构层)568可以邻近蓝宝石基板564远端的磷光体层570。可以在磷光体层570下面利用延伸超过蓝宝石基板564和LED芯片566的附加硅树脂翼572。
纳米结构层568可以被施加到磷光体570的顶部,以便准直从磷光体570发射的光。磷光体570可以被选择来发射宽带黄光(如在白色LED的情况下——白色是蓝色+黄色)或者完全转换来自LED芯片566的所有蓝光以在(多个)窄波长带中发射(例如发射琥珀色、深红色的LED)。纳米结构层568可以被设计成准直白光(黄色+蓝色)或者某些特定的颜色/波长。
图5e示出了具有侧反射涂层582和磷光体层590的LED 580。设备580包括位于设备580的核心端部处的侧反射涂层582。例如,侧反射器582可以包括布拉格光栅、电介质镜、金属镜。设备580的核心包括位于LED芯片586和磷光体层590之间的蓝宝石基板584,并且散射天线(纳米结构层)588可以邻近蓝宝石基板584远端的磷光体层590。
图6示出了在1mm×1mm的LED尺寸上的散射天线的相位分布φ(x,y)图600。图7示出了在25 μm×25 μm的较小区域(当与如图6所示的每侧通常为1-2 mm的LED的尺寸相比时是较小的)上的散射天线的相位分布φ(x,y)图700。图6和图7共同示出了如何在不同的位置(x,y)处延迟波,并进一步说明存在准直光束,或者以其他方式可能说明光束形成。
图8示出了散射天线的相位函数的图800。图9示出了在与图8的相位分布图800相对应的蓝宝石基板上的10μm×10μm的较小区域上的散射天线的布置的俯视图800。已经选择了棒半径和布置来提供焦距为100 μm的准直透镜的性能。图9示出了大致实现上述相位分布函数的棒的阵列。即,所示的棒阵列对入射光大致赋予相位延迟,如同相位分布函数给出的。在该图示中,棒的半径可以作为沿着诸如蓝宝石的基板的位置(x,y)的函数而变化。棒半径作为(x,y)的函数而变化,使得远场中所得的光被准直。所得的纳米结构阵列表现为像准直透镜。选择二氧化钛纳米棒的半径,使得该结构的整体相位分布φ(x,y)类似于准直透镜的相位分布。这可以通过改变阵列中每个棒的半径以控制由棒散射的光的振幅和相位来实现。
图10示出了散射天线的放大图像1000。图9示出了图8的相位函数,并描绘了相位函数如何带入散射天线的结构中。通过比较这两个图,很容易得出关系的结论。
图11示出了散射天线的另一放大图像1100。示出了以周期性方式布置的一系列棒。图11示出了具有相同恒定高度的空间变化尺寸的棒的周期性布置。
尽管以上以特定的组合描述了特征和元件,但是本领域的普通技术人员将理解,每个特征或元件可以单独使用,或者在存在其他特征和元件或不存在其他特征和元件的情况下以任何组合使用。此外,本文描述的方法可以在计算机程序、软件或固件中实现,所述计算机程序、软件或固件结合在计算机可读介质中,以供计算机或处理器执行。计算机可读介质的示例包括电子信号(通过有线或无线连接传输)和计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、高速缓冲存储器、半导体存储设备、磁介质(诸如内部硬盘和可移动盘)、磁光介质和光学介质(诸如CD-ROM盘和数字多功能盘(DVD))。

Claims (20)

1.一种用于准直发光二极管(LED)输出的设备,所述设备包括:
包括顶表面的LED基板,光从所述顶表面发射;
亚波长散射天线阵列,位于发射光路径内,所述亚波长散射天线阵列被配置为选择LED发射光的散射方向,以提供来自所述设备的准直光输出;和
亚波长散射天线的第二阵列,位于发射光路径内并与所述阵列间隔一距离,所述亚波长散射天线的第二阵列被配置为选择LED发射光的散射方向,以提供来自所述设备的准直光输出。
2.根据权利要求1所述的设备,其中所述阵列垂直于从所述LED发射的光的传播平面。
3.根据权利要求1所述的设备,其中所述阵列位于邻近所述顶表面。
4.根据权利要求1所述的设备,其中所述第二阵列垂直于从所述LED发射的光的传播平面。
5.根据权利要求1所述的设备,其中所述第二阵列位于邻近所述顶表面。
6.根据权利要求1所述的设备,还包括嵌入介质,所述阵列位于所述嵌入介质中。
7.根据权利要求1所述的设备,还包括所述第二阵列位于其中的嵌入介质。
8.根据权利要求1所述的设备,其中所述阵列至少部分地位于所述LED基板内。
9.根据权利要求1所述的设备,其中所述阵列位于所述LED基板内。
10.根据权利要求1所述的设备,其中所述阵列与所述顶表面间隔一距离。
11.根据权利要求1所述的设备,其中所述第二阵列与所述顶表面间隔一距离。
12.根据权利要求1所述的设备,还包括邻近所述顶表面的电介质间隔物,所述电介质间隔物在光传播方向上提供所述阵列与所述顶表面的间隔。
13.根据权利要求8所述的设备,其中所述阵列位于所述电介质间隔物内。
14.根据权利要求8所述的设备,其中所述第二阵列位于所述电介质间隔物内。
15.根据权利要求10所述的设备,其中所述阵列和所述第二阵列间隔开一距离。
16.一种用于准直发光二极管(LED)的输出的方法,所述方法包括:
从LED基板的顶表面发射光;
使用位于发射光路径内的亚波长散射天线阵列,选择LED发射光的散射方向,以提供来自所述设备的准直光输出;
改变嵌入所述阵列的介质;
改变阵列散射天线的形状和尺寸;以及
改变散射天线阵列的材料。
17.根据权利要求16所述的方法,还包括使用位于发射光路径内并与所述阵列间隔一距离的亚波长散射天线的第二阵列,进一步选择LED发射光的散射方向,以提供来自所述设备的准直光输出。
18.根据权利要求17所述的方法,还包括改变嵌入所述第二阵列的介质,改变第二阵列散射天线的形状和尺寸,以及改变散射天线的第二阵列的材料。
19.根据权利要求17所述的方法,其中所述第二阵列在光传播方向上与所述阵列间隔一距离。
20. 一种用于准直发光二极管(LED)的输出的设备,所述设备包括:
LED基板,包括顶表面,光从所述顶表面发射,以及
亚波长散射天线阵列,位于发射光路径内,所述亚波长散射天线阵列被配置为选择LED发射光的散射方向,以提供来自所述设备的准直光输出。
CN201880081635.5A 2017-10-17 2018-10-17 用来准直来自led的光发射的纳米结构的超材料和超表面 Active CN111466036B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762573372P 2017-10-17 2017-10-17
US62/573372 2017-10-17
EP18158381 2018-02-23
EP18158381.6 2018-02-23
US16/161875 2018-10-16
US16/161,875 US10996451B2 (en) 2017-10-17 2018-10-16 Nanostructured meta-materials and meta-surfaces to collimate light emissions from LEDs
PCT/US2018/056202 WO2019079383A1 (en) 2017-10-17 2018-10-17 NANOSTRUCTURED METAMATERIAL AND METASURFACES FOR COLLIMATING LIGHT EMISSIONS FROM LED

Publications (2)

Publication Number Publication Date
CN111466036A true CN111466036A (zh) 2020-07-28
CN111466036B CN111466036B (zh) 2023-10-31

Family

ID=66096467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880081635.5A Active CN111466036B (zh) 2017-10-17 2018-10-17 用来准直来自led的光发射的纳米结构的超材料和超表面

Country Status (7)

Country Link
US (3) US10996451B2 (zh)
EP (1) EP3698416B1 (zh)
JP (2) JP7041259B2 (zh)
KR (2) KR102385787B1 (zh)
CN (1) CN111466036B (zh)
TW (1) TW201924485A (zh)
WO (1) WO2019079383A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376846A (zh) * 2021-06-16 2021-09-10 成都光创联科技有限公司 发散光高集成分合光光学系统及合光方法
CN113410760A (zh) * 2021-06-16 2021-09-17 成都光创联科技有限公司 一种双芯片to-can封装
CN113851573A (zh) * 2021-09-23 2021-12-28 深圳迈塔兰斯科技有限公司 提高发光二极管取光效率的超表面
CN116724195A (zh) * 2020-11-12 2023-09-08 亮锐有限责任公司 具有用于自适应照明的超透镜的led阵列

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996451B2 (en) 2017-10-17 2021-05-04 Lumileds Llc Nanostructured meta-materials and meta-surfaces to collimate light emissions from LEDs
US11041983B2 (en) 2018-12-21 2021-06-22 Lumileds Llc High brightness directional direct emitter with photonic filter of angular momentum
US11322669B2 (en) 2018-12-21 2022-05-03 Lumileds Llc Color uniformity in converted light emitting diode using nano-structures
US11156759B2 (en) 2019-01-29 2021-10-26 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11302248B2 (en) 2019-01-29 2022-04-12 Osram Opto Semiconductors Gmbh U-led, u-led device, display and method for the same
US11610868B2 (en) 2019-01-29 2023-03-21 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11271143B2 (en) 2019-01-29 2022-03-08 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11942571B2 (en) * 2019-04-22 2024-03-26 Lumileds Llc LED with active region disposed within an optical cavity defined by an embedded nanostructured layer and a reflector
US11538852B2 (en) 2019-04-23 2022-12-27 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11430919B2 (en) 2019-04-26 2022-08-30 Lumileds Llc High brightness LEDs with non-specular nanostructured thin film reflectors
CN114127966A (zh) * 2019-05-14 2022-03-01 奥斯兰姆奥普托半导体股份有限两合公司 照明单元、制造照明单元的方法、用于光电组件的转换元件、具有发光二极管和转换元件的辐射源、耦合输出结构和光电设备
CN110082950B (zh) * 2019-05-23 2020-12-25 京东方科技集团股份有限公司 彩膜基板及其制备方法和显示面板
JP7400246B2 (ja) 2019-07-30 2023-12-19 セイコーエプソン株式会社 波長変換素子、光源装置および表示装置
CN110488406A (zh) * 2019-09-12 2019-11-22 江苏集萃智能传感技术研究所有限公司 一种多波段滤光片及其制备方法
CN110444557A (zh) * 2019-09-12 2019-11-12 江苏集萃智能传感技术研究所有限公司 一种基于纳米盘结构的多波段滤光传感器及其制备方法
EP4033529A4 (en) * 2019-09-18 2023-10-25 Quanzhou Sanan Semiconductor Technology Co., Ltd. LIGHT-EMITTING DIODE PACKAGING ASSEMBLY
JP2022550540A (ja) * 2019-10-03 2022-12-02 リアルディー スパーク エルエルシー 受動光学ナノ構造を備える照明装置
US11268676B2 (en) 2019-12-16 2022-03-08 Lumileds Llc Light-emitting device assembly with light redirection or incidence-angle-dependent transmission through an escape surface
KR20220037275A (ko) 2020-09-17 2022-03-24 삼성전자주식회사 메타 광학 소자 및 이를 포함하는 전자 장치
US11508888B2 (en) 2021-02-22 2022-11-22 Lumileds Llc Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter
US11204153B1 (en) 2021-02-22 2021-12-21 Lumileds Llc Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter
US20230083154A1 (en) * 2021-09-10 2023-03-16 Creeled, Inc. Localized surface plasmon resonance for enhanced photoluminescence of lumiphoric materials
KR102503761B1 (ko) * 2021-11-23 2023-02-28 광운대학교 산학협력단 메타표면 더블렛이 집적된 양방향 격자 안테나 및 이를 이용한 빔조향기
WO2024006263A1 (en) 2022-06-30 2024-01-04 Lumileds Llc Light-emitting device with aligned central electrode and output aperture
WO2024006264A1 (en) 2022-06-30 2024-01-04 Lumileds Llc Light-emitting device with central electrode and optical cavity
WO2024006262A2 (en) 2022-06-30 2024-01-04 Lumileds Llc Light-emitting device with reduced-area central electrode
WO2024006266A1 (en) 2022-06-30 2024-01-04 Lumileds Llc Led array with air-spaced optics
WO2024010603A1 (en) * 2022-07-08 2024-01-11 Meta Materials Inc. Wave-transforming microwave metamaterials with optically invisible internal structure
WO2024037950A1 (en) * 2022-08-16 2024-02-22 Ams-Osram International Gmbh Optoelectronic component
WO2024091577A1 (en) 2022-10-27 2024-05-02 Lumileds Llc Micron-scale light-emitting device with reduced-area central anode contact

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070018077A1 (en) * 2004-06-17 2007-01-25 Irina Puscasu Tunable photonic crystal
CN202395027U (zh) * 2012-01-10 2012-08-22 江西惜能光电有限公司 一种led
CN103370803A (zh) * 2011-01-18 2013-10-23 皇家飞利浦电子股份有限公司 光照设备
CN103762419A (zh) * 2014-01-24 2014-04-30 南京邮电大学 一种用于泛在无线通信节点的双频宽带天线
CN105409015A (zh) * 2013-08-06 2016-03-16 皇家飞利浦有限公司 具有用于各向异性发射的等离子体天线阵列的固态光照设备
US20160190403A1 (en) * 2013-08-06 2016-06-30 Koninklijke Philips N.V. Enhanced emission from plasmonic coupled emitters for solid state lighting
CN106463593A (zh) * 2014-05-27 2017-02-22 皇家飞利浦有限公司 等离子体光照设备中光子发射体的空间定位
CN106463587A (zh) * 2014-05-27 2017-02-22 皇家飞利浦有限公司 基于非辐射能量转移的固态光照设备

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3547665B2 (ja) 1999-10-13 2004-07-28 日本電信電話株式会社 光学素子
JP3702445B2 (ja) 2002-07-30 2005-10-05 学校法人慶應義塾 光学素子及びその光学素子を用いた装置
US6975765B2 (en) 2003-05-06 2005-12-13 New Light Industries, Ltd. Optically variable form birefringent structure and method and system and method for reading same
FR2861183B1 (fr) 2003-10-15 2006-01-21 Thales Sa Elements d'optique diffractive de type binaire pour une utilisation sur une large bande spectrale
JP4456040B2 (ja) 2005-06-17 2010-04-28 パナソニック株式会社 固体撮像素子
JP2007273975A (ja) * 2006-03-10 2007-10-18 Matsushita Electric Works Ltd 発光素子
CN101395728B (zh) 2006-03-10 2011-04-13 松下电工株式会社 发光元件及其制造方法
JPWO2009004739A1 (ja) 2007-06-29 2010-08-26 アーベル・システムズ株式会社 蛍光灯型led照明装置
US20100123386A1 (en) 2008-11-13 2010-05-20 Maven Optronics Corp. Phosphor-Coated Light Extraction Structures for Phosphor-Converted Light Emitting Devices
US20100126566A1 (en) * 2008-11-21 2010-05-27 Lightwave Power, Inc. Surface plasmon wavelength converter
EP2454619A4 (en) 2009-07-17 2016-01-06 Hewlett Packard Development Co NON PERIODIC FILTER REFLECTORS WITH FOCUSING STRENGTH AND METHOD FOR THE PRODUCTION THEREOF
JP2012014067A (ja) 2010-07-02 2012-01-19 Olympus Corp 光学素子とその製造方法
JPWO2012120738A1 (ja) 2011-03-09 2014-07-07 日本電気株式会社 光源およびその光源を用いた投射型表示装置
JP6356557B2 (ja) 2013-09-30 2018-07-11 株式会社豊田中央研究所 レンズおよびその製造方法
PL2989373T3 (pl) * 2014-03-21 2017-04-28 Philips Lighting Holding B.V. Struktura optyczna, jednostka oświetleniowa i sposób wytwarzania
US10129960B2 (en) * 2014-11-10 2018-11-13 Cree, Inc. Antenna arrangement for a solid-state lamp
US10571631B2 (en) 2015-01-05 2020-02-25 The Research Foundation For The State University Of New York Integrated photonics including waveguiding material
US9781798B2 (en) * 2015-04-08 2017-10-03 Xicato, Inc. LED-based illumination systems having sense and communication capability
US9618664B2 (en) 2015-04-15 2017-04-11 Finisar Corporation Partially etched phase-transforming optical element
US10866360B2 (en) 2015-08-19 2020-12-15 President And Fellows Of Harvard College Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters
WO2017040854A1 (en) 2015-09-02 2017-03-09 President And Fellows Of Harvard College Broadband dispersion-compensated and chiral meta-holograms
WO2017053309A1 (en) 2015-09-23 2017-03-30 Osram Sylvania Inc. Collimating metalenses and technologies incorporating the same
SG10202004257WA (en) 2015-11-24 2020-06-29 Harvard College Atomic layer deposition process for fabricating dielectric metasurfaces for wavelengths in the visible spectrum
US11092717B2 (en) * 2016-04-05 2021-08-17 President And Fellows Of Harvard College Meta-lenses for sub-wavelength resolution imaging
US10088114B2 (en) * 2016-06-02 2018-10-02 Philips Lighting Holding B.V. Plasmonic white light source based on FRET coupled emitters
US10996451B2 (en) 2017-10-17 2021-05-04 Lumileds Llc Nanostructured meta-materials and meta-surfaces to collimate light emissions from LEDs

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070018077A1 (en) * 2004-06-17 2007-01-25 Irina Puscasu Tunable photonic crystal
US20090236614A1 (en) * 2004-06-17 2009-09-24 Irina Puscasu Tunable photonic crystal
CN103370803A (zh) * 2011-01-18 2013-10-23 皇家飞利浦电子股份有限公司 光照设备
CN202395027U (zh) * 2012-01-10 2012-08-22 江西惜能光电有限公司 一种led
CN105409015A (zh) * 2013-08-06 2016-03-16 皇家飞利浦有限公司 具有用于各向异性发射的等离子体天线阵列的固态光照设备
US20160161644A1 (en) * 2013-08-06 2016-06-09 Koninklijke Philips N.V. Solid state illumination device having plasmonic antenna array for anisotropic emission
US20160190403A1 (en) * 2013-08-06 2016-06-30 Koninklijke Philips N.V. Enhanced emission from plasmonic coupled emitters for solid state lighting
CN103762419A (zh) * 2014-01-24 2014-04-30 南京邮电大学 一种用于泛在无线通信节点的双频宽带天线
CN106463593A (zh) * 2014-05-27 2017-02-22 皇家飞利浦有限公司 等离子体光照设备中光子发射体的空间定位
CN106463587A (zh) * 2014-05-27 2017-02-22 皇家飞利浦有限公司 基于非辐射能量转移的固态光照设备
US20170082785A1 (en) * 2014-05-27 2017-03-23 Koninklijke Philips N.V. Spatial positioning of photon emitters in a plasmonic illumination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116724195A (zh) * 2020-11-12 2023-09-08 亮锐有限责任公司 具有用于自适应照明的超透镜的led阵列
CN113376846A (zh) * 2021-06-16 2021-09-10 成都光创联科技有限公司 发散光高集成分合光光学系统及合光方法
CN113410760A (zh) * 2021-06-16 2021-09-17 成都光创联科技有限公司 一种双芯片to-can封装
CN113851573A (zh) * 2021-09-23 2021-12-28 深圳迈塔兰斯科技有限公司 提高发光二极管取光效率的超表面
CN113851573B (zh) * 2021-09-23 2023-09-01 深圳迈塔兰斯科技有限公司 提高发光二极管取光效率的超表面

Also Published As

Publication number Publication date
KR102462354B1 (ko) 2022-11-03
JP7148747B2 (ja) 2022-10-05
US11726308B2 (en) 2023-08-15
US11327283B2 (en) 2022-05-10
US10996451B2 (en) 2021-05-04
KR20220047685A (ko) 2022-04-18
TW201924485A (zh) 2019-06-16
CN111466036B (zh) 2023-10-31
WO2019079383A1 (en) 2019-04-25
US20210356726A1 (en) 2021-11-18
JP2020537828A (ja) 2020-12-24
US20190113727A1 (en) 2019-04-18
EP3698416B1 (en) 2023-08-23
EP3698416A1 (en) 2020-08-26
JP2022069533A (ja) 2022-05-11
US20220260817A1 (en) 2022-08-18
KR20200066363A (ko) 2020-06-09
KR102385787B1 (ko) 2022-04-14
JP7041259B2 (ja) 2022-03-23

Similar Documents

Publication Publication Date Title
JP7148747B2 (ja) Ledからの発光をコリメートするためのナノ構造化されたメタマテリアルおよびメタサーフェス
JP6063394B2 (ja) 照明装置
EP3149783B1 (en) Spatial positioning of photon emitters in a plasmonic illumination device
US9499400B2 (en) Optical devices and methods of controlling propagation directions of light from the optical devices
CN113767481B (zh) 具有非镜面纳米结构薄膜反射器的高亮度led
JP2008532297A (ja) 光導波体
US11041983B2 (en) High brightness directional direct emitter with photonic filter of angular momentum
US9851577B2 (en) Nano-structured lens for collimating light from surface emitters
CN101257077A (zh) 具有光子晶体高反射层的半导体发光二极管器件
KR20220077913A (ko) 수동형 광학 나노구조를 포함하는 조명 장치
WO2022177725A1 (en) Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter
US11204153B1 (en) Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter
US20240151983A1 (en) Metalens collimators and condensers
US8421104B2 (en) Light emitting diode apparatus and method for enhancing luminous efficiency thereof
López et al. Integrated metasurfaces for advanced solid-state-lighting
US20220082742A1 (en) High brightness directional direct emitter with photonic filter of angular momentum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant