CN111450850B - 一种四元铋基硫族壳-核纳米球及其制备方法和应用 - Google Patents

一种四元铋基硫族壳-核纳米球及其制备方法和应用 Download PDF

Info

Publication number
CN111450850B
CN111450850B CN202010231445.6A CN202010231445A CN111450850B CN 111450850 B CN111450850 B CN 111450850B CN 202010231445 A CN202010231445 A CN 202010231445A CN 111450850 B CN111450850 B CN 111450850B
Authority
CN
China
Prior art keywords
core
nanosphere
bismuth
based chalcogenide
quaternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010231445.6A
Other languages
English (en)
Other versions
CN111450850A (zh
Inventor
佤基·杰努瓦
埃泽尔·阿金诺古
冯柯
米夏埃尔·吉尔斯西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Original Assignee
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing South China Normal University Optoelectronics Industry Research Institute filed Critical Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority to CN202010231445.6A priority Critical patent/CN111450850B/zh
Publication of CN111450850A publication Critical patent/CN111450850A/zh
Application granted granted Critical
Publication of CN111450850B publication Critical patent/CN111450850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于半导体合成技术领域,公开了一种四元铋基硫族壳‑核纳米球及其制备方法和应用,本发明通过控制原料配比、反应时间以及油胺的加入,形成四元铋基硫族壳‑核纳米球,该纳米球可以制备成薄膜,替代用于光物理和光化学应用的传统半导体,如:光催化,光伏,光电二极管传感器,潜在的还包括LED,集成电路,晶体管及半导体激光器。特别的,该纳米球能够在光催化降解染料的前提下,还可以保证其光催化降解的稳定性(使用制备得到的四元铋基硫族壳‑核纳米球对罗丹明B进行三次降解,都能够保证其降解率在60%左右),说明其降解稳定性很好。可应用在稳定性光催化降解染料领域。

Description

一种四元铋基硫族壳-核纳米球及其制备方法和应用
技术领域
本发明涉及半导体合成技术领域,更具体的,涉及一种四元铋基硫族壳-核纳米球及其制备方法和应用。
背景技术
当前的功能纳米材料的性能需要符合人们多种多样需求,而单个化合物、通过真空沉积以及通过半导体纳米晶体沉积烧结等方法制备的半导体薄膜很难全部实现这些性能。因此,异质纳米结构的纳米材料以及非传统的多元材料得以被广泛应用。由于其独特的性能,过去几十年里人们对胶体半导体纳米晶体的研究日益增加。溶液法能在大气压下进行,产量高,材料利用率高,因此具有大面积卷对卷兼容沉积来大幅度降低薄膜光伏电池制造成本的潜力。已经报道了利用这些纳米晶体的离散或聚合特性的光催化和光伏等应用。目前在光伏薄膜中广泛应用的CdTe和CuIn1-xGaxSe2材料中的Te,Ga和In这些稀有元素限制了其成本和广泛,因此用地球上含量比较丰富的元素替代这些元素合成新的材料成为了趋势。CuInS2(CIS),CuInxGa1-xSe2(CIGS)和Cu2ZnSnS4(CZTS)等三元、四元铜基化合物是由地球上含量丰富的元素组成的具有高吸收系数,低毒性并且具有合适带隙的可用于太阳能转化和光降解环境污染物的材料。
尽管已经在CIS,CIGS和CZTS等胶体的合成及尺寸控制上已经有许多进展,但对于四元BiS3/Cu2ZnS3胶体而言这仍是一大难题。Bi在6s轨道中良好的分散性已被证实能有效的提升光生载流子的迁移率并能有效减小带隙。并且,已被证实二元硫属铋化物能对光催化性能有所提升。因此可以预测四元硫属化合物CZBS能在光催化应用中起到很好的增强效果。CZBS胶体纳米晶体可以通过旋转浇铸,喷涂,或者印刷等方式制备成薄膜吸收层,这与真空制备方法相比成本大大降低。虽然已有文献报道使用溶液法合成了含有Cu(铜),Zn(锌),In(铟),Ga(镓)或Sn(锡)的四元硫族半导体化合物,但具有壳-核结构的含有Bi(铋)的四元硫族半导体至今还没被报道过。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,提供一种四元铋基硫族壳-核纳米球。
本发明的另一个目的是提供上述四元铋基硫族壳-核纳米球的制备方法。
本发明的第三个目的是提供上述四元铋基硫族壳-核纳米球的应用。
本发明的目的是通过以下技术方案予以实现:
一种四元铋基硫族壳-核纳米球,所述纳米球以Cu2ZnS3为核,以BiS3为壳,所述纳米球的直径为50~55nm。
本发明还提供所述的四元铋基硫族壳-核纳米球的制备方法,是在惰性气氛下,以乙酰丙酮铜,醋酸锌,硝酸铋为反应原料,同时加入油胺反应形成金属油胺络合物,冷却后加入硫前体反应1~3h,分离后即得;所述乙酰丙酮铜,醋酸锌,硝酸铋的摩尔比为2:1:1。
发明人经前期实验发现,要获得壳-核结构的四元铋基硫族纳米球,需要控制以下几个因素:(1)严格控制乙酰丙酮铜,醋酸锌,硝酸铋的摩尔比,如此才能成功制备得到四元铋基硫族半导体,(2)控制反应时间,发明人对通过不同反应时间得到的物质进行了EDX分析,并绘制了物质中的各原子的占比随时间变化的曲线,可以发现,反应过程中是先生成铜锌硫元素组成的中间体,后续再反应生成硫铋元素组成的产物;(3)油胺的加入,在控制了反应时间的前提下,由于油胺的加入,形成了金属油胺络合物,金属油胺络合物的热解阻止了硫铋元素组成的产物在铜锌硫元素组成的中间体上的扩散,从而使得硫铋元素组成的产物在铜锌硫元素组成的中间体上形成壳,即最终得到壳-核结构的纳米球。
优选的,在上述四元铋基硫族壳-核纳米球的制备方法中,加入油胺的同时,还加入1-十八碳烯。
优选的,在上述四元铋基硫族壳-核纳米球的制备方法中,所述硫前体为十二烷硫醇和叔十二烷基硫醇,所述十二烷硫醇和叔十二烷基硫醇的质量比为1:2。
优选的,在上述四元铋基硫族壳-核纳米球的制备方法中,形成金属油胺络合物的反应温度为150~200℃。
优选的,在上述四元铋基硫族壳-核纳米球的制备方法中,冷却后的的温度为125~140℃,然后再加入硫前体进行下一步反应。
优选的,在上述四元铋基硫族壳-核纳米球的制备方法中,所述惰性气氛选自氮气、氩气。
本发明制备得到的四元铋基硫族壳-核纳米球可以制备成薄膜,替代用于光物理和光化学应用的传统半导体,如:光催化,光伏,光电二极管传感器,潜在的还包括LED,集成电路,晶体管及半导体激光器。
发明人通过后期研究制备得到的四元铋基硫族壳-核纳米球的应用,发现其能够在光催化降解染料的前提下,还可以保证其光催化降解的稳定性(使用制备得到的四元铋基硫族壳-核纳米球对罗丹明B进行三次降解,都能够保证其降解率在60%左右),说明其降解稳定性很好。
因此,本发明还提供上述四元铋基硫族壳-核纳米球在制备光催化降解材料中的应用。
本发明还提供四元铋基硫族壳-核纳米球在在光催化降解染料中的应用。优选的,所述染料为罗丹明B。
与现有技术相比,本发明具有以下有益效果:
本发明通过控制原料配比、反应时间以及油胺的加入,形成四元铋基硫族壳-核纳米球,该纳米球可以制备成薄膜,替代用于光物理和光化学应用的传统半导体,如:光催化,光伏,光电二极管传感器,潜在的还包括LED,集成电路,晶体管及半导体激光器。特别的,该纳米球能够在光催化降解染料的前提下,还可以保证其光催化降解的稳定性(使用制备得到的四元铋基硫族壳-核纳米球对罗丹明B进行三次降解,都能够保证其降解率在60%左右),说明其降解稳定性很好。可应用在稳定性光催化降解染料领域。
附图说明
图1为四元铋基硫族壳-核纳米球合成示意图;
图2为通过EDX分析原子占比绘制的四元铋基硫族壳-核纳米球的合成随时间变化曲线图;
图3为四元铋基硫族壳-核纳米球的TEM图像(左上和右上)、电子衍射图像(左下)、和Tauc曲线(右下);其中,右上是左上放大5倍呈现的图像;
图4为四元铋基硫族壳-核纳米球的EDS谱图和组成元素分布图;
图5为四元铋基硫族壳-核纳米球的XPS谱图;
图6为四元铋基硫族壳-核纳米球对罗丹明B的光催化活性图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
四元铋基硫族壳-核纳米晶体的制备方法,包括以下步骤:在高温惰性气氛(氮气)下,按照2:1:1的摩尔比混合乙酰丙酮铜,醋酸锌,硝酸铋,并加入油胺和1-十八碳烯在150℃下反应形成金属油胺络合物,冷却至125℃,并注入十二烷硫醇(DDT)和叔十二烷基硫醇(t-DDM),所述十二烷硫醇和叔十二烷基硫醇的质量比为1:2,再反应1h,分离得到四元铋基硫族壳-核纳米晶体1。
上述四元铋基硫族壳-核纳米晶体的合成示意图如图1所示,反应过程中铜、锌、铋、硫的合成占比随时间变化的曲线如图2所示。
实施例2
四元铋基硫族壳-核纳米晶体的制备方法,包括以下步骤:在高温惰性气氛(氮气)下,按照2:1:1的摩尔比混合乙酰丙酮铜,醋酸锌,硝酸铋,并加入油胺和1-十八碳烯在180℃下反应形成金属油胺络合物,冷却至130℃,并注入十二烷硫醇(DDT)和叔十二烷基硫醇(t-DDM),所述十二烷硫醇和叔十二烷基硫醇的质量比为1:2,再反应2h,分离得到四元铋基硫族壳-核纳米晶体2。
实施例3
四元铋基硫族壳-核纳米晶体的制备方法,包括以下步骤:在高温惰性气氛(氮气)下,按照2:1:1的摩尔比混合乙酰丙酮铜,醋酸锌,硝酸铋,并加入油胺和1-十八碳烯在200℃下反应形成金属油胺络合物,冷却至150℃,并注入十二烷硫醇(DDT)和叔十二烷基硫醇(t-DDM),所述十二烷硫醇和叔十二烷基硫醇的质量比为1:2,再反应3h,分离得到四元铋基硫族壳-核纳米晶体3。
一、四元铋基硫族壳-核纳米晶体的表征
(1)对实施例1-实施例3制备得到的四元铋基硫族壳-核纳米晶体进行透射电镜(TEM)表征,分析得出的纳米晶体的平均粒径为52nm的单分散纳米晶体(图3左上);高分辨率TEM(图3右上)显示出纳米晶体为为壳-核形态;电子衍射图谱中图案是随机的亮点,表明制备得到的纳米球在不同的晶向都有良好的晶体特征(图3左下),通过绘制吸收光谱的Tauc曲线(图3右下)得到,纳米球的光学带隙为1.57eV,这个带隙值对大多数光催化应用都是有效的。
(2)通过X射线能量色散光谱图(EDS)(图4)按其化学计量比显示出了相应元素的存在。EDS光谱中硅的存在可归因于测试使用的是硅晶片基板。
(3)用X射线光电子能谱(XPS)(图5)分析得到组成晶体的四种元素分别处于其氧化态。Cu的2p图谱中,分别在932.2eV(2p3/2)和951.9eV(2p1/2)出现特征峰,其峰距为19.7eV,这表明CZBS中铜的存在形式是Cu(I)。Zn的2p图谱中,1021.7eV和1044.7eV处显示出特征峰,其峰距为23eV,表明锌的存在形式是Zn(II)。在Bi的4f谱图中,在158.9eV(4f5/2)和164.2eV(4f7/2)显示出Bi(III)的特征峰。S的2p谱图中在159.1eV和164.2eV观察到了特征峰,表明了硫化物的存在。
二、四元铋基硫族壳-核纳米晶体的光催化实验
以罗丹明B为例,测试了上述实施例制备得到的四元铋基硫族壳-核纳米晶体对含有有机污染物的溶液的光催化降解作用。在光降解性能测试实验中,将25mg四元铋基硫族壳-核纳米晶体悬浮在含10ppm罗丹明B的100mL水溶液中,在黑暗条件下搅拌24小时以达到平衡吸附。然后用300W氙(Xe)灯照射溶液,每隔30min测量一次550nm处的光吸收度以检测罗丹明B浓度的变化。将光照30min后,罗丹明的浓度降低约60%,当光照200min后,罗丹明的浓度仍然降低约60%,这说明制备得到的四元铋基硫族壳-核纳米晶体具有光催化活性。
将光降解曲线用拟一级朗格缪尔-欣谢尔伍德(L-H)动力学方程(方程1)进行拟合,公式如下:
in(C0/C)=Kappi (1)
公式中,kapp是表观伪一阶速率常数(min-1),C0是罗丹明B的初始浓度(mg/L),C是在t时间时罗丹明B的浓度(mg/L)可以观察到光降解曲线与拟一级反应动力学方程具有良好的相关性(R>0.95),其表观速率常数为0.007min-1(图6)。
另外,还利用上述制备得到的四元铋基硫族壳-核纳米晶体重复上述光催化实验(重复三次),结果显示每次催化实验后四元铋基硫族壳-核纳米晶体对罗丹明B的降解率均在60%左右,表明制备得到的四元铋基硫族壳-核纳米晶体具有很好的光催化稳定性。

Claims (5)

1.一种四元铋基硫族壳-核纳米球,其特征在于,所述纳米球以Cu2ZnS3为核,以BiS3为壳,所述纳米球的直径为50~55nm;
所述四元铋基硫族壳-核纳米球通过以下方法制备得到:在惰性气氛下,以乙酰丙酮铜,醋酸锌,硝酸铋为反应原料,同时加入油胺反应形成金属油胺络合物,冷却后加入硫前体反应1~3h,分离后即得;
所述乙酰丙酮铜,醋酸锌,硝酸铋的摩尔比为2:1:1;加入油胺的同时,还加入1-十八碳烯;所述硫前体为十二烷硫醇和叔十二烷基硫醇,所述十二烷硫醇和叔十二烷基硫醇的质量比为1:2,所述形成金属油胺络合物的反应温度为150~200℃,所述冷却后的的温度为125~140℃。
2.根据权利要求1所述一种四元铋基硫族壳-核纳米球,其特征在于,所述惰性气氛选自氮气、氩气。
3.权利要求1所述的四元铋基硫族壳-核纳米球在制备光催化降解材料中的应用。
4.权利要求1所述的四元铋基硫族壳-核纳米球在在光催化降解染料中的应用。
5.根据权利要求4所述的应用,其特征在于,所述染料为罗丹明B。
CN202010231445.6A 2020-03-27 2020-03-27 一种四元铋基硫族壳-核纳米球及其制备方法和应用 Active CN111450850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010231445.6A CN111450850B (zh) 2020-03-27 2020-03-27 一种四元铋基硫族壳-核纳米球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010231445.6A CN111450850B (zh) 2020-03-27 2020-03-27 一种四元铋基硫族壳-核纳米球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111450850A CN111450850A (zh) 2020-07-28
CN111450850B true CN111450850B (zh) 2023-03-28

Family

ID=71673543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010231445.6A Active CN111450850B (zh) 2020-03-27 2020-03-27 一种四元铋基硫族壳-核纳米球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111450850B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053319A (ja) * 2000-05-17 2002-02-19 Mitsubishi Chemicals Corp 硫化物シェルを有するカルコゲン化亜鉛半導体超微粒子
WO2004066361A2 (en) * 2003-01-22 2004-08-05 The Board Of Trustees Of The University Of Arkansas Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
WO2010138636A2 (en) * 2009-05-26 2010-12-02 Purdue Research Foundation Synthesis of multinary chalcogenide nanoparticles comprising cu, zn, sn, s, and se
WO2015016650A1 (ko) * 2013-08-01 2015-02-05 주식회사 엘지화학 태양전지 광흡수층 제조용 3층코어-쉘 나노 입자 및 이의 제조 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008021604A2 (en) * 2006-05-19 2008-02-21 Purdue Research Foundation Rapid synthesis of ternary, binary and multinary chalcogenide nanoparticles
US9346998B2 (en) * 2009-04-23 2016-05-24 The University Of Chicago Materials and methods for the preparation of nanocomposites
US7972899B2 (en) * 2009-07-30 2011-07-05 Sisom Thin Films Llc Method for fabricating copper-containing ternary and quaternary chalcogenide thin films
US20110277838A1 (en) * 2010-03-12 2011-11-17 The Regents Of The University Of California Photovoltaic Devices Employing Ternary Compound Nanoparticles
KR101788786B1 (ko) * 2013-03-15 2017-10-19 나노코 테크놀로지스 리미티드 Iii-v/아연 칼코겐 화합물로 합금된 반도체 양자점
KR101788570B1 (ko) * 2013-03-15 2017-10-19 나노코 테크놀로지스 리미티드 Cu2XSnY4 나노 입자들
KR101473329B1 (ko) * 2013-06-03 2014-12-16 한국화학연구원 아연-실버-인듐-설파이드 코어와, 상기 코어를 둘러싸는 쉘을 포함하는 코어-쉘 구조 발광 나노입자 및 이의 제조방법
WO2015017478A2 (en) * 2013-07-29 2015-02-05 US Nano LLC SYNTHESIS OF CdSe/ZnS CORE/SHELL SEMICONDUCTOR NANOWIRES
EP2853578B1 (en) * 2013-09-26 2017-08-30 Samsung Electronics Co., Ltd Nanocrystal particles and processes for synthesizing the same
US10105687B1 (en) * 2017-08-24 2018-10-23 Imam Abdulrahman Bin Faisal University Heterostructured Bi2S3—ZnS photocatalysts and methods thereof
CN108273521A (zh) * 2018-03-26 2018-07-13 湘潭大学 一种由纳米片构成的硫化铜锌花状微米球超结构可见光催化剂的制备方法
CN109705844B (zh) * 2019-01-30 2021-12-31 苏州星烁纳米科技有限公司 具有核壳结构的纳米晶及其制备方法
CN110420646A (zh) * 2019-07-31 2019-11-08 湘潭大学 一种石墨烯/硫化铜锌复合光催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053319A (ja) * 2000-05-17 2002-02-19 Mitsubishi Chemicals Corp 硫化物シェルを有するカルコゲン化亜鉛半導体超微粒子
WO2004066361A2 (en) * 2003-01-22 2004-08-05 The Board Of Trustees Of The University Of Arkansas Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
WO2010138636A2 (en) * 2009-05-26 2010-12-02 Purdue Research Foundation Synthesis of multinary chalcogenide nanoparticles comprising cu, zn, sn, s, and se
WO2015016650A1 (ko) * 2013-08-01 2015-02-05 주식회사 엘지화학 태양전지 광흡수층 제조용 3층코어-쉘 나노 입자 및 이의 제조 방법

Also Published As

Publication number Publication date
CN111450850A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
Su et al. Fabrication of Cu 2 ZnSnS 4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route
AU2005239161B2 (en) Method for producing a thin-film chalcopyrite compound
US9862617B2 (en) Method to synthesize colloidal iron pyrite (FeS2) nanocrystals and fabricate iron pyrite thin film solar cells
Fu Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications
Arepalli et al. Photovoltaic behavior of the room temperature grown RF-Sputtered SnS thin films
Wang et al. Sb 2 S 3 solar cells: functional layer preparation and device performance
EP2939766A1 (en) Method for manufacturing metal nanoparticles for solar cell, ink composition comprising metal nanoparticles, and method for forming thin film using same
US9324901B2 (en) Precursor solution for forming a semiconductor thin film on the basis of CIS, CIGS or CZTS
Liu et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells
Nwambaekwe et al. Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
US20130206232A1 (en) Nanowires and methods of making and using
CN111450850B (zh) 一种四元铋基硫族壳-核纳米球及其制备方法和应用
Jagadale et al. Novel synthetic route for the synthesis of ternary Cd (SSe) photoelectrode and their photoelectrochemical application
US9502600B2 (en) Inorganic solution and solution process for electronic and electro-optic devices
CN111153429B (zh) 一种Cu2ZnBi2S3纳米棒及其应用
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
Patel et al. Recent Developments in Cu2 (CZTS) Preparation, Optimization and its Application in Solar Cell Development and Photocatalytic Applications
Joshi et al. Morphological engineering of novel nanocrystalline Cu2Sn (S, Se) 3 thin film through annealing temperature variation: assessment of photoelectrochemical cell performance
Huse et al. Characterization of economic and non-toxic copper doped zinc sulfide thin film grown by facile chemical bath deposition method
Jagadale et al. Effect of Deposition Time on Optostructural and Photoelectrochemical Properties of Cd (SSe) Thin Films Deposited By Facile
Ryu et al. Influence of Deposition Parameters on Performance of Zn (O, S) Buffer Layer Deposited by Solution-Based Continuous Flow Reactor for CIGS Solar Cells
Padwal Studies on Synthesis of Silver Bismuth Sulphide and Mercury Bismuth Sulphide Thin Films for Solar Cell application
Khanzada Low cost, abundant, non-toxic and low temperature solution processable inorganic semiconductors for photovoltaic applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant