CN111452619A - 电动车辆在线能耗预测方法及系统 - Google Patents

电动车辆在线能耗预测方法及系统 Download PDF

Info

Publication number
CN111452619A
CN111452619A CN202010075168.4A CN202010075168A CN111452619A CN 111452619 A CN111452619 A CN 111452619A CN 202010075168 A CN202010075168 A CN 202010075168A CN 111452619 A CN111452619 A CN 111452619A
Authority
CN
China
Prior art keywords
energy consumption
vehicle
driving style
driving
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010075168.4A
Other languages
English (en)
Other versions
CN111452619B (zh
Inventor
邹渊
张兆龙
张旭东
王涵
孙逢春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202010075168.4A priority Critical patent/CN111452619B/zh
Publication of CN111452619A publication Critical patent/CN111452619A/zh
Application granted granted Critical
Publication of CN111452619B publication Critical patent/CN111452619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了电动车辆在线能耗预测方法及系统,预测方法包括:载入车型信息,获取该车型平均百公里能耗P0,能耗为标准驾驶风格、标准路况、非高温或低温天气下的能耗;计算能耗修正系数ke:获取当前行驶路段的行驶过的预设数量的同车型车辆的驾驶信息,根据行驶至目的地后记录的个人驾驶风格、拥堵程度、天气进行分类,对每类中的实际耗能取平均值,进而换算出该路段的平均百公里能耗,与标准百公里能耗P0之比值即为不同风格、拥堵程度、天气下的ke;计算本车辆当前百公里能耗P和续驶里程E,并在每个执行周期实时更新,其中,P=keP0,E=100Q·C/P,其中Q为当前电池电量百分比,C为本车电池总能量。由此,不仅考虑传统算法中的车型,增加了对驾驶行为的考虑,能耗预测更准确。

Description

电动车辆在线能耗预测方法及系统
技术领域
本发明涉及电动车辆技术领域,尤其是涉及一种电动车辆在线能耗预测方法及系统。
背景技术
电动车辆能耗预测系统对交通出行有重大意义:个人层面,准确的能耗预测系统可以使出行者更加“安心”,不必担心续航里程预测有误而引起的诸多麻烦;车企层面,有助于企业研究、统计某种特定车型的能耗,并在下一代产品中做出优化或改进;社会层面,辅佐政府部门进行充电站部署;国家层面,解除人们的“里程焦虑”,鼓励电动车辆购买,推动经济发展。
当前,电动车辆能耗预测机制仅考虑行驶工况及历史行程,不考虑驾驶员的驾驶行为,且很多产品会标明其续航里程结果来自于“内部测试”,会对其实际能耗(续航)情况使消费者产生误解。实际上,驾驶风格(如激进型、标准型、平稳型等)会对能耗有一定影响。急加速等大电流放电过程会影响电池使用时间。
本发明提出一种考虑驾驶风格的电动车辆整车在线能耗预测模型,即在考虑可能影响驾驶风格的诸多因素(天气、路况等)的情况下,驾驶员使用特定车型行驶特定路径时,对模型得出的驾驶风格及所预测的(百公里)能耗进行不断修正。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种电动车辆在线能耗预测方法及系统。
根据本发明实施例的电动车辆在线能耗预测方法,包括:
载入车型信息,获取该车型平均百公里能耗P0,该能耗为标准驾驶风格、标准路况、非高温或低温天气下的能耗;
计算能耗修正系数ke:获取当前行驶路段的行驶过的预设数量的同车型车辆的驾驶信息,根据行驶至目的地后记录的个人驾驶风格、拥堵程度、天气进行分类,对每类中的实际耗能取平均值,进而换算出该路段的平均百公里能耗,与标准百公里能耗P0之比值即为不同风格、拥堵程度、天气下的ke
计算本车辆的当前百公里能耗P和续驶里程E,并在每个执行周期实时更新,其中,P=keP0,E=100Q·C/P,其中Q为当前电池电量百分比,C为本车电池总能量,P为当前百公里能耗。
在一些实施例中,驾驶风格类型包括以下四种:新手型、平稳型、标准型、激进型,驾驶风格类型的判断方法包括:
比较平均最大加速度,若当前的平均最大加速度大于同路段旁车的平均最大加速度值超过25%则为激进型,若当前的平均最大加速度小于同路段旁车的平均最大加速度值超过25%则为新手型;
若当前的平均最大加速度与同路段旁车的平均最大加速度值相差不超过25%,则比较当前的平均速度与同路段旁车的平均速度,若当前的平均速度小于同路段旁车的平均速度,则为平稳型,反之,为标准型风格。
在一些实施例中,对驾驶风格按以下方法动态更新:首先以一个执行周期为单位,获取旁车或同路段邻近车辆的平均速度、本车辆平均最大加速度,分别以V、A表示;获取本车辆当前平均速度、本车辆平均最大加速度,分别以v、a表示;对比A和a、V和v,得出当前驾驶风格类型以及当前驾驶风格类型对应的参考值Dn0
根据当前驾驶风格类型以及A、a、V、v计算当前驾驶风格的修正项R,当前驾驶风格的数值Dn,计算当前驾驶风格的数值Dn=Dn0+R;
对当前驾驶风格值Dn与上次驾驶风格Dn-1加权获得此时驾驶风格Dn+1=k1Dn+k2Dn-1,其中k1、k2为权系数。
在一些实施例中,驾驶风格对应的修正项R以及参考值参见如下表格:
Figure BDA0002378309580000021
在一些实施例中,若计算中出现Dn小于等于0或Dn大于等于1,分别将当前驾驶风格Dn重置为0与1,当行程结束时,分别取k1=0.2,k2=0.8,代入Dn+1=k1Dn+k2Dh,得到最后一次所得驾驶风格数值,即此次行程结束后的Dh,在下次行程时作为历史驾驶风格值使用:
Figure BDA0002378309580000031
在一些实施例中,记录每次行驶前以及行驶后的电池电量,计算两者的差值ΔQ,结合本车辆的电池容量C,进而得出本车辆的总耗能信息E=CΔQ,将总耗能信息与此次行车结束时的驾驶风格,通过网联系统传输给云端进行数据扩充。
在一些实施例中,对于拥堵程度,由第三方地图软件及全部在此路段的网联车辆数据,获取该路段平均速度数据,并获取该路段限速,其中拥堵程度被分类为:畅通、行驶缓慢、拥堵。
在一些实施例中,记平均车速为V,该路段限速为v0,若该路段的平均车速大于75%限速,即V>0.75v0,则为畅通;若该路段平均车速介于45%限速与75%限速之间,即0.45v0<V<0.75v0,则为行驶缓慢;若该路段平均车速小于50%限速,即V<0.45v0,则为拥堵。
在一些实施例中,对于天气,使用第三方数据载入天气状况信息,天气分类包括:晴朗、雨雪天气、4级以上大风、大风与雨雪交加、零度以下的低温。
根据本发明第二方面实施例的电动车辆在线能耗预测系统,包括:
车速监测模块,所述车速监控模块用于获取本车辆的平均车速以及平均最大加速度;
网联数据模块,所述网联数据模块用于获取同车型车辆的平均速度和平均最大加速度、拥堵情况、天气;
驾驶风格分析模块,所述驾驶风格分析模块与所述车速检测模块和所述网联数据模块通信连接,所述驾驶风格分析模块用于根据所述车速监测模块和所述网联数据模块的数据计算驾驶风格,并对驾驶风格实时更新;
车辆信息模块,所述车辆信息模块用于存储行驶前后的电池电量、驾驶风格、百公里能耗;
能耗计算模块,所述能耗计算模块与所述网联数据模块、所述驾驶风格分析模块、所述车辆信息模块通信连接,以计算百公里能耗以及续驶里程。
根据本发明实施例的电动车辆在线的能耗预测方法及系统具有如下优点:
1)能耗计算系统由车速监测模块、网联数据模块、驾驶行为分析模块和能耗计算模块组成,能够综合考虑驾驶员在行车过程中的行车情况,计算、更新得到驾驶行为信息,对能耗计算起重要作用。
2)计算得到驾驶行为的流程中,本发明比较了当前路段其他车辆的行驶情况(平均车速、加速度等),通过对比较结果、历史驾驶行为、先前运行结果的加权,在线更新优化运算结果,以得出更准确的能耗数值。
3)在能耗模型的计算中,不仅考虑传统算法中的车型(不同车型的能耗具有较大差异),增加了对驾驶行为的考虑,以上二者为输入,并考虑拥堵程度、天气对能耗的影响,得到该车的(百公里)能耗预测值与续驶里程,并在每个执行周期后不断修正。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的电动车辆在线能耗预测方法的示意图。
图2是根据本发明实施例的电动车辆在线能耗预测方法的能耗模型的示意图。
图3是根据本发明实施例的电动车辆在线能耗预测方法的驾驶风格的示意图。
图4是根据本发明实施例的电动车辆在线能耗预测系统的示意图。
具体实施方式
下面详细描述本发明的实施例,参考附图描述的实施例是示例性的,下面详细描述本发明的实施例。
下面参考图1-图4描述根据本发明实施例的电动车辆在线能耗预测方法及系统。
如图1所示,根据本发明第一方面实施例的电动车辆在线能耗预测方法,包括:
S1:载入车型信息,获取该车型平均百公里能耗P0,该能耗为标准驾驶风格、标准路况、非高温或低温天气下的能耗。
S2:计算能耗修正系数ke:获取当前行驶路段的行驶过的预设数量的同车型车辆的驾驶信息,根据行驶至目的地后记录的个人驾驶风格、拥堵程度、天气进行分类,对每类中的实际耗能取平均值,进而换算出该路段的平均百公里能耗,与标准百公里能耗P0之比值即为不同风格、拥堵程度、天气下的ke。参见表1,根据驾驶风格、拥堵程度、天气可以被划分为60小类,分别对应60个ke,实时更新驾驶风格、拥堵程度以及天气状况,进而使当前行驶过程中的ke实时更新。
表1能耗计算大数据分类(三大类,60小类)
Figure BDA0002378309580000051
S3:计算本车辆的当前百公里能耗P和续驶里程E,并在每个执行周期实时更新,其中,P=keP0,E=100Q·C/P,其中Q为当前电池电量百分比,C为本车电池总能量,P为当前百公里能耗。
当启动后数分钟后行驶较稳定、采集部分速度信息后,开始对行程能耗进行计算。对最终建立能耗模型,以驾驶行为、车型信息、拥堵程度、天气状况为输入,在计算模型中求解得到百公里能耗与续驶里程。
不同于传统技术,本发明实施例的预测方法,其一是对驾驶风格的分类存在差异;其二是即加载了车型信息,主要考虑到不同车型的车况不同(如空气阻力等),且车型之间存在较大区别(电机、功耗、负载等),不使用测功机等测试结果;其三是本发明结合网联数据,获取其他车辆行驶信息(前文中所提到的速度、加速度的邻近车辆信息)及本车的标准情况、不同情况下的能耗信息。
在一些实施例中,驾驶风格类型包括以下四种:新手型、平稳型、标准型、激进型,驾驶风格类型的判断方法包括:
1)比较平均最大加速度,若当前的平均最大加速度大于同路段旁车的平均最大加速度值超过25%则为激进型,若当前的平均最大加速度小于同路段旁车的平均最大加速度值超过25%则为新手型;
2)若当前的平均最大加速度与同路段旁车的平均最大加速度值相差不超过25%,则比较当前的平均速度与同路段旁车的平均速度,若当前的平均速度小于同路段旁车的平均速度,则为平稳型,反之,为标准型风格。
换言之,本发明实施例的能耗计算方法中,将驾驶风格进行量化,即定义驾驶风格D,其值范围为(0,1)。本发明将驾驶风格分为4种:新手型、平稳型、标准型、激进型。不同驾驶风格与对应数值范围如表2所示(参考值)。参见表3为一个具体实施例的驾驶风格特征。
表2驾驶风格与数值对应表(参考值)
Figure BDA0002378309580000061
表3一个实施例的驾驶风格的特征
Figure BDA0002378309580000062
在另一些实施例中,对驾驶风格按以下方法动态更新:首先以一个执行周期为单位,获取旁车或同路段邻近车辆的平均速度、本车辆平均最大加速度,分别以V、A表示;获取本车辆当前平均速度、本车辆平均最大加速度,分别以v、a表示;对比A和a、V和v,得出当前驾驶风格类型以及当前驾驶风格类型对应的参考值Dn0
根据当前驾驶风格类型以及A、a、V、v计算当前驾驶风格的修正项R,当前驾驶风格的数值Dn,计算当前驾驶风格的数值Dn=Dn0+R;
对当前驾驶风格值Dn与上次驾驶风格Dn-1加权获得此时驾驶风格Dn+1=k1Dn+k2Dn-1,其中k1,2为权系数。
具体而言,①(启动后)分析本驾驶员历史行程记录,获取其历史驾驶风格,即前一次行程结束时的驾驶风格,记为Dh,并基于此对此次途中驾驶风格进行预判(即参与后续计算);②(每个执行周期,如:数分钟内,)使用毫米波雷达及网联信息获取旁车或同时间同路段其他车辆的速度信息,通过求导获得其加速度。通过对实时采集数据的处理,处理方法见下段,获得:1)旁车(毫米波雷达获得)或同路段邻近车辆(网联信息获得)平均速度,平均最大加速度(减速度取其绝对值,并与加速度取最大值),分别以V,A表示;2)对于当前驾驶员,通过对本车车速表的监测,取得对应速度、加速度(求导获得,对减速度取绝对值后,比较取最大值,记录)数值,分别以v,a表示。
对于所获得的行车数据,取前n个执行周期的平均值并记录,如:取执行周期为3分钟。第1个执行周期取从开始行程到第3分钟结束的数据,计算其平均值并记录;第2个执行周期取从开始行程至第6分钟结束的数据并对其平均值进行记录。
与现有的车载能耗预测机制不同,本发明实施例的能耗预测方法考虑到驾驶员的驾驶行为对能耗的影响;对驾驶行为历史结果进行加权处理,以保证运算的精准性。
在一些实施例中,驾驶风格对应的修正项R以及参考值参见如下表4:
表4驾驶风格计算表
Figure BDA0002378309580000071
在一些实施例中,若计算中出现Dn小于等于0或Dn大于等于1,分别将当前驾驶风格Dn重置为0与1,当行程结束时,分别取k1=0.2,k2=0.8,代入Dn+1=k1Dn+k2Dn-1,得到最后一次所得驾驶风格数值,即此次行程结束后的Dh,在下次行程时作为历史驾驶风格值使用:
表5
Figure BDA0002378309580000072
Figure BDA0002378309580000081
在一些实施例中,记录每次行驶前以及行驶后的电池电量,计算两者的差值ΔQ,结合本车辆的电池容量C,进而得出本车辆的总耗能信息E=CΔQ,将总耗能信息与此次行车结束时的驾驶风格,通过网联系统传输给云端进行数据扩充。由此,通过不断扩充迭代信息,使最终网联数据更丰富,进而使最终的预测结果更精确。
在一些实施例中,对于拥堵程度,由第三方地图软件及全部在此路段的网联车辆数据,获取该路段平均速度数据,并获取该路段限速,其中拥堵程度被分类为:畅通、行驶缓慢、拥堵。由此,借助网联数据将路况情况考虑在内计算能耗,使计算结果更精准。
在一些实施例中,记平均车速为V,该路段限速为v0,若该路段的平均车速大于75%限速,即V>0.75v0,则为畅通;若该路段平均车速介于45%限速与75%限速之间,即0.45v0<V<0.75v0,则为行驶缓慢;若该路段平均车速小于50%限速,即V<0.45v0,则为拥堵。
在一些实施例中,对于天气,使用第三方数据载入天气状况信息,天气分类包括:晴朗、雨雪天气、4级以上大风、大风与雨雪交加、零度以下的低温。由此,主要考虑对能耗影响较大的天气状况,来对天气激进型分类,最终对能耗的计算更准确。
根据本发明第二方面实施例的电动车辆在线能耗预测系统,包括:车速监测模块、网联数据模块、驾驶风格分析模块、车辆信息模块、能耗计算模块。
如图4所示,车速监控模块用于获取本车辆的平均车速以及平均最大加速度;网联数据模块用于获取同车型车辆的平均速度和平均最大加速度、拥堵情况、天气;驾驶风格分析模块与车速检测模块和网联数据模块通信连接,驾驶风格分析模块用于根据车速监测模块和网联数据模块的数据计算驾驶风格,并对驾驶风格实时更新;车辆信息模块用于存储行驶前后的电池电量、驾驶风格、百公里能耗;能耗计算模块与网联数据模块、驾驶风格分析模块、车辆信息模块通信连接,以计算百公里能耗以及续驶里程。
本发明提出一种考虑驾驶风格的在线整车能耗预测系统,能够在考虑驾驶员行车习惯及行为的情况下计算特定行程的能耗:
能耗计算系统由车速监测模块、网联数据模块、驾驶行为分析模块和能耗计算模块组成,能够综合考虑驾驶员在行车过程中的行车情况,计算、更新得到驾驶行为信息,对能耗计算起重要作用。
计算得到驾驶行为的流程中,本发明比较了当前路段其他车辆的行驶情况(平均车速、加速度等),通过对比较结果、历史驾驶行为、先前运行结果的加权,在线更新优化运算结果,以得出更准确的能耗数值。
在能耗模型的计算中,不仅考虑传统算法中的车型(不同车型的能耗具有较大差异),增加了对驾驶行为的考虑,以上二者为输入,并考虑拥堵程度、天气对能耗的影响,得到该车的(百公里)能耗预测值与续驶里程,并在每个执行周期后不断修正。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上。在本发明的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。在本发明的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

1.一种电动车辆在线能耗预测方法,其特征在于,包括:
载入车型信息,获取该车型平均百公里能耗P0,该能耗为标准驾驶风格、标准路况、非高温或低温天气下的能耗;
计算能耗修正系数ke:获取当前行驶路段的行驶过的预设数量的同车型车辆的驾驶信息,根据行驶至目的地后记录的个人驾驶风格、拥堵程度、天气进行分类,对每类中的实际耗能取平均值,进而换算出该路段的平均百公里能耗,与标准百公里能耗P0之比值即为不同风格、拥堵程度、天气下的ke
计算本车辆的当前百公里能耗P和续驶里程E,并在每个执行周期实时更新,其中,P=keP0,E=100Q·C/P,其中Q为当前电池电量百分比,C为本车电池总能量,P为当前百公里能耗。
2.根据权利要求1所述的电动车辆在线能耗预测方法,其特征在于,驾驶风格类型包括以下四种:新手型、平稳型、标准型、激进型,驾驶风格类型的判断方法包括:
比较平均最大加速度,若当前的平均最大加速度大于同路段旁车的平均最大加速度值超过25%则为激进型,若当前的平均最大加速度小于同路段旁车的平均最大加速度值超过25%则为新手型;
若当前的平均最大加速度与同路段旁车的平均最大加速度值相差不超过25%,则比较当前的平均速度与同路段旁车的平均速度,若当前的平均速度小于同路段旁车的平均速度,则为平稳型,反之,为标准型风格。
3.根据权利要求2所述的电动车辆在线能耗预测方法,其特征在于,对驾驶风格按以下方法动态更新:首先以一个执行周期为单位,获取旁车或同路段邻近车辆的平均速度、本车辆平均最大加速度,分别以V、A表示;获取本车辆当前平均速度、本车辆平均最大加速度,分别以v、a表示;对比A和α、V和v,得出当前驾驶风格类型以及当前驾驶风格类型对应的参考值Dn0
根据当前驾驶风格类型以及A、a、V、v计算当前驾驶风格的修正项R,当前驾驶风格的数值Dn,计算当前驾驶风格的数值Dn=Dn0+R;
对当前驾驶风格值Dn与上次驾驶风格Dn-1加权获得此时驾驶风格Dn+1=k1Dn+k2Dn-1,其中k1、k2为权系数。
4.根据权利要求3所述的电动车辆在线能耗预测方法,其特征在于,驾驶风格对应的修正项R以及参考值参见如下表格:
Figure FDA0002378309570000021
5.根据权利要求4所述的电动车辆在线能耗预测方法,其特征在于,
若计算中出现Dn小于等于0或Dn大于等于1,分别将当前驾驶风格Dn重置为0与1,当行程结束时,分别取k1=0.2,k2=0.8,代入Dn+1=k1Dn+k2Dn-1,得到最后一次所得驾驶风格数值,即此次行程结束后的Dh,在下次行程时作为历史驾驶风格值使用:
Figure FDA0002378309570000022
6.根据权利要求1所述的电动车辆在线能耗预测方法,其特征在于,记录每次行驶前以及行驶后的电池电量,计算两者的差值ΔQ,结合本车辆的电池容量C,进而得出本车辆的总耗能信息E=CΔQ,将总耗能信息与此次行车结束时的驾驶风格,通过网联系统传输给云端进行数据扩充。
7.根据权利要求1所述的电动车辆在线能耗预测方法,其特征在于,
对于拥堵程度,由第三方地图软件及全部在此路段的网联车辆数据,获取该路段平均速度数据,并获取该路段限速,其中拥堵程度被分类为:畅通、行驶缓慢、拥堵。
8.根据权利要求7所述的电动车辆在线能耗预测方法,其特征在于,记平均车速为V,该路段限速为v0
若该路段的平均车速大于75%限速,即V>0.75v0,则为畅通;
若该路段平均车速介于45%限速与75%限速之间,即0.45v0<V<0.75v0,则为行驶缓慢;
若该路段平均车速小于50%限速,即V<0.45v0,则为拥堵。
9.根据权利要求5所述的电动车辆在线能耗预测方法,其特征在于,对于天气,使用第三方数据载入天气状况信息,天气分类包括:晴朗、雨雪天气、4级以上大风、大风与雨雪交加、零度以下的低温。
10.一种电动车辆在线能耗预测系统,其特征在于,包括:
车速监测模块,所述车速监控模块用于获取本车辆的平均车速以及平均最大加速度;
网联数据模块,所述网联数据模块用于获取同车型车辆的平均速度和平均最大加速度、拥堵情况、天气;
驾驶风格分析模块,所述驾驶风格分析模块与所述车速检测模块和所述网联数据模块通信连接,所述驾驶风格分析模块用于根据所述车速监测模块和所述网联数据模块的数据计算驾驶风格,并对驾驶风格实时更新;
车辆信息模块,所述车辆信息模块用于存储行驶前后的电池电量、驾驶风格、百公里能耗;
能耗计算模块,所述能耗计算模块与所述网联数据模块、所述驾驶风格分析模块、所述车辆信息模块通信连接,以计算百公里能耗以及续驶里程。
CN202010075168.4A 2020-01-22 2020-01-22 电动车辆在线能耗预测方法及系统 Active CN111452619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010075168.4A CN111452619B (zh) 2020-01-22 2020-01-22 电动车辆在线能耗预测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010075168.4A CN111452619B (zh) 2020-01-22 2020-01-22 电动车辆在线能耗预测方法及系统

Publications (2)

Publication Number Publication Date
CN111452619A true CN111452619A (zh) 2020-07-28
CN111452619B CN111452619B (zh) 2021-09-14

Family

ID=71675750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010075168.4A Active CN111452619B (zh) 2020-01-22 2020-01-22 电动车辆在线能耗预测方法及系统

Country Status (1)

Country Link
CN (1) CN111452619B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112208338A (zh) * 2020-09-29 2021-01-12 广州小鹏自动驾驶科技有限公司 一种目的地剩余续航里程计算方法和装置
CN112304328A (zh) * 2020-10-09 2021-02-02 恒大新能源汽车投资控股集团有限公司 电动汽车续航里程预测方法及装置、计算机可读存储介质
CN112612286A (zh) * 2020-12-25 2021-04-06 绍兴市上虞区武汉理工大学高等研究院 一种基于大数据的新能源汽车电驱控制方法及装置
CN112721661A (zh) * 2021-01-29 2021-04-30 重庆长安新能源汽车科技有限公司 一种燃料电池电动汽车可续航里程的估算方法、装置及存储介质
CN113096405A (zh) * 2021-06-10 2021-07-09 天津所托瑞安汽车科技有限公司 预测模型的构建方法、车辆事故预测方法及装置
CN113534214A (zh) * 2021-09-09 2021-10-22 北斗天下卫星导航有限公司 一种车辆定位方法及装置
CN113741512A (zh) * 2021-08-03 2021-12-03 扬州郁金光子技术有限公司 无人机激光导航系统与方法
CN114013284A (zh) * 2021-11-02 2022-02-08 上汽大众汽车有限公司 一种车辆续航里程的计算方法和系统
WO2022062943A1 (zh) * 2020-09-23 2022-03-31 广州小鹏汽车科技有限公司 一种车辆的能耗分析方法、装置和车辆
CN114987287A (zh) * 2022-07-05 2022-09-02 阿维塔科技(重庆)有限公司 剩余续驶里程预测方法、装置、车辆及计算机存储介质
CN115503489A (zh) * 2022-09-30 2022-12-23 成都赛力斯科技有限公司 新能源车续驶里程计算方法、装置、计算机设备和介质
CN116340767A (zh) * 2023-02-27 2023-06-27 吉林大学 一种电动汽车行程能耗概率分布预测方法、系统及产品
CN116572799A (zh) * 2023-07-13 2023-08-11 四川轻化工大学 基于深度学习的动力电池荷电续航预测方法、系统及终端
CN116973784A (zh) * 2023-09-25 2023-10-31 中汽研汽车检验中心(天津)有限公司 纯电动车低温续驶里程快速测试方法、电子设备及介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200108A1 (de) * 2011-01-06 2012-07-12 Ford Global Technologies, Llc Informationsanzeigesystem und -verfahren
CN104442825A (zh) * 2014-11-28 2015-03-25 上海交通大学 一种电动汽车剩余行驶里程的预测方法和系统
CN104986043A (zh) * 2015-07-30 2015-10-21 深圳东风汽车有限公司 一种电动汽车续航里程预测方法
CN105459842A (zh) * 2015-11-19 2016-04-06 安徽师范大学 电动汽车续航里程的估算方法
EP3104122A1 (en) * 2015-06-12 2016-12-14 Ecole Nationale de l'Aviation Civile Energy management system for vehicles
CN106394278A (zh) * 2016-08-26 2017-02-15 北京长城华冠汽车科技股份有限公司 基于模糊控制的汽车续航里程计算方法
CN107264326A (zh) * 2017-07-04 2017-10-20 重庆长安汽车股份有限公司 一种对纯电动汽车的续驶里程进行预估的方法
CN108806021A (zh) * 2018-06-12 2018-11-13 重庆大学 基于物理模型和道路特征参数的电动汽车目标路段能耗预测方法
CN109532555A (zh) * 2018-10-19 2019-03-29 北京经纬恒润科技有限公司 一种续航里程的计算方法及装置
WO2019085719A1 (zh) * 2017-10-30 2019-05-09 威马智慧出行科技(上海)有限公司 一种电池管理方法、装置、及计算机程序
CN110549904A (zh) * 2018-03-30 2019-12-10 比亚迪股份有限公司 电动汽车及电动汽车的续驶里程计算方法、装置
CN110660214A (zh) * 2018-06-29 2020-01-07 比亚迪股份有限公司 车辆及其能耗数据的获取方法、装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200108A1 (de) * 2011-01-06 2012-07-12 Ford Global Technologies, Llc Informationsanzeigesystem und -verfahren
CN104442825A (zh) * 2014-11-28 2015-03-25 上海交通大学 一种电动汽车剩余行驶里程的预测方法和系统
EP3104122A1 (en) * 2015-06-12 2016-12-14 Ecole Nationale de l'Aviation Civile Energy management system for vehicles
CN104986043A (zh) * 2015-07-30 2015-10-21 深圳东风汽车有限公司 一种电动汽车续航里程预测方法
CN105459842A (zh) * 2015-11-19 2016-04-06 安徽师范大学 电动汽车续航里程的估算方法
CN106394278A (zh) * 2016-08-26 2017-02-15 北京长城华冠汽车科技股份有限公司 基于模糊控制的汽车续航里程计算方法
CN107264326A (zh) * 2017-07-04 2017-10-20 重庆长安汽车股份有限公司 一种对纯电动汽车的续驶里程进行预估的方法
WO2019085719A1 (zh) * 2017-10-30 2019-05-09 威马智慧出行科技(上海)有限公司 一种电池管理方法、装置、及计算机程序
CN110549904A (zh) * 2018-03-30 2019-12-10 比亚迪股份有限公司 电动汽车及电动汽车的续驶里程计算方法、装置
CN108806021A (zh) * 2018-06-12 2018-11-13 重庆大学 基于物理模型和道路特征参数的电动汽车目标路段能耗预测方法
CN110660214A (zh) * 2018-06-29 2020-01-07 比亚迪股份有限公司 车辆及其能耗数据的获取方法、装置
CN109532555A (zh) * 2018-10-19 2019-03-29 北京经纬恒润科技有限公司 一种续航里程的计算方法及装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022062943A1 (zh) * 2020-09-23 2022-03-31 广州小鹏汽车科技有限公司 一种车辆的能耗分析方法、装置和车辆
CN112208338A (zh) * 2020-09-29 2021-01-12 广州小鹏自动驾驶科技有限公司 一种目的地剩余续航里程计算方法和装置
CN112304328A (zh) * 2020-10-09 2021-02-02 恒大新能源汽车投资控股集团有限公司 电动汽车续航里程预测方法及装置、计算机可读存储介质
CN112612286A (zh) * 2020-12-25 2021-04-06 绍兴市上虞区武汉理工大学高等研究院 一种基于大数据的新能源汽车电驱控制方法及装置
CN112721661A (zh) * 2021-01-29 2021-04-30 重庆长安新能源汽车科技有限公司 一种燃料电池电动汽车可续航里程的估算方法、装置及存储介质
CN113096405A (zh) * 2021-06-10 2021-07-09 天津所托瑞安汽车科技有限公司 预测模型的构建方法、车辆事故预测方法及装置
CN113741512A (zh) * 2021-08-03 2021-12-03 扬州郁金光子技术有限公司 无人机激光导航系统与方法
CN113534214A (zh) * 2021-09-09 2021-10-22 北斗天下卫星导航有限公司 一种车辆定位方法及装置
CN114013284B (zh) * 2021-11-02 2023-09-22 上汽大众汽车有限公司 一种车辆续航里程的计算方法和系统
CN114013284A (zh) * 2021-11-02 2022-02-08 上汽大众汽车有限公司 一种车辆续航里程的计算方法和系统
CN114987287A (zh) * 2022-07-05 2022-09-02 阿维塔科技(重庆)有限公司 剩余续驶里程预测方法、装置、车辆及计算机存储介质
CN114987287B (zh) * 2022-07-05 2023-06-27 阿维塔科技(重庆)有限公司 剩余续驶里程预测方法、装置、车辆及计算机存储介质
CN115503489A (zh) * 2022-09-30 2022-12-23 成都赛力斯科技有限公司 新能源车续驶里程计算方法、装置、计算机设备和介质
CN115503489B (zh) * 2022-09-30 2024-04-19 成都赛力斯科技有限公司 新能源车续驶里程计算方法、装置、计算机设备和介质
CN116340767A (zh) * 2023-02-27 2023-06-27 吉林大学 一种电动汽车行程能耗概率分布预测方法、系统及产品
CN116340767B (zh) * 2023-02-27 2023-12-01 吉林大学 一种电动汽车行程能耗概率分布预测方法、系统及产品
CN116572799A (zh) * 2023-07-13 2023-08-11 四川轻化工大学 基于深度学习的动力电池荷电续航预测方法、系统及终端
CN116572799B (zh) * 2023-07-13 2023-09-05 四川轻化工大学 基于深度学习的动力电池荷电续航预测方法、系统及终端
CN116973784A (zh) * 2023-09-25 2023-10-31 中汽研汽车检验中心(天津)有限公司 纯电动车低温续驶里程快速测试方法、电子设备及介质
CN116973784B (zh) * 2023-09-25 2024-01-02 中汽研汽车检验中心(天津)有限公司 纯电动车低温续驶里程快速测试方法、电子设备及介质

Also Published As

Publication number Publication date
CN111452619B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN111452619B (zh) 电动车辆在线能耗预测方法及系统
CN110126841B (zh) 基于道路信息和驾驶风格的纯电动汽车能耗模型预测方法
EP3391303B1 (en) Method and system for assessing the trip performance of a driver
US10611380B2 (en) Method and system for assessing the trip performance of a driver
US10388083B2 (en) Method and system for assessing the trip performance of a driver
EP3391304B1 (en) Method and system for assessing the trip performance of a driver
CN114001989B (zh) 一种基于工况识别的单车空调能耗预测方法及预测装置
US10384688B2 (en) Method and system for assessing the trip performance of a driver
CN113159435B (zh) 一种新能源车辆剩余驾驶里程预测方法及系统
CN112860782A (zh) 一种基于大数据分析的纯电动车续驶里程估计方法
CN113222385A (zh) 一种电动汽车行驶工况构建与评价方法
EP3391302B1 (en) Method and system for assessing the trip performance of a driver
US10501089B2 (en) Method and system for assessing the trip performance of a driver
CN109668571B (zh) 基于电量预测和智能能量管理的纯电动垃圾车路径规划方法
dos-Reis et al. Using Electric Vehicle Driver’s Driving Mode for Trip Planning and Routing
CN117549750A (zh) 一种新能源车的里程预测方法及装置
Konstantinou et al. Effects of Driving Behavior on Fuel Consumption with Explainable Gradient Boosting Decision Trees
CN117034558A (zh) 一种基于历史气候数据的用户油耗评估方法及装置
CN117743802A (zh) 基于车云协同的全天候、多地区动力电池组soh预测方法及系统
CN116681213A (zh) 推荐充电站的方法及车辆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant