CN111463315A - 一种太阳能电池切割钝化一体化加工方法及其太阳能电池 - Google Patents

一种太阳能电池切割钝化一体化加工方法及其太阳能电池 Download PDF

Info

Publication number
CN111463315A
CN111463315A CN201910792106.2A CN201910792106A CN111463315A CN 111463315 A CN111463315 A CN 111463315A CN 201910792106 A CN201910792106 A CN 201910792106A CN 111463315 A CN111463315 A CN 111463315A
Authority
CN
China
Prior art keywords
cutting
electrode layer
back electrode
solar cell
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910792106.2A
Other languages
English (en)
Other versions
CN111463315B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Microquanta Semiconductor Corp ltd
Original Assignee
Hangzhou Microquanta Semiconductor Corp ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Microquanta Semiconductor Corp ltd filed Critical Hangzhou Microquanta Semiconductor Corp ltd
Priority to CN201910792106.2A priority Critical patent/CN111463315B/zh
Priority to JP2022513131A priority patent/JP7237403B2/ja
Priority to EP20856672.9A priority patent/EP4024477A4/en
Priority to PCT/CN2020/093813 priority patent/WO2021036383A1/zh
Priority to US17/638,409 priority patent/US20220320439A1/en
Publication of CN111463315A publication Critical patent/CN111463315A/zh
Application granted granted Critical
Publication of CN111463315B publication Critical patent/CN111463315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及一种太阳能电池切割钝化一体化加工方法,太阳能电池包括基板、前电极层、吸光层和背电极层,在背电极层进行激光结构化切割之前,在背电极层表面设置保护层,然后再透过保护层对背电极层或者对背电极层和吸光层同时进行激光结构化切割得到相应的结构化沟槽,而保护层保留不被激光切割,保护层的材料在激光结构化切割过程中受激光加工所产生的局部高温而部分熔化并渗进下面对应的结构化沟槽中。本发明还公开一种使用该方法制备的太阳能电池。本发明在激光切割加工的同时对刚加工出来的沟槽进行钝化,降低了生产成本,节约了加工时间,对切割后的沟槽边缘进行修复,从而改善加工沟槽的形貌,提高电池稳定性,延长电池寿命。

Description

一种太阳能电池切割钝化一体化加工方法及其太阳能电池
技术领域
本发明属于太阳能电池加工制备的技术领域,特别涉及一种太阳能电池切割钝化一体化加工方法及其太阳能电池。
背景技术
在现有的太阳能电池制备过程中,常用激光加工方式对太阳能电池组件进行激光切割加工。常用激光切割加工方式主要分为三个步骤,每个步骤加工一次结构化沟槽,或称加工线,简称P1、P2、P3三条加工线,如图1和图2所示。三条加工线依次排列,从P1到P3 为太阳能电池的死区部分,其中,P1加工线主要切掉前电极层A,主要在前电极层A上激光加工出结构化沟槽,P2加工线主要切掉吸光层B,主要在吸光层B上激光加工出另一组结构化沟槽,P3加工线主要切掉背电极层C或者是背电极层C和吸光层B,主要在背电极层C 上激光加工出第三组结构化沟槽。P1切割加工后再制备吸光层B,吸光层材料将P1加工线填满覆盖。P2切割加工后再制备背电极层C,背电极层材料将P2加工线填满覆盖,而P3切割加工后,背电极层C表面没有其他覆盖遮蔽材料,使得吸光层B或前电极层A直接暴露出来。暴露出来的吸光层B与空气直接接触,很容易与空气中的各种成分发生反应导致有效成分分解,进而削弱太阳能电池的稳定性、降低电池寿命。
另一方面,目前现有的切割工艺很难得到光滑平整的P3结构化沟槽,现有的P3切割时容易在沟槽两侧边产生崩边等现象,使P3结构化沟槽边缘很粗糙,而且可能有背电极层材料碎屑等导电成分在加工后掉落到沟槽中,导致背电极层C与前电极层A直接接触形成短路,或者其他物质进入沟槽与吸光层材料反应使其分解等缺陷。
现有的解决方式是在P3激光加工后增设保护层,将P3的结构化沟槽覆盖遮蔽。该方式需要增设一道工序,提高了成本。在增设保护层前,P3沟槽仍然处于暴露状态。而且,保护层材料很难进入P3的沟槽内,不能够完整、良好的覆盖P3沟槽,效果不稳定,实现增设保护层的难度很大。
发明内容
本发明所要解决的技术问题在于,提供一种太阳能电池切割钝化一体化加工方法及其太阳能电池,在激光切割加工的同时对刚加工出来的沟槽进行钝化,无需激光加工后再覆盖保护层的工序,大大降低了生产成本,节约了加工时间,还极大地减少了P3切割完成后背电极的暴露时间,同时对P3切割后的沟槽边缘进行修复,从而改善P3沟槽的形貌,提高电池稳定性,延长电池寿命。
本发明是这样实现的,提供一种太阳能电池切割钝化一体化加工方法,所述太阳能电池从下往上依次包括基板、前电极层、吸光层和背电极层,在对所述背电极层进行激光结构化切割之前,在所述背电极层表面设置保护层,然后再透过所述保护层对背电极层或者对背电极层和吸光层同时进行激光结构化切割得到相应的结构化沟槽,而所述保护层保留不被激光切割,所述保护层的材料在激光结构化切割过程中受激光加工所产生的局部高温而部分熔化并渗进下面对应的结构化沟槽中。
进一步地,所述太阳能电池切割钝化一体化加工方法还包括在对背电极层或者对背电极层和吸光层同时进行激光结构化切割过程完成后,剔除背电极层表面的保护层,而渗进结构化沟槽中的保护层材料则继续保留。
进一步地,在所述激光结构化切割时,激光光线从保护层所在侧面对背电极层进行加工。
进一步地,在所述激光结构化切割时,激光光线从基板所在侧面对背电极层进行加工。
进一步地,所述保护层的材质为惰性、熔点低于600℃、电导率低于10-7S/M的材料。
进一步地,所述保护层为聚合物塑料材质制成。
进一步地,所述聚合物塑料包括聚二甲硅氧烷(polydimethylsiloxane)、聚磷腈(Polyphosphazene)、聚乙烯(polyethylene)、聚丙烯(Polypropylene)以及聚苯乙烯(polystyrene)。
进一步地,所述聚合物塑料通过涂布方式涂覆在背电极层表面后制成胶膜。
本发明是这样实现的,提供一种太阳能电池,所述太阳能电池的背电极层上的结构化沟槽是采用如前所述的太阳能电池切割钝化一体化加工方法加工的。
本发明是这样实现的,提供一种太阳能电池,所述太阳能电池的背电极层和吸光层上的结构化沟槽是采用如前所述的太阳能电池切割钝化一体化加工方法加工的。
与现有技术相比,本发明的太阳能电池切割钝化一体化加工方法及其太阳能电池,利用激光在对背电极层或者对背电极层和吸光层同时进行结构化切割时,同时将保护层材料利用激光加工所产生的热量部分熔化流入刚加工的结构化沟槽中,相当于节省了一道背电极层切割完再沉积保护材料的工序,大大降低了成本,节约了生产时间。而且在切割背电极层的同时沉积保护材料可以使沉积位置精度得到保障,可以确保保护材料精准地沉积在背电极层的结构化沟槽中,可以更完整的覆盖狭窄的沟槽;且填充过程更加迅速,极大地减少了激光切割完成后吸光层的暴露时间;由于保护材料的存在,结构化沟槽的两侧边缘不容易产生崩边,从而使沟槽的形貌得到改善,将沟槽暴露出来的吸光层完整包覆、保护起来,可以避免其分解,同时还可以防止其他杂质落入沟槽中产生其他不良影响,提高电池稳定性,延长电池寿命。
附图说明
图1为一种现有的太阳能电池内部结构的激光切割加工的示意图;
图2为另一种现有的太阳能电池内部结构的激光切割加工的示意图;
图3为本发明的一种太阳能电池内部结构的激光切割加工的示意图;
图4为本发明的另一种太阳能电池内部结构的激光切割加工的示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请同时参照图3以及图4所示,本发明太阳能电池切割钝化一体化加工方法及其太阳能电池的较佳实施例,所述太阳能电池从下往上依次包括基板1、前电极层2、吸光层3和背电极层4。所述基板1设置在底部,所述背电极层4设置在最上部。
在对所述背电极层4进行激光结构化切割之前,在所述背电极层4表面设置保护层5,然后再透过所述保护层5对背电极层4或者对背电极层4和吸光层3同时进行激光结构化切割得到相应的结构化沟槽P3。而所述保护层5保留不被激光切割,所述保护层4的材料在激光结构化切割过程中受激光加工时所产生的局部高温而部分熔化并渗进下面对应的结构化沟槽P3。
激光线是聚焦光束,其在焦平面能量密度最高,其余位置能量密度相对较低,通过调整焦距使背电极层4置于激光的焦平面上,此时激光能量密度相对高,背电极层4与保护层 5的界面及保护层5的材料不在激光的焦平面上,其激光能量密度相对低。当激光(可以是绿光、紫外光或红外光)光束照下去时,一部分能量被背电极层4吸收,从而使背电极层4融化,令一部分能量被保护层5的材料层或保护层5与背电极层4的界面处吸收,从而使保护层5的材料融化流入激光刚切割出来的结构化沟槽P3中,使得被切掉的结构化沟槽P3部位的物质被保护层5的材料包围起来,并与保护层5的物质混合后填充到结构化沟槽P3中,避免切掉的结构化沟槽P3与电池其余部分接触,形成沟槽保护。由于背电极层4上有一层保护层5的材料压着,切割时结构化沟槽P3的两侧边缘不容易产生崩边,从而会改善切割出来的结构化沟槽P3形貌。结构化沟槽P3完成切割后,保护层5材料的其余部分可以被撕走或者留在背电极层4表面。该激光切割可以在常压或真空环境中进行。
切割时要注意调整合适的激光焦距,以确保背电极层4位于激光焦平面上,而保护层5的材料不在焦平面上。切割时部分能量被背电极层4吸收从而融化形成结构化沟槽P3,部分能量被反射后在保护层5的材料与背电极层4的界面或保护层5的材料内部被吸收,从而使保护层5的材料融化而自动流入结构化沟槽P3中形成沟槽保护。
切割时要选择合适波长的光,以及提供合适的能量大小,以确保能够切掉结构化沟槽 P3且不会伤到P1或P2。保护层5的材料也要选择有合适熔点的材料以确保能够融化流入到结构化沟槽P3中,而不会出现汽化或者无法融化等情形。
所述结构化沟槽P3为刚被激光切割出来的沟槽,或者为背电极层4和吸光层3被同时激光切割出来的沟槽。
保护层5在背电极层4进行P3激光切割前放置。通过涂布或沉积的方式在制备背电极层4后进行保护层5的制备。保护层5的材料起到完全包覆住露出的吸光层3的材料,阻断吸光层材料与空气的直接接触,防止其他杂质落进结构化沟槽P3中,使吸光层3的稳定性得到改善。
所述太阳能电池切割钝化一体化加工方法还包括在对背电极层4或者对背电极层4和吸光层3同时进行激光结构化切割过程完成后,剔除背电极层4表面的保护层5,而渗进结构化沟槽P3中的保护层材料则继续保留。
在所述激光结构化切割时,激光光线从保护层5所在侧面对背电极层4进行加工。
在所述激光结构化切割时,激光光线从基板1所在侧面对背电极层4进行加工。
所述保护层5的材质为惰性、熔点低于600℃、电导率低于10-7S/M的材料。
所述保护层5为聚合物塑料等,包括硅胶、聚二甲硅氧烷(polydimethylsiloxane)、聚磷腈(Polyphosphazene)、聚乙烯(polyethylene)、聚丙烯(Polypropylene)、聚苯乙烯(polystyrene) 等。所述聚合物塑料通过涂布方式涂覆在背电极层4表面后制成胶膜。
本发明还公开一种太阳能电池,所述太阳能电池的背电极层4上的结构化沟槽是采用如前所述的太阳能电池切割钝化一体化加工方法加工的。如图3所示。
本发明还公开一种太阳能电池,所述太阳能电池的背电极层4和吸光层3上的结构化沟槽是采用如前所述的太阳能电池切割钝化一体化加工方法加工的。如图4所示。
下面结合具体实施例来进一步说明本发明的太阳能电池切割钝化一体化加工方法加工方法。
本发明一种太阳能电池制备方法的实施例,包括如下步骤:
(1)在玻璃基板1上制备5cm×5cm的ITO前电极层,用激光在前电极层2切出结构化沟槽P1。
(2)对激光加工后的前电极层2依次经洗洁精、去离子水、丙酮、异丙醇超声各清洗30min,再用N2吹干后经UV O-zone处理10min。
(3)在前电极层2表面制备NiOx薄膜作为电子传输层。
(4)在电子传输层表面再制备钙钛矿吸光层3。
(5)在吸光层3上沉积空穴传输层PCBM,厚20nm~50nm。
(6)在空穴传输层上进行激光加工,切割结构化沟槽P2,同时切割空穴传输层和钙钛矿吸光层3。
(7)在空穴传输层表面蒸镀金属Ag导电背电极层4。
(8)在背电极层4表面涂一层硅胶作为保护层5。
(9)用激光透过保护层5对背电极层4进行结构化沟槽P3的切割,在切割出结构化沟槽P3的同时使保护层5的材料精确地融入到结构化沟槽P3中。
(10)继续后续加工,完成太阳能电池的制备过程。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种太阳能电池切割钝化一体化加工方法,所述太阳能电池从下往上依次包括基板、前电极层、吸光层和背电极层,其特征在于,在对所述背电极层进行激光结构化切割之前,在所述背电极层表面设置保护层,然后再透过所述保护层对背电极层或者对背电极层和吸光层同时进行激光结构化切割得到相应的结构化沟槽,而所述保护层保留不被激光切割,所述保护层的材料在激光结构化切割过程中受激光加工所产生的局部高温而部分熔化并渗进下面对应的结构化沟槽中。
2.如权利要求1所述的太阳能电池切割钝化一体化加工方法,其特征在于,还包括在对背电极层或者对背电极层和吸光层同时进行激光结构化切割过程完成后,剔除背电极层表面的保护层,而渗进结构化沟槽中的保护层材料则继续保留。
3.如权利要求1或2所述的太阳能电池切割钝化一体化加工方法,其特征在于,在所述激光结构化切割时,激光光线从保护层所在侧面对背电极层进行加工。
4.如权利要求1或2所述的太阳能电池切割钝化一体化加工方法,其特征在于,在所述激光结构化切割时,激光光线从基板所在侧面对背电极层进行加工。
5.如权利要求1所述的太阳能电池切割钝化一体化加工方法,其特征在于,所述保护层的材质为惰性、熔点低于600℃、电导率低于10-7S/M的材料。
6.如权利要求5所述的太阳能电池切割钝化一体化加工方法,其特征在于,所述保护层为聚合物塑料材质制成。
7.如权利要求6所述的太阳能电池切割钝化一体化加工方法,其特征在于,所述聚合物塑料包括聚二甲硅氧烷、聚磷腈、聚乙烯、聚丙烯以及聚苯乙烯。
8.如权利要求6或7所述的太阳能电池切割钝化一体化加工方法,其特征在于,所述聚合物塑料通过涂布方式涂覆在背电极层表面后制成胶膜。
9.一种太阳能电池,其特征在于,所述太阳能电池的背电极层上的结构化沟槽是采用如权利要求1至8中任意一项所述的太阳能电池切割钝化一体化加工方法加工的。
10.一种太阳能电池,其特征在于,所述太阳能电池的背电极层和吸光层上的结构化沟槽是采用如权利要求1至8中任意一项所述的太阳能电池切割钝化一体化加工方法加工的。
CN201910792106.2A 2019-08-26 2019-08-26 一种太阳能电池切割钝化一体化加工方法及其太阳能电池 Active CN111463315B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910792106.2A CN111463315B (zh) 2019-08-26 2019-08-26 一种太阳能电池切割钝化一体化加工方法及其太阳能电池
JP2022513131A JP7237403B2 (ja) 2019-08-26 2020-06-01 太陽電池の切断・不動態化の一体化加工方法及びその太陽電池
EP20856672.9A EP4024477A4 (en) 2019-08-26 2020-06-01 PROCESSING PROCESSES WITH INTEGRATED SOLAR CELL CUTTING AND PASSIVATION AND SOLAR CELL
PCT/CN2020/093813 WO2021036383A1 (zh) 2019-08-26 2020-06-01 一种太阳能电池切割钝化一体化加工方法及其太阳能电池
US17/638,409 US20220320439A1 (en) 2019-08-26 2020-06-01 Solar cell cutting and passivation integrated processing method and solar cell thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910792106.2A CN111463315B (zh) 2019-08-26 2019-08-26 一种太阳能电池切割钝化一体化加工方法及其太阳能电池

Publications (2)

Publication Number Publication Date
CN111463315A true CN111463315A (zh) 2020-07-28
CN111463315B CN111463315B (zh) 2021-08-20

Family

ID=71679920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910792106.2A Active CN111463315B (zh) 2019-08-26 2019-08-26 一种太阳能电池切割钝化一体化加工方法及其太阳能电池

Country Status (5)

Country Link
US (1) US20220320439A1 (zh)
EP (1) EP4024477A4 (zh)
JP (1) JP7237403B2 (zh)
CN (1) CN111463315B (zh)
WO (1) WO2021036383A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190570A1 (ja) * 2022-03-31 2023-10-05 株式会社カネカ 太陽電池サブモジュール及び太陽電池サブモジュール製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165712A (zh) * 2011-12-15 2013-06-19 台湾积体电路制造股份有限公司 用于形成太阳能电池的方法
JP2013206889A (ja) * 2012-03-27 2013-10-07 Showa Shell Sekiyu Kk 集積型薄膜太陽電池モジュールにおける分離溝の形成方法
US20150020864A1 (en) * 2012-01-11 2015-01-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for manufacturing a photovoltaic module with two etching steps p2 and p3 and corresponding photovoltaic module
JP2015050349A (ja) * 2013-09-02 2015-03-16 株式会社ノリタケカンパニーリミテド 太陽電池素子およびその製造方法並びにファイヤースルー用アルミニウムペースト
CN106030827A (zh) * 2013-08-30 2016-10-12 北京铂阳顶荣光伏科技有限公司 用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法以及薄层太阳能模块的制造方法
CN109994563A (zh) * 2012-04-02 2019-07-09 罗伯特·博世有限公司 用于制造薄层太阳能模块的方法以及按照该方法可获得的薄层太阳能模块

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100375A (ja) * 1988-10-07 1990-04-12 Mitsubishi Electric Corp 光電変換装置の製造方法
JP2966535B2 (ja) * 1990-12-28 1999-10-25 三洋電機株式会社 光起電力装置の製造方法
JPH0851229A (ja) * 1994-08-09 1996-02-20 Sharp Corp 集積型太陽電池およびその製造方法
CN100536149C (zh) * 2007-12-18 2009-09-02 李毅 一种硅薄膜太阳能电池及其制造方法
CN101399295A (zh) * 2008-09-09 2009-04-01 上海拓引数码技术有限公司 太阳能电池背电极钝化封装方法
JP2010087041A (ja) * 2008-09-29 2010-04-15 Ulvac Japan Ltd レーザービームによる薄膜の除去方法及び薄膜太陽電池パネルの製造方法
WO2010106638A1 (ja) * 2009-03-17 2010-09-23 パイオニア株式会社 有機elパネルの製造方法および有機elパネル
US8048778B1 (en) * 2010-12-10 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of dicing a semiconductor structure
JP2013149698A (ja) * 2012-01-18 2013-08-01 Fujifilm Corp 集積化太陽電池の製造方法
JP2013152980A (ja) * 2012-01-24 2013-08-08 Mitsuboshi Diamond Industrial Co Ltd アモルファスシリコン太陽電池のパターニング方法
JP2014063848A (ja) * 2012-09-20 2014-04-10 Sharp Corp 集積型光電変換装置の製造方法
EP3509118A4 (en) * 2016-08-31 2020-04-22 KYOCERA Corporation SOLAR CELL AND MANUFACTURING METHOD OF SOLAR CELL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165712A (zh) * 2011-12-15 2013-06-19 台湾积体电路制造股份有限公司 用于形成太阳能电池的方法
US20150020864A1 (en) * 2012-01-11 2015-01-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for manufacturing a photovoltaic module with two etching steps p2 and p3 and corresponding photovoltaic module
JP2013206889A (ja) * 2012-03-27 2013-10-07 Showa Shell Sekiyu Kk 集積型薄膜太陽電池モジュールにおける分離溝の形成方法
CN109994563A (zh) * 2012-04-02 2019-07-09 罗伯特·博世有限公司 用于制造薄层太阳能模块的方法以及按照该方法可获得的薄层太阳能模块
CN106030827A (zh) * 2013-08-30 2016-10-12 北京铂阳顶荣光伏科技有限公司 用于对基底上的薄层进行激光结构化来制造一体式互连的薄层太阳能电池的方法以及薄层太阳能模块的制造方法
JP2015050349A (ja) * 2013-09-02 2015-03-16 株式会社ノリタケカンパニーリミテド 太陽電池素子およびその製造方法並びにファイヤースルー用アルミニウムペースト

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190570A1 (ja) * 2022-03-31 2023-10-05 株式会社カネカ 太陽電池サブモジュール及び太陽電池サブモジュール製造方法

Also Published As

Publication number Publication date
JP2022537593A (ja) 2022-08-26
EP4024477A4 (en) 2022-10-12
JP7237403B2 (ja) 2023-03-13
WO2021036383A1 (zh) 2021-03-04
US20220320439A1 (en) 2022-10-06
EP4024477A1 (en) 2022-07-06
CN111463315B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
JP7058312B2 (ja) シリコン系半導体デバイスの切断・パッシベーション方法、及びシリコン系半導体デバイス
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
KR100974221B1 (ko) 레이저 어닐링을 이용한 태양전지의 선택적 에미터형성방법 및 이를 이용한 태양전지의 제조방법
US8637340B2 (en) Patterning of silicon oxide layers using pulsed laser ablation
US20170236969A1 (en) Laser irradiation aluminum doping for monocrystalline silicon substrates
US20130130430A1 (en) Spatially selective laser annealing applications in high-efficiency solar cells
KR101161810B1 (ko) 태양전지의 선택적 에미터 형성방법 및 그 태양전지 제조방법
US20150270422A1 (en) Method for producing crystalline silicon solar cell, method for producing solar cell module, crystalline silicon solar cell, and solar cell module
CN103125016B (zh) 具有纹理形成面的硅基板及其制造方法、包含硅基板的太阳能电池
CN102388465A (zh) 太阳能电池元件及太阳能电池模块
KR101444567B1 (ko) 레이어 스택의 층의 적어도 일부 영역을 제거하는 방법
TW201349547A (zh) 具選擇性射極的太陽能電池製作方法
CN102105991B (zh) 光电转换装置的制造方法及光电转换装置
KR20130099229A (ko) 광기전 태양 전지의 레이저 가공 방법
US20160211395A1 (en) Method for laser-structuring thin layers on a substrate in order to produce monolithically connected thin-layer solar cells, and method for producing a thin-layer solar module
US20170005206A1 (en) Patterning of silicon oxide layers using pulsed laser ablation
CN103354954B (zh) 制作具有正面纹理和平滑背面表面的硅太阳能电池的方法
CN111463315B (zh) 一种太阳能电池切割钝化一体化加工方法及其太阳能电池
CN102105993B (zh) 光电转换装置的制造方法及光电转换装置
KR101532721B1 (ko) 고효율 태양 전지의 공간 선택적 레이저 어닐링 적용
KR20200130494A (ko) 레이저 빔을 이용하는 반도체 기판을 위한 국소 금속화
KR20090091474A (ko) 탑햇 형태의 레이저 어닐링을 이용한 태양전지의 선택적에미터 형성방법 및 이를 이용한 태양전지의 제조방법
CN105917473B (zh) 用于通过电绝缘的绝缘沟槽在薄层太阳能模块中制造子太阳能模块的方法以及用于制造具有这种类型的绝缘沟槽的薄层太阳能模块的方法
JP2012038902A (ja) 集積型光電変換装置の製造方法
RU2469439C1 (ru) Способ изготовления солнечного элемента с двухсторонней чувствительностью

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant