CN111442496B - 用于双制冷式空调的控制方法、控制装置及双制冷式空调 - Google Patents

用于双制冷式空调的控制方法、控制装置及双制冷式空调 Download PDF

Info

Publication number
CN111442496B
CN111442496B CN202010228810.8A CN202010228810A CN111442496B CN 111442496 B CN111442496 B CN 111442496B CN 202010228810 A CN202010228810 A CN 202010228810A CN 111442496 B CN111442496 B CN 111442496B
Authority
CN
China
Prior art keywords
adsorption
refrigeration
temperature
outdoor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010228810.8A
Other languages
English (en)
Other versions
CN111442496A (zh
Inventor
许文明
王飞
罗荣邦
丁爽
张明杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN202010228810.8A priority Critical patent/CN111442496B/zh
Publication of CN111442496A publication Critical patent/CN111442496A/zh
Application granted granted Critical
Publication of CN111442496B publication Critical patent/CN111442496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0014Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using absorption or desorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及空调智能制冷技术领域,公开一种用于双制冷式空调的控制方法。控制方法包括:在冷媒换热系统运行冷媒制冷模式的情况下,控制吸附制冷系统进入解吸蓄冷模式;在解吸蓄冷模式的运行时长满足设定时长条件时,控制退出解吸蓄冷模式。本公开实施例提供的控制方法能够根据解吸蓄冷模式的运行时长控制该解吸蓄冷模式的退出,其中吸附制冷系统进行解吸蓄冷的热源是冷媒换热系统制冷时室外换热器排出的热量,并能够根据运行时长判断是否已经完成解吸蓄冷过程,巧妙的实现两套制冷结构以及冷媒制冷、解吸蓄冷两个过程的结合,简化了结合后空调的产品结构,有效提高了空调整体性能。本申请还公开一种用于双制冷式空调的控制装置及双制冷式空调。

Description

用于双制冷式空调的控制方法、控制装置及双制冷式空调
技术领域
本申请涉及空调智能制冷技术领域,例如涉及一种用于双制冷式空调的控制方法、控制装置及双制冷式空调。
背景技术
随着当今世界科学技术的进步,空调的结构设计以及制冷性能也随之得到了长足的发展,目前的空调从其制冷原理来看,主要分为以下几个类型:
(1)、冷媒制冷,其是利用制冷剂在气液两态变化过程中进行吸热或放热的原理,从而将室内热量排出至室外环境中;
(2)、吸附式制冷,其是利用制冷剂被吸附剂吸附和解吸过程中分别进行放热和吸热的原理,实现室内热量的转移;
(3)、蒸汽喷射式制冷,其是依靠蒸汽喷射器的抽吸作用使制冷剂在抽吸产生的真空环境中蒸发实现的制冷目的;
(4)、热电式制冷,其是利用“塞贝克”效应的逆反应——珀尔帖效应的原理达到制冷目的,常见的热电式制冷方式为半导体制冷。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
上述制冷技术中,冷媒制冷和吸附式制冷是分别采用不同的制冷结构设计实现的制冷操作,且各有优缺点,目前的空调产品一般也仅是采用其中一种制冷结构设计,通过单一制冷技术进行制冷。因此,如何将上述两种制冷技术应用于同一空调并有效提升其性能是空调产品设计的一个全新思路。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于双制冷式空调的控制方法、控制装置及双制冷式空调,以解决现有技术中未有利用冷媒制冷和吸附式制冷两种制冷技术共同实现空调制冷工作的技术问题。
在一些实施例中,用于双制冷式空调的控制方法包括:
在冷媒换热系统运行冷媒制冷模式的情况下,控制吸附制冷系统进入解吸蓄冷模式;
在解吸蓄冷模式的运行时长满足设定时长条件时,控制退出解吸蓄冷模式。
在一些实施例中,用于双制冷式空调的控制装置包括:
处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行如前文一些实施例中的用于双制冷式空调的控制方法。
在一些实施例中,双制冷式空调包括:
冷媒换热系统,主要包括室内换热器、室外换热器、压缩机和节流装置;
一个或多个吸附制冷系统,每一吸附制冷系统包括:
蒸发部,设置于冷媒换热系统的室内换热器处;
吸附部,设置于冷媒换热系统的室外换热器处,吸附部与蒸发部之间构造有吸附介质输送流路;
如前文一些实施例中的用于双制冷式空调的控制装置。
本公开实施例提供的用于双制冷式空调的控制方法、装置及双制冷式空调,可以实现以下技术效果:
本公开实施例提供的用于双制冷式空调的控制方法能够根据吸附制冷系统的解吸蓄冷模式的运行时长控制该解吸蓄冷模式的退出,其中吸附制冷系统进行解吸蓄冷的热源是冷媒换热系统制冷时室外换热器排出的热量,因此无需配置额外的热源就能够实现吸附制冷的解吸过程,并能够根据运行时长判断是否已经完成解吸蓄冷过程,实现了在冷媒换热系统制冷时对解吸蓄冷流程的精确;因此本公开实施例并不是简单的将两种制冷系统叠加在同一空调中,是充分考虑了两者制冷原理而巧妙的实现两套制冷结构以及冷媒制冷、解吸蓄冷两个过程的结合,不仅简化了结合后空调的产品结构,也有效提高了空调整体性能。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的双制冷式空调的结构示意图;
图2是本公开实施例提供的用于双制冷式空调的控制方法的流程示意图;
图3是本公开实施例提供的用于双制冷式空调的控制装置的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
图1是本公开实施例提供的双制冷式空调的结构示意图。
如图1所示,本公开实施例提供了一种双制冷式空调,包括冷媒换热系统和吸附制冷系统;其中,冷媒换热系统可以是单冷式冷媒换热系统,其可用于对室内环境进行制冷、除湿等功能,也可以是冷暖式冷媒换热系统,其可用于对室内环境进行制冷、除湿和制热等功能。吸附制冷系统可用于在其运行吸附制冷模式时对室内环境进行制冷的功能。
在一些可选的实施例中,以冷暖式冷媒换热系统为例,该冷媒换热系统主要包括室内换热器11、室外换热器12、压缩机13和节流装置14等部件;室内换热器11、室外换热器12、节流装置14和压缩机13通过冷媒管路连接构成冷媒循环回路,冷媒通过冷媒循环回路沿不同运行模式所设定的流向流动,实现其不同的运行模式功能。
这里,双制冷式空调包括室内机和室外机,其中,室内换热设置于室内机,室内机中还配置有用于驱动室内空气与室内换热器11进行热交换的室内风机;室外换热器12和压缩机13等设置于室外机中,室外机中也配置有用于室外空气与室外换热器12进行热交换的室外风机,其中,室外换热器12设置于室外风机的进风侧。
在实施例中,双制冷式空调的冷媒换热系统的运行模式包括冷媒制冷模式、冷媒除湿模式和冷媒制热模式等,其中,冷媒制冷模式一般应用在夏季高温工况,用于降低室内环境温度;冷媒除湿模式也一般用于夏季高温高湿工况,用于降低室内环境湿度;冷媒制热模式一般应用在冬季低温工况,用于提升室内环境温度。
冷媒换热系统运行冷媒制冷模式时所设定的冷媒流向是压缩机13排出的高温冷媒先流经室外换热器12与室外环境换热,之后在流入室内换热器11与室内环境进行换热,最后冷媒回流至压缩机13重新进行压缩操作;这一过程中,流经室外换热器12的冷媒向室外环境放出热量,流经室内换热器11的冷媒从室内环境中吸收热量,通过冷媒在冷媒循环回路中的循环流动,可以持续的将室内的热量排出到室外环境中,从而可以达到降低室内环境温度的制冷目的。
冷媒换热系统运行冷媒除湿模式时所限定的冷媒流向与冷媒制冷模式的冷媒流向相同,区别在于,空调运行冷媒除湿模式时通过调整一些运行参数,如减小节流装置14的流量开度等,可以使流入室内换热器11的冷媒的温度和压力更低,从而使室内换热器11随着冷媒的吸热蒸发能够达到更低的温度,这样,当室内换热器11的表面温度低于当前工况的露点温度时,流经室内换热器11的室内空气中的水汽就能够凝结在室内换热器11上,从而达到降低室内空气湿度的目的。
在冷媒制热模式运行时所设定的冷媒流向指压缩机13排出的高温冷媒先流经室内换热器11与室外环境换热,之后在流入室外换热器12与室内环境进行换热,最后冷媒回流至压缩机13重新进行压缩操作;这一过程中,流经室内换热器11的冷媒向室内环境放出热量,流经室外换热器12的冷媒从室外环境中吸收热量,通过冷媒在冷媒循环回路中的循环流动,可以持续的将室外的热量释放到室内环境中,从而可以达到提高室内环境温度的制热目的。
在一些可选的实施例中,冷媒换热系统的各个部件采用现有技术中已有的冷媒换热系统的连接结构进行组装配合,在此不作赘述。
在一些可选的实施例中,双制冷式空调可以仅设置一个吸附制冷系统,或者,也可以设置一吸附制冷系统组,吸附制冷系统组包括两个或两个以上的吸附制冷系统。
以其中一个吸附制冷系统为例,吸附制冷系统包括吸附部21和蒸发部22,其中,吸附部21设置于冷媒换热系统的室外换热器12处,其内部填充有吸附剂,其用于在解吸蓄冷阶段吸收热量后放出吸附介质,以及在吸附制冷阶段对吸附介质进行吸附并放出热量;蒸发部22设置于室内侧,其用于储存在解吸蓄冷阶段来自吸附部21的液态吸附介质,以及在吸附制冷阶段从室内环境吸收热量并将汽化后的吸附介质输送至吸附部21。
在一些实施例中,吸附部21设置于室外风机和室外换热器12之间。这里,由于室外换热器12设置于室外风机的进风侧,因此,在室外风机的驱动作用下,室外换热器12散失的热量可以先流经夹设在室外风机和室外换热器12之间的吸附部21,从而使吸附部21能够在解吸蓄冷阶段吸收大量的热量用于解吸蓄冷;同时,吸附部21也处于室外风机的进风侧,因此在吸附制冷阶段同样也可以利用室外风机的驱动作用将吸附部21释放的热量散失到室外环境中。
可选的,室外换热器12为板状结构,且其横截面轮廓呈半环抱室外风机的形式;因此,为了提高吸附部21与室外换热器12之间的换热效果,本实施例中吸附部21的整体形状与室外换热器12相适配,也设计成半环抱室外风机的形式,并贴合室外换热器12设置,从而有效增加吸附部21与室外换热器12之间的热交换面积,提高对室外换热器12的废热利用效率。
这里,对于吸附制冷系统组,为使得多个吸附制冷系统的吸附部21能够均匀的从室外换热器12吸收热量、避免出现个别吸附制冷系统的吸附部21偏离室外换热器12所导致的热量吸收过少的情况,吸附制冷系统组的多个吸附制冷系统的吸附部21并排设置,可选的,多个吸附制冷系统的吸附部21沿室外换热器12的横向或者纵向并排设置,吸附部21设计成与其对应室外换热器12的部位相适配的形状,以保证两者的换热效率。
可选的,相邻的吸附部21之间也构造有吸附介质输送流路;这样,在解吸蓄冷和吸附蓄冷阶段,气态吸附介质能够在多个吸附部21之间的流动,从而提高吸附制冷系统组整体的解吸蓄冷效果以及吸附制冷效果。
可选的,蒸发部22为板翅状结构,板翅状结构能够有效提高在解吸蓄冷阶段蒸发部22内的吸附介质与室内环境的热交换效果,增强吸热制冷能力;同时,蒸发部22内部形成有流通吸附介质的流路,该吸附介质的流路与吸附介质输送流路相连通。
在一些可选的实施例中,室内换热器11为纵截面呈折线状并半环抱室内风机的结构形式;因此,同样为了提高蒸发部22与室内环境之间的热交换效果,本实施例中,蒸发部22的整体形状与室内换热器11相适配,也设计成半环抱室内风机的形式,且贴合室内换热器11设置,以增大蒸发部22与流经室内机的气流的热交换面积,提升吸热制冷能力。
这里,对于吸附制冷系统组,为使得多个吸附制冷系统的蒸发部22能够均匀的从室内环境中吸收热量,多个吸附制冷系统的蒸发部22也采用并排设置的方式;可选的,多个吸附制冷系统的蒸发部22沿室内换热器11的横向或者纵向并排设置,蒸发部22设计成与其对应室内换热器11的部位相适配的形式。
可选的,相邻的蒸发部22之间也构造有吸附介质输送流路;这样,在解吸蓄冷和吸附蓄冷阶段,液态和气态吸附介质能够在多个蒸发部22之间的流动,从而提高吸附制冷系统组整体的解吸蓄冷效果以及吸附制冷效果。
另外,吸附制冷系统还包括中间散热部23;其中,中间散热部23设置于吸附介质输送流路上,其可用于在解吸蓄冷阶段接收吸附部21输送的气态吸附介质并对其进行散热冷凝,以使至少部分气态吸附介质液化,并将液化后的吸附介质继续输送至蒸发部22进行储存。
这里,中间散热部23设置于室外侧,其是通过与室外环境的热交换实现对吸附介质的散热冷凝;在冷媒换热系统运行冷媒制冷模式时,室外换热器12向外排出热量,受其温度影响,吸附部21的温度一般是要高于室外环境温度,因此,吸附部21受高温热量影响释放的气态吸附介质流入中间散热部23后,热量被散失到室外环境中,从而使至少部分气态吸附介质重新凝结成液态。
可选的,中间散热部23为平流式散热器。
在一些实施例中,中间散热部23设置于冷媒换热系统的室外机的背板、侧板或者底板位置,且远离室外机的出风口设置,从而可以避免室外机排出的高温空气影响中间散热部23的散热效果。
优选的,中间散热部23设置于底板位置,这种设置形式下,室外机可以为中间散热部23起到遮挡阳光的作用,从而为中间散热部23提供更加适宜的散热温度环境。
或者,由于室外机的背板设置有进风口,中间散热部23也可以临近进风口设置,从而利用室外风机的驱动作用,加快中间散热部23周围环境气流的流动,从而提高散热效果。
在本实施例中,吸附部21与蒸发部22之间构造有吸附介质输送流路,吸附介质可经由该吸附介质输送流路在吸附部21、中间散热部23和蒸发部22之间进行流动。
这里,吸附介质输送流路包括解吸流路和吸附流路,其中,解吸流路为用于解吸蓄冷阶段吸附介质输送的流路,吸附流路为用于吸附蓄冷阶段吸附介质输送的流量。
其中,在解吸流路中,吸附部21、中间散热部23和蒸发部22依次串联连接,从而使得在解吸蓄冷阶段吸附介质从吸附部21流出后,依次进入中间散热部23和蒸发部22,并最终在蒸发部22内以液态的形式保存。
可选的,解吸流路上设置有一单向阀,该单向阀限定吸附介质仅能按照“吸附部21→中间散热部23→蒸发部22”的流向进行输送;这里,该单向阀可以设置在吸附部21和中间散热部23之间的流路上,或者,也可以设置在中间散热部23和蒸发部22之间的流路上。
在吸附流路中,蒸发部22和吸附部21串联连接,从而使得在吸附制冷阶段吸附介质从蒸发部22流出后,经由该吸附流路进入吸附部21,并重新被吸附部21内的吸附剂吸附。
可选的,吸附流路上设置有一单向阀,该单向阀限定吸附介质仅能按照“蒸发部22→吸附部21”的流向进行输送。
可选的,将解吸流路设置为主流路,并将吸附流路与中间散热部23并联设置,因此解吸流路的靠近吸附部21的非并联流路段也可用于在吸附制冷阶段的吸附介质的输送。
在本实施例中,吸附制冷系统还包括控制阀24,其设置于吸附介质输送流路上,用于控制吸附介质输送流路的通断状态以及流量。这里,该控制阀24设置于上述实施例中解吸流路的靠近吸附部21的非并联流路段上,从而可以仅通过该一个控制阀24就能够实现对解吸蓄冷和吸附制冷两个阶段的流量通断控制。
或者,也可以分别在解吸流路和吸附流路上各自搁置一控制阀24,以分别通过各自的控制阀24控制对应流路的通断状态以及流量。
下面对本公开实施例中的吸附制冷系统与冷媒换热系统两者的配合工作方式进行说明:
在本实施例中,吸附制冷系统的运行模式主要包括解吸蓄冷模式和吸附制冷模式,其中,解吸蓄冷模式对应前文实施例中的解吸蓄冷阶段,其主要是用于蓄积“冷量”;而吸附制冷模式对应前文实施例中的吸附制冷阶段,其主要是用于将解吸蓄冷阶段蓄积的“冷量”释放出来,从而实现对其所在的室内侧的制冷降温。
这里,吸附制冷系统运行解吸蓄冷模式是在冷媒换热系统运行冷媒制冷模式或冷媒除湿模式的前提下运行的。这里,在冷媒换热系统运行冷媒制冷模式时,室外换热器12放出热量,热量传递至吸附部21后,吸附部21内吸附剂所吸附的吸附介质吸热,并解吸成气态吸附介质,之后经由解吸流路进入中间散热部23进行冷凝,冷凝得到的液态吸附介质进入蒸发部22,以作为蓄积的“冷量”。
而吸附制冷系统运行吸附制冷模式是在冷媒换热系统未运行冷媒制冷模式或冷媒除湿模式的前提下运行的。这里,在冷媒换热系统未运行冷媒制冷模式或冷媒除湿模式时,室外换热器12停止工作且不对外放热,因此吸附部21的温度相比于室外换热器12放热时要低,从而使得吸附部21内的吸附剂开始重新对吸附介质进行吸附,蒸发部22内的液态吸附介质在吸附介质浓度、压力以及室内环境温度等多种因素的共同影响下,开始吸热蒸发成气态吸附介质,并经由吸附流路回流至吸附部21,这一过程中,吸附介质从室内环境吸收热量,并在吸附介质被吸附剂重新吸附后,将热量释放到吸附部21所在的室外环境中,因此,通过该相比于解吸蓄冷阶段逆向的吸附介质流动,就能够实现对室内环境的吸附制冷降温。
图2是本公开实施例提供的用于双制冷式空调的控制方法的流程示意图。
如图2所示,本公开实施例中提供了一种用于双制冷式空调的控制方法,可选的,该控制方法可应用于如图1实施例中所示出的双制冷式空调;该控制方法可用于解决现有技术中未有利用冷媒制冷和吸附式制冷两种制冷技术共同实现空调制冷工作的问题;在实施例中,该控制方法的主要流程步骤包括:
S201、在冷媒换热系统运行冷媒制冷模式的情况下,控制吸附制冷系统进入解吸蓄冷模式;
在一些可选的实施例中,在夏季高温工况,双制冷式空调开机运行时,其默认的开启方式是冷媒换热系统以冷媒制冷模式运行,这一过程中,冷媒换热系统的室内换热器开始从室内环境中吸收热量,以降低室内环境温度;同时,室内换热器吸收的热量随冷媒输送至室外换热器,并通过室外换热器与室外环境之间的热交换过程,将热量排出至室外环境中,此时室外换热器的温度要大于室外环境的温度。
在步骤S201中,在冷媒换热系统运行冷媒制冷模式的情况下,控制吸附制冷系统进入解吸蓄冷模式;室外换热器排出热量,使得其周围环境温度也随之升高,因此靠近室外换热器设置的吸附制冷系统的吸附部中的吸附介质吸收热量后脱离吸附剂,实现“解吸”,解吸后的吸附介质随吸附介质输送流路流向中间换热部,这里,中间换热部的温度要低于室外换热器的温度,因此,吸附介质放热冷凝,并继续随吸附介质输送流路流入室内侧的蒸发部,实现“蓄冷”。
可选的,步骤S201中控制吸附制冷系统进入解吸蓄冷模式的操作包括:控制开启设置于吸附介质输送流路上的控制阀,以使吸附介质从吸附部向蒸发部输送的流路导通。
随着解吸蓄冷模式的持续运行,吸附部的吸附介质减少,蒸发部的吸附介质增加,以在蒸发部储备有用于吸附制冷模式的冷量。
S202、在解吸蓄冷模式的运行时长满足设定时长条件时,控制退出解吸蓄冷模式。
在本公开实施例中,双制冷式空调还设置有计时模块,计时模块可用于记录解吸蓄冷模式从开始时刻到当前时刻的时长,因此步骤S201中即可通过该计时模块获取解吸蓄冷模式的运行时长;在步骤S201中,该运行时长为解吸蓄冷模式单次运行记录的时长。
可选的,设定时长条件包括:解吸蓄冷模式的运行时长大于或等于第一时长阈值。
可选的,第一时长阈值为10min,15min,等等。
因此,在步骤S201中,可以实时的获取计时模块记录的解吸蓄冷模式的运行时长,当判断运行时长大于或等于该第一时长阈值时,则满足该设定时长条件,控制退出解吸蓄冷模式。
在一些可选的实施例中,第一时长阈值选用上述实施例中示出的固定的阈值,例如10min。
在又一些可选的实施例中,第一时长阈值是根据室外换热器的散热温度和室外环境温度之间的温度差值确定的。在本实施例中,第一时长阈值时用于表征冷媒换热系统运行冷媒制冷模式时吸附制冷系统的解吸蓄冷完成所需的时长值;而室外环境温度则是能够影响到中间散热部的散热冷凝速率的温度参数,室外换热器的散热温度则是能够影响到吸附部的解吸速率的温度参数,室外环境温度和室外换热器的散热温度之间的温度差值的大小可以直接影响到吸附制冷的解吸蓄冷进程的快慢速度。
因此,在空调出厂前,也可以通过实验等类似的方式,测算在不同室外环境温度、室外换热器的散热温度条件下,吸附制冷系统的解吸蓄冷完成所需的时长,进而可以构建室外换热器的散热温度和室外环境温度的温度差值与时长两者之间的关联关系,并将该关联关系存在双制冷式空调的控制模块中。
因此,在本公开实施例中,根据室外换热器的散热温度和室外环境温度之间的温度差值确定第一时长阈值,包括:从预设的关联关系中,查找得到对应温度差值的第一时长阈值。
其中,预设的关联关系包括一个或多个温度差值与第一时长阈值的对应关系。例如,第一关联关系中,在温度差值为20℃时,其对应的时长值为15min;在温度差值为25℃时,其对应的时长值为14min。
这里,温度差值与时长值为负相关关系,即在散热温度与室外环境温度的温度差值越大的情况下,吸附制冷系统的解吸蓄冷进程完成所需的时间就越短。
在本公开实施例中,双制冷式空调还另外设置有两个温度传感器,其中一个传感器用于检测室外侧的室外环境的实时温度,另一个传感器用于检测室外换热器的散热温度。这样,本公开中的室外环境温度和室外换热器的散热温度即可通过该两个温度传感器检测得到。
本公开实施例提供的用于双制冷式空调的控制方法能够根据吸附制冷系统的解吸蓄冷模式的运行时长控制该解吸蓄冷模式的退出,其中吸附制冷系统进行解吸蓄冷的热源是冷媒换热系统制冷时室外换热器排出的热量,因此无需配置额外的热源就能够实现吸附制冷的解吸过程,并能够根据运行时长判断是否已经完成解吸蓄冷过程,实现了在冷媒换热系统制冷时对解吸蓄冷流程的精确;因此本公开实施例并不是简单的将两种制冷系统叠加在同一空调中,是充分考虑了两者制冷原理而巧妙的实现两套制冷结构以及冷媒制冷、解吸蓄冷两个过程的结合,不仅简化了结合后空调的产品结构,也有效提高了空调整体性能。
在一些实施例中,在步骤201的在控制吸附制冷系统进入解吸蓄冷模式之前,还包括:获取冷媒换热系统的室外换热器的散热温度;确定散热温度满足设定温度条件。
这里,解吸蓄冷模式的热量来源是室外换热器向其周围环境散失的热量,因此室外换热器的散热温度的高低能够直接影响到解吸蓄冷模式是否可以正常进行以及进行过程中吸附介质解吸的速率。因此,在控制吸附制冷系统进入解吸蓄冷模式之前,需要先确定室外换热器的散热温度满足设定温度条件,以保证吸附制冷系统的解吸蓄冷模式可以正常进行。
可选的,设定温度条件包括散热温度大于或等于第一温度阈值。在一些实施例中,第一温度阈值为大于吸附介质的解吸临界温度的数值,这样,在散热温度大于或等于第一温度阈值的情况下,也就大于吸附介质的解吸临界温度,从而使吸附部受室外换热器的散热温度的影响下,解吸过程能够正常进行。
这里,第一温度阈值为大于吸附介质的解吸临界温度的数值的情况下,第一温度阈值具体需要预先根据吸附部内选用的吸附介质和吸附剂的类型进行设置,本发明对吸附介质和吸附剂的类型不作限定。
在本实施例中,室外换热器的散热温度可通过前文实施例中公开的温度传感器检测得到。
在一些实施例中,在执行步骤S201的控制吸附制冷系统进入解吸蓄冷模式之后,控制流程还包括:获取室外侧的室外环境温度;若室外环境温度不满足外环温条件,调整一个或多个冷媒换热系统的运行参数,以使室外换热器的散热温度提高。
这里,室外环境温度的高低能够影响到中间散热部对解吸后的吸附介质的散热冷凝速率,进而能够影响到解吸蓄冷模式的效率。因此,本公开实施例中在控制吸附制冷系统进入解吸蓄冷模式之后,还在室外环境温度不满足外环温条件的情况下,通过调整冷媒换热系统的运行参数,使得室外换热器的散热温度提高,从而增加吸附部的吸附介质的解吸速率和解吸量,并能够提高气态吸附介质的温度,从而增大与室外环境温度之间的温度差距,以提高中间散热部对吸附介质的散热吸附效果。
这里,在满足外环温条件的情况下,吸附制冷系统的解吸蓄冷效果较好、中间散热部的冷凝效率较高,因此可以暂不进行调整;而在不满足外环温的情况下,吸附制冷系统的解吸蓄冷效果较差、中间散热部的冷凝效率较低,因此可以通过调整冷媒换热系统的运行参数的情况下间接调整吸附制冷系统的解吸蓄冷速率。
可选的,外环温条件包括:室外环境温度小于或等于外环温阈值。
这里,外环温阈值用于表征室外环境对中间散热部的散热冷凝效率影响高低的临界温度值;在室外环境温度大于该临界温度值时,室外环境对中间散热部的散热冷凝效率影响较大,反之,则影响较小。
又一可选的,外环温条件包括:散热温度与室外环境温度之间的温度差值大于或等于温差阈值。
这里,散热温度为前文中室外换热器的散热温度。散热温度与室外环境温度之间的温度高低能够反映出吸附部的解吸环境与中间散热部的冷凝环境之间的温度差异,因此就可以反映出气态吸附介质在由吸附部进入中间散热部后冷凝量的变化情况。在温度差值大于或等于温差阈值的情况下,室外环境对中间散热部的散热冷凝效率影响较大,反之,则影响较小。
这样,通过上述对外环温的条件的判断,有利于提高对吸附制冷系统的解吸蓄冷模式的控制精度,提高解吸蓄冷效果。
在一些可选的实施例中,本公开用于双制冷式空调的控制方法的步骤还包括:在吸附制冷系统进入解吸蓄冷模式时,控制室外风机以第一转速运行;而在吸附制冷系统退出解吸蓄冷模式时,控制室外风机以第二转速运行。
在本实施例中,第一转速小于第二转速。
这里,在吸附制冷系统进入解吸蓄冷模式时,主要是要利用冷媒换热系统的室外换热器的热量进行吸附部的吸附介质的解吸,因此,控制室外风机以数值较小的第一转速运行,可以减少室外风机驱动热量散热到室外环境中,而使得热量可以集中在吸附部的周围环境中,以提高解吸速率;而在吸附制冷系统退出解吸蓄冷模式时,则控制室内风机以数值较大的第二转速运行,以提高室外换热器的散热效果,进而提升冷媒换热系统的制冷效果。这里,双制冷式空调根据吸附制冷系统的解吸蓄冷模式的启停状态灵活的调整室外风机的转速,即可以提高解吸效果,又能够提高冷媒换热系统的制冷效果。
图3是本公开实施例提供的用于双制冷式空调的控制装置的结构示意图。
本公开实施例提供了一种用于双制冷式空调的控制装置,其结构如图3所示,包括:
处理器(processor)300和存储器(memory)301,还可以包括通信接口(Communication Interface)302和总线303。其中,处理器300、通信接口302、存储器301可以通过总线303完成相互间的通信。通信接口302可以用于信息传输。处理器300可以调用存储器301中的逻辑指令,以执行上述实施例的用于双制冷式空调的控制方法。
此外,上述的存储器301中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器301作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器300通过运行存储在存储器301中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的用于双制冷式空调的控制方法。
存储器301可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器301可以包括高速随机存取存储器,还可以包括非易失性存储器。
这里,本公开实施提供的一种双制冷式空调还包括前文实施例中所示出的用于双制冷式空调的控制装置。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于双制冷式空调的控制方法。
本公开实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于双制冷式空调的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (9)

1.一种应用于双制冷式空调的控制方法,其特征在于,所述双制冷式空调包括冷媒换热系统和吸附制冷系统,其中,所述吸附制冷系统的蒸发部设于室内侧、吸附部设置于所述冷媒换热系统的室外换热器处;
所述控制方法包括:
在所述冷媒换热系统运行冷媒制冷模式的情况下,控制所述吸附制冷系统进入解吸蓄冷模式;在所述控制所述吸附制冷系统进入解吸蓄冷模式之后,还包括:获取室外侧的室外环境温度;若所述室外环境温度不满足室外环温度条件,调整一个或多个所述冷媒换热系统的运行参数,以使所述室外换热器的散热温度提高;
在所述解吸蓄冷模式的运行时长满足设定时长条件时,控制退出所述解吸蓄冷模式。
2.根据权利要求1所述的控制方法,其特征在于,在控制所述吸附制冷系统进入解吸蓄冷模式之前,还包括:
获取所述冷媒换热系统的室外换热器的散热温度;
确定所述散热温度满足设定温度条件;其中,所述设定温度条件包括散热温度大于或等于第一温度阈值。
3.根据权利要求1所述的控制方法,其特征在于,所述室外环温度条件包括:
室外环境温度小于或等于外环温阈值;或者,
散热温度与室外环境温度之间的温度差值大于或等于温差阈值。
4.根据权利要求1所述的控制方法,其特征在于,所述设定时长条件包括:解吸蓄冷模式的运行时长大于或等于第一时长阈值。
5.根据权利要求4所述的控制方法,其特征在于,所述第一时长阈值是根据所述室外换热器的散热温度和所述室外环境温度之间的温度差值确定的。
6.根据权利要求5所述的控制方法,其特征在于,根据所述室外换热器的散热温度和所述室外环境温度之间的温度差值确定所述第一时长阈值,包括:
从预设的关联关系中,查找得到对应所述温度差值的第一时长阈值;其中,所述预设的关联关系包括一个或多个温度差值与第一时长阈值的对应关系。
7.根据权利要求6所述的控制方法,其特征在于,所述预设的关联关系中,温度差值与第一时长阈值为负相关关系。
8.一种应用于双制冷式空调的控制装置,其特征在于,所述双制冷式空调包括冷媒换热系统和吸附制冷系统,其中,所述吸附制冷系统的蒸发部设置于所述冷媒换热系统的室内换热器处、吸附部设置于所述冷媒换热系统的室外换热器处;
所述控制装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述的应用于双制冷式空调的控制方法。
9.一种双制冷式空调,其特征在于,包括:
冷媒换热系统,主要包括室内换热器、室外换热器、压缩机和节流装置;
一个或多个吸附制冷系统,每一所述吸附制冷系统包括:
蒸发部,设置于所述冷媒换热系统的室内换热器处;
吸附部,设置于所述冷媒换热系统的室外换热器处,所述吸附部与所述蒸发部之间构造有吸附介质输送流路;
如权利要求8所述的应用于双制冷式空调的控制装置。
CN202010228810.8A 2020-03-27 2020-03-27 用于双制冷式空调的控制方法、控制装置及双制冷式空调 Active CN111442496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010228810.8A CN111442496B (zh) 2020-03-27 2020-03-27 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010228810.8A CN111442496B (zh) 2020-03-27 2020-03-27 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Publications (2)

Publication Number Publication Date
CN111442496A CN111442496A (zh) 2020-07-24
CN111442496B true CN111442496B (zh) 2021-10-29

Family

ID=71650901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010228810.8A Active CN111442496B (zh) 2020-03-27 2020-03-27 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Country Status (1)

Country Link
CN (1) CN111442496B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003312240A (ja) * 2002-04-19 2003-11-06 Denso Corp 車両用空調装置
CN1495398A (zh) * 2002-08-15 2004-05-12 三菱化学株式会社 吸附剂、含该吸附剂的蓄热器系统、铁铝磷酸盐及其制法
CN102141322A (zh) * 2010-12-09 2011-08-03 山东大学 一种吸附-机械压缩耦合制冷及蓄冷系统
CN102155813A (zh) * 2011-04-20 2011-08-17 上海交通大学 空调机组冷凝热驱动的热化学吸附制冷装置
CN103292393A (zh) * 2012-03-02 2013-09-11 珠海格力电器股份有限公司 太阳能光伏光热复合式空调器
CN108168145A (zh) * 2017-12-29 2018-06-15 广东申菱环境系统股份有限公司 一种吸附和蒸气压缩结合的制冷系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003312240A (ja) * 2002-04-19 2003-11-06 Denso Corp 車両用空調装置
CN1495398A (zh) * 2002-08-15 2004-05-12 三菱化学株式会社 吸附剂、含该吸附剂的蓄热器系统、铁铝磷酸盐及其制法
CN102141322A (zh) * 2010-12-09 2011-08-03 山东大学 一种吸附-机械压缩耦合制冷及蓄冷系统
CN102155813A (zh) * 2011-04-20 2011-08-17 上海交通大学 空调机组冷凝热驱动的热化学吸附制冷装置
CN103292393A (zh) * 2012-03-02 2013-09-11 珠海格力电器股份有限公司 太阳能光伏光热复合式空调器
CN108168145A (zh) * 2017-12-29 2018-06-15 广东申菱环境系统股份有限公司 一种吸附和蒸气压缩结合的制冷系统及其控制方法

Also Published As

Publication number Publication date
CN111442496A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN112880144A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN103983037B (zh) 带除霜功能的双级压缩空调系统
JP2001235251A (ja) 吸着式冷凍機
US11333412B2 (en) Climate-control system with absorption chiller
CN112393400A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN106322810B (zh) 基于调湿与蒸发冷却的无霜空气源热泵系统
JP2016080310A (ja) 冷却システム
CN111442497B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN111442493B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN107726480B (zh) 半解耦式分级除湿降温的除湿热泵系统及方法
CN111442496B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN114353292A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393402A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
KR102159396B1 (ko) 건조제-기반 냉각 시스템
CN112393401A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112880143A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112880147A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393399A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112880146A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN114353293A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN111442494B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN114353294A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN114353296A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN112393405A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
CN114353298A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant