CN109668571B - 基于电量预测和智能能量管理的纯电动垃圾车路径规划方法 - Google Patents

基于电量预测和智能能量管理的纯电动垃圾车路径规划方法 Download PDF

Info

Publication number
CN109668571B
CN109668571B CN201811622806.9A CN201811622806A CN109668571B CN 109668571 B CN109668571 B CN 109668571B CN 201811622806 A CN201811622806 A CN 201811622806A CN 109668571 B CN109668571 B CN 109668571B
Authority
CN
China
Prior art keywords
garbage
vehicle
battery
scheme
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811622806.9A
Other languages
English (en)
Other versions
CN109668571A (zh
Inventor
杜常清
黄志波
武冬梅
颜伏伍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201811622806.9A priority Critical patent/CN109668571B/zh
Publication of CN109668571A publication Critical patent/CN109668571A/zh
Application granted granted Critical
Publication of CN109668571B publication Critical patent/CN109668571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3476Special cost functions, i.e. other than distance or default speed limit of road segments using point of interest [POI] information, e.g. a route passing visible POIs

Abstract

本发明公开了一种基于电量预测和智能能量管理的纯电动垃圾车路径规划方法,包括如下步骤:通过纯电动垃圾车上的称重传感器获取每次收集垃圾时每个垃圾收集站点的垃圾质量,基于大数据统计和车辆的自学习预测未来每个站点的垃圾量;根据车辆需要收集的站点,罗列出每种车辆行驶方案,针对每种方案分别计算相邻两个站点车辆能耗和车辆的剩余电量;根据每种方案计算对应行驶路线车辆最终剩余电池能量,对比每种方案最终剩余电池电量,取剩余电池电量最大方案路线作为车辆最优行驶路线。本发明考虑了垃圾车装载质量对能耗的影响,提高纯电动垃圾车电量预测精度,降低垃圾车能量消耗并增加垃圾运送量。

Description

基于电量预测和智能能量管理的纯电动垃圾车路径规划方法
技术领域
本发明涉及车辆智能控制技术,尤其涉及一种基于电量预测和智能能量管理的纯电动垃圾车路径规划方法。
背景技术
在节能减排需求和政府补贴、限行限购、双积分等政策的联合推动下,当前中国环卫专用车市场正迎来新能源汽车发展的“黄金时代”。相比于传统燃油垃圾车,电动垃圾车续驶里程由于受到车载电池能量密度和制造成本等条件的限制,而且充电站或充电植等基础设施还很不完善,如何对电动垃圾车电量进行预测和智能能量管理就变得尤为重要。
企业对电动汽车电量预测和智能管理问题的关注重点主要在车辆历史平均能量消耗的估计上,根据车辆前一段时间的行驶记录计算历史平均能耗,当作车辆未来的能耗,进行车辆路径规划。然而,对于纯电动垃圾车而言,在进行装载作业后,汽车质量将显著增加,依据前一段时间的行驶记录来估算车辆的电量情况将会产生较大估算误差。
发明内容
本发明要解决的技术问题在于针对现有技术中的缺陷,提供一种基于电量预测和智能能量管理的纯电动垃圾车路径规划方法。
本发明解决其技术问题所采用的技术方案是:一种基于电量预测和智能能量管理的纯电动垃圾车路径规划方法,包括以下步骤:
1)通过纯电动垃圾车上的称重传感器获取每次收集垃圾时每个垃圾收集站点的垃圾质量,基于大数据统计和车辆的自学习预测未来每个站点的垃圾量;
2)根据预先设定需要进行垃圾收集的站点数,遍历所有车辆行驶方案,针对每种方案分别计算相邻两个站点车辆能耗和车辆的剩余电量;具体如下:
2.1)根据当前车辆荷电状态SOC确定当前电池的电量;
其中,所述荷电状态SOC可以通过显示仪表进行读取,BMS(电池管理系统)通过当前电池端电压U、电流I和温度T计算出当前电池的SOC。当前电池的电量Ecur可以通过下式计算得到:
Ebatt=QU*(SOC-SOClow)
式中Q为电池的额定容量;U为电池的端电压;SOClow为电池放电截至荷电状态;
2.2)确定可能的路径规划方案:
其中,所述车辆行驶方案的制定依据GPS地图获取垃圾车附近垃圾站点、倾倒点和充电站点位置,在起点位置已知,以先经过n个垃圾站点再到p圾倾倒点中的一个进行垃圾倾倒,最后回到q个充电站点的其中一个进行充电,将经过的站点顺序随机进行排列组合,总共组合方案为p*q*n!种。对于每一种行驶方案,两站点之间的能耗计算包括如下步骤:
轮胎牵引力Fwhl计算公式如下:
Figure BDA0001927284840000031
式中,m为垃圾车空车质量;mi为第i垃圾站点到下一站点这个过程垃圾质量;g为重力加速度;α为水平方向与汽车行驶方向夹角;逆时针为正,表示加速状态;f为滚动阻力系数;CD为迎风阻力系数;A为迎风面积;ρ为空气密度;δ为汽车旋转质量换算系数;
电动垃圾车从第i个站点到下一站的能量消耗Eec,i计算如下:
Figure BDA0001927284840000032
式中,Ts为车辆静止状态下进行垃圾装载时间;
Figure BDA0001927284840000033
为车辆静止状态下上装附件功率;Fwhl为轮胎牵引力;Si为从第i个站点到下一站的里程数;
电动垃圾车从第i个站点到下一站点剩余电池能量Ere,i计算如下:
Figure BDA0001927284840000034
根据剩余电池能量Ere,i计算得到对应的预测电池荷电状态SOCi,荷电状态满足:
SOCi=Ere,i/(QU)+SOClow
3)根据每种方案计算对应行驶路线车辆最终剩余电池能量,对比每种方案最终剩余电池电量,取剩余电池电量最大的3种方案路线作为车辆最优行驶路线备选。
按上述方案,所述称重传感器安装在垃圾车前后轴位置。
本发明产生的有益效果是:充分考虑了垃圾车装载质量对能耗的影响,基于大数据统计和车辆的自学习功能预测纯电动垃圾车能量消耗,以最大剩余电池能量作为纯电动垃圾车路径规划的评判标准,为驾驶员优化行驶路线方案提供依据。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的方法流程图;
图2是本发明实施例纯电动垃圾车的结构示意图;
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1至2所示,一种纯电动垃圾车电量预测和智能能量管理方法,
所述纯电动垃圾车包括:GPS、BMS和称重传感器;其中,GPS用于垃圾车附近垃圾站点、倾倒点和充电站点位置的地图导航;
BMS(电池管理系统)通过当前电池端电压U、电流I和温度T计算出当前电池的SOC;
称重传感器获取每个垃圾收集站点的每次垃圾质量;
包括如下步骤:
步骤S1,通过称重传感器获取每个垃圾收集站点的垃圾质量,基于大数据统计和车辆的自学习预测未来每个站点的垃圾量;
其中,所述称重传感器安装在垃圾车前后轴位置,可以实时获取当前车辆质量,通过信号线将整车质量信息传输给整车控制器,经整车控制器分析计算得到各垃圾站点收集的垃圾质量,将历史垃圾质量数据进行存储和归类,根据每个站点过去一段时间质量的变化预测出未来该站点垃圾质量。
步骤S2,根据当前车辆SOC预测车辆可以收集的站点数,罗列出每种车辆行驶方案,针对每种方案分别计算相邻两个站点车辆能耗和车辆的剩余电量;
其中,所述荷电状态SOC可以通过显示仪表进行读取,BMS(电池管理系统)通过当前电池端电压U、电流I和温度T计算出当前电池的SOC。当前电池的电量Ecur可以通过下式计算得到:
Ebatt=QU*(SOC-SOClow)
式中Q为电池的额定容量;U为电池的端电压;SOClow为电池放电截至荷电状态。
其中,所述车辆行驶方案的制定依据GPS地图获取垃圾车附近垃圾站点、倾倒点和充电站点位置,在起点位置已知,以先经过n个垃圾站点再到m垃圾倾倒点中的一个进行垃圾倾倒,最后回到q个充电站点的其中一个进行充电,将经过的站点顺序随机进行排列组合,总共组合方案为m*q*n!种。对于每一种行驶方案,两站点之间的能耗计算包括如下步骤:
轮胎牵引力Fwhl计算公式如下:
Figure BDA0001927284840000061
式中,m为垃圾车空车质量;mi为第i垃圾站点到下一站点这个过程垃圾质量;g为重力加速度;α为水平方向与汽车行驶方向夹角;逆时针为正,表示加速状态;f为滚动阻力系数;CD为迎风阻力系数;A为迎风面积;ρ为空气密度;δ为汽车旋转质量换算系数。
电动垃圾车从第i个站点到下一站的能量消耗Eec,i计算如下:
Figure BDA0001927284840000062
式中式中Ts为车辆静止状态下进行垃圾装载时间;
Figure BDA0001927284840000071
为车辆静止状态下上装附件功率;Fwhl为轮胎牵引力;Si为从第i个站点到下一站的里程数。
电动垃圾车从第i个站点到下一站点剩余电池能量Ere,i计算如下:
Figure BDA0001927284840000072
根据剩余电池能量Ere,i可以计算得到预测电池荷电状态SOCi,荷电状态满足:
SOCi=Ere,i/(QU)+SOClow
步骤S3,根据每种方案计算对应行驶路线车辆最终剩余电池能量,对比每种方案最终剩余电池电量,取剩余电池电量最大的3种方案路线作为车辆最优行驶路线备选。
其中,根据上述计算方法算出第j种方案的最终剩余电池能量Ere(j),满足:
Figure BDA0001927284840000073
将所有方案所对应的剩余电池能量进行对比,取最大值求取最佳方案剩余电池能量Ere,best,如下
Ere,best=MAX{Ere(1),Ere(2),Ere(3),...,Ere(j),...,Ere(m*q*n!)}以剩余电池能量最大的行驶路线方案规划垃圾车未来行驶路线。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (2)

1.一种基于电量预测和智能能量管理的纯电动垃圾车路径规划方法,其特征在于,包括以下步骤:
1)通过纯电动垃圾车上的称重传感器获取每次收集垃圾时每个垃圾收集站点的垃圾质量,基于大数据统计和车辆的自学习预测未来每个站点的垃圾量;
2)根据预先设定需要进行垃圾收集的站点数,遍历所有车辆行驶方案,针对每种方案分别计算相邻两个站点车辆能耗和车辆的剩余电量;具体如下:
2.1)根据当前车辆荷电状态SOC确定当前电池的电量;
其中,所述荷电状态SOC通过显示仪表进行读取,电池管理系统BMS通过当前电池端电压U、电流I和温度T计算出当前电池的SOC;当前电池的电量Ecur通过下式计算得到:
Ebatt=QU*(SOC-SOClow)
式中,Q为电池的额定容量;U为电池的端电压;SOClow为电池放电截至荷电状态;
2.2)确定可能的路径规划方案:
其中,所述车辆行驶方案的制定依据GPS地图获取垃圾车附近垃圾站点、倾倒点和充电站点位置,在起点位置已知,以先经过n个垃圾站点再到p圾倾倒点中的一个进行垃圾倾倒,最后回到q个充电站点的其中一个进行充电,将经过的站点顺序随机进行排列组合,总共组合方案为p*q*n!种;对于每一种行驶方案,两站点之间的能耗计算包括如下步骤:
轮胎牵引力Fwhl计算公式如下:
Figure FDA0002636261720000021
式中,m为垃圾车空车质量;mi为第i垃圾站点到下一站点这个过程垃圾质量;g为重力加速度;α为水平方向与汽车行驶方向夹角;f为滚动阻力系数;CD为迎风阻力系数;A为迎风面积;ρ为空气密度;δ为汽车旋转质量换算系数;
电动垃圾车从第i个站点到下一站的能量消耗Eec,i计算如下:
Figure FDA0002636261720000022
式中,Ts为车辆静止状态下进行垃圾装载时间;Pstp为车辆静止状态下上装附件功率;Fwhl为轮胎牵引力;Si为从第i个站点到下一站的里程数;
电动垃圾车从第i个站点到下一站点剩余电池能量Ere,i计算如下:
Figure FDA0002636261720000023
根据剩余电池能量Ere,i计算得到对应的预测电池荷电状态SOCi,荷电状态满足:
SOCi=Ere,i/(QU)+SOClow
3)根据每种方案计算对应行驶路线车辆最终剩余电池能量,对比每种方案最终剩余电池电量,取剩余电池电量最大的3种方案路线作为车辆最优行驶路线备选。
2.根据权利要求1所述的方法,其特征在于,所述称重传感器安装在垃圾车前后轴位置。
CN201811622806.9A 2018-12-28 2018-12-28 基于电量预测和智能能量管理的纯电动垃圾车路径规划方法 Active CN109668571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811622806.9A CN109668571B (zh) 2018-12-28 2018-12-28 基于电量预测和智能能量管理的纯电动垃圾车路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811622806.9A CN109668571B (zh) 2018-12-28 2018-12-28 基于电量预测和智能能量管理的纯电动垃圾车路径规划方法

Publications (2)

Publication Number Publication Date
CN109668571A CN109668571A (zh) 2019-04-23
CN109668571B true CN109668571B (zh) 2020-11-17

Family

ID=66146520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811622806.9A Active CN109668571B (zh) 2018-12-28 2018-12-28 基于电量预测和智能能量管理的纯电动垃圾车路径规划方法

Country Status (1)

Country Link
CN (1) CN109668571B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111652782B (zh) * 2020-06-11 2023-05-26 贵州小黑科技有限公司 基于多元数据的乡村垃圾收运作业系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130136781A (ko) * 2012-06-05 2013-12-13 현대자동차주식회사 전비맵을 기반으로 하는 에코루트 산출방법
CN103234544B (zh) * 2013-04-27 2016-04-06 北京交通大学 电动汽车电量消耗因子模型建立及续驶里程估算方法
CN106370194A (zh) * 2015-07-20 2017-02-01 小米科技有限责任公司 获取电动车行驶路线的方法、装置及电动车
CN105674996A (zh) * 2016-01-05 2016-06-15 惠州市蓝微新源技术有限公司 一种基于bms的电动汽车行驶预判方法及预判系统
CN106197459B (zh) * 2016-08-15 2019-05-21 浙江爱充网络科技有限公司 考虑航程及充电站位置的电动汽车路径寻优方法
CN107367285B (zh) * 2017-05-23 2020-04-10 西安交通大学 一种基于电池容量衰退与工作负荷倒序匹配的纯电动公交车运行路线规划方法

Also Published As

Publication number Publication date
CN109668571A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
CN110126841B (zh) 基于道路信息和驾驶风格的纯电动汽车能耗模型预测方法
CN111497679B (zh) 一种纯电动汽车能耗监测优化方法及系统
CN109733248B (zh) 基于路径信息的纯电动汽车剩余里程模型预测方法
CN110135632B (zh) 基于路径信息的phev自适应最优能量管理方法
US8996213B2 (en) Charge control system for electric motor vehicle
CN111452619B (zh) 电动车辆在线能耗预测方法及系统
CN112703125B (zh) 一种锂电池的析锂检测方法及装置
JP5736115B2 (ja) エネルギー蓄積コンポーネントの利用を最適化する車両
US8428804B2 (en) In-vehicle charge and discharge control apparatus and partial control apparatus
CN111273180B (zh) 一种锂电池的析锂检测方法及装置
CN110174117B (zh) 一种电动汽车充电路线规划方法
US20100131139A1 (en) Charge planning apparatus
CN111670340B (zh) 一种车辆剩余行驶里程的获取方法、电子设备及车辆
WO2011160258A1 (zh) 获取电池的劣化度的方法和系统
CN108663061B (zh) 一种电动汽车里程预估系统及其预估方法
CN105128853A (zh) 一种用于计算增程式混合动力汽车续驶里程的系统
CN111137169B (zh) 一种续航里程的估算方法及装置
CN103049942A (zh) 车内传感器数据的获取和集合的平均性能指标的呈报
US10821832B2 (en) Battery control device and battery control system
CN109668571B (zh) 基于电量预测和智能能量管理的纯电动垃圾车路径规划方法
JP2011016464A (ja) ハイブリッド車両の制御装置
CN114001989A (zh) 一种基于工况识别的单车空调能耗预测方法及预测装置
Das et al. Eco-routing navigation systems in electric vehicles: A comprehensive survey
CN114987287B (zh) 剩余续驶里程预测方法、装置、车辆及计算机存储介质
CN113167837A (zh) 车辆续驶里程估计器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant