CN106322810B - 基于调湿与蒸发冷却的无霜空气源热泵系统 - Google Patents

基于调湿与蒸发冷却的无霜空气源热泵系统 Download PDF

Info

Publication number
CN106322810B
CN106322810B CN201610857703.5A CN201610857703A CN106322810B CN 106322810 B CN106322810 B CN 106322810B CN 201610857703 A CN201610857703 A CN 201610857703A CN 106322810 B CN106322810 B CN 106322810B
Authority
CN
China
Prior art keywords
valve
heat exchanger
solution
humidity
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610857703.5A
Other languages
English (en)
Other versions
CN106322810A (zh
Inventor
梁彩华
潘晓鹏
汪峰
张小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610857703.5A priority Critical patent/CN106322810B/zh
Publication of CN106322810A publication Critical patent/CN106322810A/zh
Application granted granted Critical
Publication of CN106322810B publication Critical patent/CN106322810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Abstract

本发明公开了一种基于调湿与蒸发冷却的无霜空气源热泵系统,包括制冷剂回路、水和调湿溶液回路和空气回路。制冷剂回路包括压缩机、四通阀、第一换热器、第一单向阀、第二单向阀、第三单向阀、第四单向阀、热交换器、储液器、干燥过滤器、电子膨胀阀、翅片管换热器、气液分离器;水和调湿溶液回路包括调湿器、第一阀门、第二阀门、第三阀门、第四阀门、第一溶液泵、第二溶液泵、流体储存器、热交换器及再生装置;空气回路包括翅片管换热器、调湿器和风机。本发明系统冬季制热运行时可避免结霜,夏季制冷运行时通过蒸发冷却可使冷凝温度更低,具有更高的制冷效率,从而实现系统的冬夏双高效运行。

Description

基于调湿与蒸发冷却的无霜空气源热泵系统
技术领域
本发明属于制冷空调系统设计和制造的技术领域,涉及一种基于调湿与蒸发冷却的无霜空气源热泵系统。
背景技术
空气源热泵兼顾制冷和制热,具有一次能源综合利用效率高、节能、环保以及初投资低等优点。空气源热泵的大力推广对提高我国能源综合利用效率,实现节能减排具有重要意义。空气源热泵冬季制热运行存在的最大问题是室外翅片管换热器表面结霜,随着换热器翅片间霜层的生长,翅片表面与空气间的换热热阻不断增大,空气流量减小,导致系统工作状况恶化,效率降低,甚至不能正常工作,同时当霜结到一定程度时需要适时除霜,除霜过程需要消耗能量且导致供热不连续,热舒适性较低。因此,解决空气源热泵的结霜问题成为迫切需求。
目前,人们大都采取结霜后除霜的方法来解决这一问题,常用的除霜方法是逆循环除霜和热气旁通除霜。但是无论采用哪种除霜方式,除霜时都存在无法连续供热,除霜效率低下等问题,如能在制热过程中,对进入室外换热器的空气进行处理,降低空气中的含湿量,使空气源热泵室外换热器运行过程中不结霜,则其运行效率和供热量将有显著提高。同时在空气源热泵夏季制冷运行时,其冷凝温度与空气的温度相关,如能降低空气的入口温度则可显著的提高空气源热泵夏季的制冷效率。
发明内容
技术问题:本发明的目的是为解决结霜问题给空气源热泵系统带来的性能下降以及夏季制冷效率较低的不足,提供一种冬季通过溶液调湿实现制热运行不结霜,夏季通过蒸发冷却实现更低冷凝温度运行且可提高过冷度的基于调湿与蒸发冷却的无霜空气源热泵系统。
技术方案:本发明的基于调湿与蒸发冷却的无霜空气源热泵系统,包括制冷剂回路、水和调湿溶液回路和空气回路。制冷剂回路包括压缩机、四通阀、第一换热器、第一单向阀、第二单向阀、第三单向阀、第四单向阀、热交换器、储液器、干燥过滤器、电子膨胀阀、翅片管换热器和气液分离器,四通阀上设置有四通阀第一输入端、四通阀第一输出端、四通阀第二输入端和四通阀第二输出端,第一换热器上设置有第一换热器输入端和第一换热器输出端,热交换器上设置有热交换器制冷剂输入端、热交换器制冷剂输出端、热交换器溶液输入端和热交换器溶液输出端,翅片管换热器上设置有翅片管换热器输入端和翅片管换热器输出端;热交换器同时是水和调湿溶液回路的组成部分,翅片管换热器同时是空气回路的组成部分;
制冷剂回路中,压缩机的输出端与四通阀第一输入端连接,四通阀第一输出端与第一换热器输入端连接,第一换热器输出端分成两路,一路与第一单向阀的入口连接,另一路与第三单向阀的出口连接,第一单向阀的出口分成两路,一路与第二单向阀的出口连接,另一路与热交换器制冷剂输入端连接,热交换器制冷剂输出端与储液器的输入端连接,储液器的输出端通过干燥过滤器、电子膨胀阀同时与第四单向阀的入口和第三单向阀的入口连接,第四单向阀的出口与翅片管换热器输入端连接,翅片管换热器输入端同时还与第二单向阀的入口连接,翅片管换热器输出端与四通阀第二输入端连接,四通阀第二输出端与气液分离器的输入端连接,气液分离器的输出端与压缩机的输入端连接;
水和调湿溶液回路包括热交换器、第一阀门、第二阀门、第三阀门、第四阀门、第一溶液泵、第二溶液泵、调湿器、再生装置及流体储存器,调湿器上设置有调湿器喷淋端和调湿器集液端,流体储存器上设置有流体储存器第一输入端、流体储存器第二输入端、流体储存器第三输入端、流体储存器输出端,以及第一液位传感器和第二液位传感器;
水和调湿溶液回路中,第一阀门一端连接外部水源,另一端与流体储存器第一输入端连接,流体储存器第二输入端与调湿器集液端连接,流体储存器输出端与第一溶液泵入口端连接,第一溶液泵出口端分别与热交换器溶液输入端和第二阀门的一端连接,热交换器溶液输出端分别连接第三阀门的一端与第四阀门的一端,第三阀门的另一端通过再生装置、第二溶液泵与流体储存器第三输入端连接,第四阀门另一端分别与第二阀门另一端和调湿器喷淋端连接;
所空气回路包括翅片管换热器、调湿器和风机,翅片管换热器设置在调湿器的出风口,风机设置在翅片管换热器出风口处。
进一步的,本发明系统在夏季工况运行时,第四阀门打开,第二阀门和第三阀门关闭,第一阀门视流体储存器中液位情况开闭,若水位低于第二液位传感器的水位,第一阀门打开,补水至第一液位传感器的水位,第一阀门关闭,第一溶液泵开启,此时回路中液体为水。
进一步的,本发明系统在冬季工况运行时,当需调湿时,第二阀门与第三阀门打开,第一阀门和第四阀门关闭,第一溶液泵和第二溶液泵开启;若不需调湿,需要提高调湿溶液浓度,第三阀门打开,第一阀门、第二阀门和第四阀门关闭,第一溶液泵和第二溶液泵开启;此时回路中液体为调湿溶液。
进一步的,本发明系统中,水和调湿溶液回路中调湿溶液再生的热量来源于热交换器中制冷剂过冷放出的热量,无需额外增加热源。
进一步的,本发明系统中,在夏季工况运行时,利用调湿器在对进入翅片管换热器的空气降温时产生的低温水,在热交换器中实现制冷剂过冷。
本发明无霜空气源热泵系统在夏季制冷模式运行时,低温低压的制冷剂气体从气液分离器中被压缩机吸入、压缩后变成高温高压的过热蒸气排出,经过四通阀进入翅片管换热器,在翅片管换热器中制冷剂与空气换热,制冷剂放出热量冷凝成液体后,再经过第二单向阀进入热交换器中,制冷剂在热交换器中与水进行换热,制冷剂温度进一步降低,实现过冷,过冷后的制冷剂从换交换器流出后,依次经过储液器、干燥过滤器、电子膨胀阀和第三单向阀后,进入第一换热器,制冷剂在第一换热器中吸收热量蒸发成过热蒸气,实现制冷,完全蒸发后的制冷剂从第一换热器出来后经过四通阀进入气液分离器,然后再次被吸入压缩机,完成制冷循环。空气回路中,环境中的空气首先进入调湿器,在调湿器中与水进行传热传质,空气的温度降低,湿度增加,空气从调湿器出来后进入翅片管换热器,空气在翅片管换热器中与制冷换热,吸收制冷剂热量,温度升高后,经过风机后排入环境。水和调湿溶液回路中,第四阀门打开,第二阀门和第三阀门关闭,第一溶液泵开启,此时回路中液体为水,调湿器中,喷洒出的水蒸发使空气温度降低,同时水温也有所降低,剩余的水在重力的作用下,流入流体储存器,流体储存器中的水通过第一溶液泵在热交换器中与制冷剂进行换热后,经过第四阀门再进入调湿器,在流体储存器上设置有两个液位传感器,当流体储存器中的水位过低时,打开第一阀门,补水至目标水位后第一阀门关闭。
无霜空气源热泵冬季制热模式,当空气中水分含量较高时进行调湿工况运行:气液分离器中低温低压的制冷剂气体被压缩机吸入、压缩后排出,经过四通阀进入第一换热器,制冷剂在第一换热器中冷凝成液体后,经过第一单向阀在热交换器中与调湿溶液换热后进入储液器,制冷剂从储液器出来后经过干燥过滤器和电子膨胀阀被节流成气液两相,经过第四单向阀进入翅片管换热器,制冷剂在翅片管换热器中与空气换热后变成过热蒸气,制冷剂从翅片管换热器出来后经过四通阀进入气液分离器,然后再次被吸入压缩机,完成制热循环。空气回路中,环境中的空气首先进入调湿器,在调湿器中调湿溶液吸收空气中的水分,空气的湿度减小(可避免在翅片管换热器上结霜),空气从调湿器出来后进入翅片管换热器,空气在翅片管换热器中与制冷剂换热,放出热量,温度降低后,经过风机后排入环境。水和调湿溶液回路中,第二阀门与第三阀门打开,第一阀门和第四阀门关闭,第一溶液泵和第二溶液泵开启,调湿溶液在调湿器中吸收了空气中的水分后,在重力的作用下流入流体储存器,通过第一溶液泵后分成两路,一路经过第二阀门进入调湿器对空气调湿,另一路进入热交换器,在热交换器与制冷剂液体换热使调湿溶液温度升高,再经过第三阀门进入再生装置,调湿溶液在再生装置中实现浓度再生,溶液浓度升高,通过第二溶液泵进入流体储存器中,维持流体储存器中调湿溶液的浓度;
无霜空气源热泵冬季制热模式,当空气中水分含量较少且流体储存器中调湿溶液浓度较低时进行溶液浓度调节工况运行:制冷剂回路中制冷剂的流动方式与调湿工况相同,水和调湿溶液回路中,第三阀门打开,第一阀门、第二阀门和第四阀门关闭,第一溶液泵和第二溶液泵开启,流体储存器中的调湿溶液由第一溶液泵通过热交换器与制冷剂液体换热使调湿溶液温度升高,再经过第三阀门进入再生装置,使调湿溶液浓度升高,通过第二溶液泵进入流体储存器中,实现将流体储存器中调湿溶液浓度提高,空气回路中,环境中的空气首先进入调湿器,此时调湿器中无溶液喷淋,空气不与溶液进行的传热传质,空气从调湿器出来后进入翅片管换热器,空气在翅片管换热器中与制冷剂换热,放出热量,温度降低后,经过风机后排入环境。
发明人在前期研究中发现空气中水分含量越低,空气源热泵室外换热器越不易结霜。基于溶液除湿和蒸发冷却等理论,提出一种冬季通过溶液调湿实现制热运行不结霜,夏季通过蒸发冷却实现更低冷凝温度运行且可提高过冷度的空气源热泵系统,对提高热泵系统的制冷制热综合运行效率和稳定性具有重要意义。
有益效果:本发明与现有技术相比,具有以下优点:
第一,夏季运行时,与普通空气源热泵相比,空气在调湿器中与水进行传热传质,部分水蒸发进入空气中,使得空气的温度降低,同时水的温度也降低,降低温度的空气进入翅片管换热器中将使得系统的冷凝压力降低,从而提高热泵系统的制冷效率,同时在调湿器中降低了温度的水进入热交换器,与制冷剂液体进行换热,增加制冷剂液体的过冷度,提高了单位制冷剂的制冷量,从而实现热泵系统夏季制冷效率大幅提高。
第二,冬季运行时,由于采用调湿溶液对空气进行了处理,用调湿溶液吸收了空气中部分水分,使进入翅片管换热器中的空气水分下降,空气的露点温度下降至蒸发温度以下,从而实现在运行的过程中翅片管换热器可避免结霜,换热性能不衰减,使得系统的效率和可靠性得到大幅提高,且实现了供热不中断。
第三,冬季运行时,水和调湿溶液回路中制冷剂过冷放出的热量作为调湿溶液再生的热源,无需额外增加热源,使得系统实现了高效再生的同时,设备更加简单高效。
附图说明
图1是基于调湿与蒸发冷却的无霜空气源热泵系统的示意图。
图中有:压缩机1、四通阀2、四通阀第一输入端2a、四通阀第一输出端2b、四通阀第二输入端2c、四通阀第二输出端2d、第一换热器3、第一换热器输入端3a、第一换热器输出端3b、第一单向阀4-1、第二单向阀4-2、第三单向阀4-3、第四单向阀4-4、热交换器5、热交换器制冷剂输入端5a、热交换器制冷剂输出端5b、热交换器溶液输入端5c、热交换器溶液输出端5d、储液器6、干燥过滤器7、电子膨胀阀8、翅片管换热器9、翅片管换热器输入端9a、翅片管换热器输出端9b、气液分离器10、风机11,第一阀门12-1、第二阀门12-2、第三阀门12-3、第四阀门12-4第一溶液泵13-1、第二溶液泵13-2、调湿器14、调湿器喷淋端14a、调湿器集液端14b、再生装置15、流体储存器16、流体储存器第一输入端16a、流体储存器第二输入端16b、流体储存器第三输入端16c、流体储存器输出端16d以及第一液位传感器H1和第二液位传感器H2。
具体实施方式
下面结合实施例和说明书附图对本发明作进一步的说明。
一种基于调湿与蒸发冷却的无霜空气源热泵系统包括制冷剂回路、水和调湿溶液回路及空气回路:
制冷剂回路中,压缩机1的输出端与四通阀第一输入端2a连接,四通阀第一输出端2b与第一换热器输入端3a连接,第一换热器输出端3b分成两路,一路与第一单向阀4-1的入口连接,另一路与第三单向阀4-3的出口连接,第一单向阀4-1的出口分成两路,一路与第二单向阀4-2的出口连接,另一路与热交换器制冷剂输入端5a连接,热交换器制冷剂输出端5b与储液器6的输入端连接,储液器6的输出端通过干燥过滤器7、电子膨胀阀8后,同时与第四单向阀4-4的入口和第三单向阀4-3的入口连接,第四单向阀4-4的出口与翅片管换热器输入端9a连接,翅片管换热器输入端9a同时还与第二单向阀4-2的入口连接,翅片管换热器输出端9b与四通阀第二输入端2c连接,四通阀第二输出端2d与气液分离器10的输入端连接,气液分离器10的输出端与压缩机1的输入端连接;
水和调湿溶液回路中,第一阀门12-1一端连接外部水源,另一端与流体储存器第一输入端16a连接,流体储存器第二输入端16b与调湿器集液端14b连接,流体储存器输出端16d与第一溶液泵13-1入口端连接,第一溶液泵13-1出口端分别与热交换器溶液输入端5c和第二阀门12-2的一端连接,热交换器溶液输出端5d分别连接第三阀门12-3的一端与第四阀门12-4的一端,第三阀门12-3的另一端通过再生装置15、第二溶液泵13-2与流体储存器第三输入端16c连接,第四阀门12-4另一端分别与第二阀门12-2另一端和调湿器喷淋端14a连接;
空气回路中,翅片管换热器9设置在调湿器14的出风口处,风机11设置在翅片管换热器9出风口处。
本发明无霜空气源热泵系统在夏季制冷模式运行时,低温低压的制冷剂气体从气液分离器10中被压缩机1吸入、压缩后变成高温高压的过热蒸气排出,经过四通阀2进入翅片管换热器9,在翅片管换热器9中制冷剂与空气换热,制冷剂放出热量冷凝成液体后,再经过第二单向阀4-2进入热交换器5中,制冷剂在热交换器中与水进行换热,制冷剂温度进一步降低,实现过冷,过冷后的制冷剂从换交换器5流出后,依次经过储液器6、干燥过滤器7、电子膨胀阀8和第三单向阀4-3后,进入第一换热器3,制冷剂在第一换热器3中吸收热量蒸发成过热蒸气,实现制冷,完全蒸发后的制冷剂从第一换热器3出来后经过四通阀2进入气液分离器10,然后再次被吸入压缩机1,完成制冷循环。空气回路中,环境中的空气首先进入调湿器14,在调湿器14中与水进行传热传质,空气的温度降低,湿度增加,空气从调湿器14出来后进入翅片管换热器9,空气在翅片管换热器9中与制冷换热,吸收制冷剂热量,温度升高后,经过风机11后排入环境。水和调湿溶液回路中,第四阀门12-4打开,第二阀门12-2和第三阀门12-3关闭,第一溶液泵13-1开启,此时回路中液体为水,调湿器14中,喷洒出的水蒸发使空气温度降低,同时水温也有所降低,剩余的水在重力的作用下,流入流体储存器16,流体储存器中16的水通过第一溶液泵13-1在热交换器5中与制冷剂进行换热后,经过第四阀门12-4再进入调湿器14,在流体储存器上设置两个液位传感器,当流体储存器中的水位过低时,打开第一阀门,补水至目标水位。
无霜空气源热泵冬季制热模式,当空气中水分含量较高时进行调湿工况运行:气液分离器10中低温低压的制冷剂气体被压缩机1吸入、压缩后排出,经过四通阀2进入第一换热器3,制冷剂在第一换热器3中冷凝成液体后,经过第一单向阀4-1在热交换器5中与调湿溶液换热后进入储液器6,制冷剂从储液器6出来后经过干燥过滤器7和电子膨胀阀8被节流成气液两相,经过第四单向阀4-4进入翅片管换热器9,制冷剂在翅片管换热器9中与空气换热后变成过热蒸气,制冷剂从翅片管换热器9出来后经过四通阀进入气液分离器10,然后再次被吸入压缩机1,完成制热循环。空气回路中,环境中的空气首先进入调湿器14,在调湿器14中调湿溶液吸除空气中的水分,空气的湿度减小(可避免在翅片管换热器9上结霜),空气从调湿器14出来后进入翅片管换热器9,空气在翅片管换热器9中与制冷剂换热,放出热量,温度降低后,经过风机11后排入环境。水和调湿溶液回路中,调湿溶液在调湿器14中吸收了空气中的水分后,在重力的作用下流入流体储存器16,通过第一溶液泵13-1后分成两路,一路经过第二阀门12-2进入调湿器14对空气调湿,另一路进入热交换器5,在热交换器5与制冷剂液体换热使调湿溶液温度升高,再经过第三阀门12-3进入再生装置15,调湿溶液在再生装置15中实现浓度再生,调湿溶液浓度升高,通过第二溶液泵13-2进入流体储存器16中,维持流体储存器16中调湿溶液的浓度。
无霜空气源热泵冬季制热模式,当空气中水分含量较少且流体储存器16中调湿溶液浓度较低时进行溶液浓度调节运行:制冷剂回路中制冷剂的流动方式与调湿工况相同,水和调湿溶液回路中,第三阀门12-3打开,第一阀门12-1、第二阀门12-2和第四阀门12-4关闭,第一溶液泵13-1和第二溶液泵13-2开启,流体储存器16中的调湿溶液由第一溶液泵13-1通过热交换器5与制冷剂液体换热使调湿溶液温度升高,再经过第三阀门12-3进入再生装置15,使调湿溶液浓度升高,通过第二溶液泵13-2进入流体储存器16中,实现将流体储存器16中调湿溶液浓度提高,空气回路中,环境中的空气首先进入调湿器14,此时调湿器14中无溶液喷淋,空气不与溶液进行的传热传质,空气从调湿器14出来后进入翅片管换热器9,空气在翅片管换热器9中与制冷剂换热,放出热量,温度降低后,经过风机11后排入环境。
上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (5)

1.一种基于调湿与蒸发冷却的无霜空气源热泵系统,其特征在于,该无霜空气源热泵系统包括制冷剂回路、水和调湿溶液回路及空气回路:
所述制冷剂回路包括压缩机(1)、四通阀(2)、第一换热器(3)、第一单向阀(4-1)、第二单向阀(4-2)、第三单向阀(4-3)、第四单向阀(4-4)、热交换器(5)、储液器(6)、干燥过滤器(7)、电子膨胀阀(8)、翅片管换热器(9)和气液分离器(10),所述四通阀(2)上设置有四通阀第一输入端(2a)、四通阀第一输出端(2b)、四通阀第二输入端(2c)和四通阀第二输出端(2d),所述第一换热器(3)上设置有第一换热器输入端(3a)和第一换热器输出端(3b),所述热交换器(5)上设置有热交换器制冷剂输入端(5a)、热交换器制冷剂输出端(5b)、热交换器溶液输入端(5c)和热交换器溶液输出端(5d),所述翅片管换热器(9)上设置有翅片管换热器输入端(9a)和翅片管换热器输出端(9b);所述热交换器(5)同时是水和调湿溶液回路的组成部分,所述翅片管换热器(9)同时是空气回路的组成部分;
所述制冷剂回路中,压缩机(1)的输出端与四通阀第一输入端(2a)连接,四通阀第一输出端(2b)与第一换热器输入端(3a)连接,第一换热器输出端(3b)分成两路,一路与第一单向阀(4-1)的入口连接,另一路与第三单向阀(4-3)的出口连接,第一单向阀(4-1)的出口分成两路,一路与第二单向阀(4-2)的出口连接,另一路与热交换器制冷剂输入端(5a)连接,热交换器制冷剂输出端(5b)与储液器(6)的输入端连接,储液器(6)的输出端通过依次连接的干燥过滤器(7)、电子膨胀阀(8)后,同时与第四单向阀(4-4)的入口和第三单向阀(4-3)的入口连接,第四单向阀(4-4)的出口与翅片管换热器输入端(9a)连接,翅片管换热器输入端(9a)同时还与第二单向阀(4-2)的入口连接,翅片管换热器输出端(9b)与四通阀第二输入端(2c)连接,四通阀第二输出端(2d)与气液分离器(10)的输入端连接,气液分离器(10)的输出端与压缩机(1)的输入端连接;
所述水和调湿溶液回路包括热交换器(5)、第一阀门(12-1)、第二阀门(12-2)、第三阀门(12-3)、第四阀门(12-4)、第一溶液泵(13-1)、第二溶液泵(13-2)、调湿器(14)、再生装置(15)及流体储存器(16),所述调湿器(14)上设置有调湿器喷淋端(14a)和调湿器集液端(14b),所述流体储存器(16)上设置有流体储存器第一输入端(16a)、流体储存器第二输入端(16b)、流体储存器第三输入端(16c)、流体储存器输出端(16d)、以及第一液位传感器(H1)和第二液位传感器(H2);
所述水和调湿溶液回路中,第一阀门(12-1)一端连接外部水源,另一端与流体储存器第一输入端(16a)连接,流体储存器第二输入端(16b)与调湿器集液端(14b)连接,流体储存器输出端(16d)与第一溶液泵(13-1)入口端连接,第一溶液泵(13-1)出口端分别与热交换器溶液输入端(5c)和第二阀门(12-2)的一端连接,热交换器溶液输出端(5d)分别连接第三阀门(12-3)的一端与第四阀门(12-4)的一端,第三阀门(12-3)的另一端通过再生装置(15)、第二溶液泵(13-2)与流体储存器第三输入端(16c)连接,第四阀门(12-4)另一端分别与第二阀门(12-2)另一端和调湿器喷淋端(14a)连接;
所述空气回路包括翅片管换热器(9)、调湿器(14)和风机(11),所述翅片管换热器(9)设置在调湿器(14)的出风口处,所述风机(11)设置在翅片管换热器(9)出风口处。
2.根据权利要求1所述的基于调湿与蒸发冷却的无霜空气源热泵系统,其特征在于,该系统在夏季工况运行时,第四阀门(12-4)打开,第二阀门(12-2)和第三阀门(12-3)关闭,第一阀门(12-1)视流体储存器(16)中液位情况开闭,若水位低于第二液位传感器(H2)的水位,第一阀门(12-1)打开,补水至第一液位传感器(H1)的水位,第一阀门(12-1)关闭,第一溶液泵(13-1)开启,此时回路中液体为水。
3.根据权利要求1或2所述的基于调湿与蒸发冷却的无霜空气源热泵系统,其特征在于,该系统在冬季工况运行,当需调湿时,第二阀门(12-2)与第三阀门(12-3)打开,第一阀门(12-1)和第四阀门(12-4)关闭,第一溶液泵(13-1)和第二溶液泵(13-2)开启;若不需调湿,需要提高调湿溶液浓度时,则第三阀门(12-3)打开,第一阀门(12-1)、第二阀门(12-2)和第四阀门(12-4)关闭,第一溶液泵(13-1)和第二溶液泵(13-2)开启;此时水和调湿溶液回路中流体为调湿溶液。
4.根据权利要求1所述的基于调湿与蒸发冷却的无霜空气源热泵系统,其特征在于,所述水和调湿溶液回路中调湿溶液再生的热量来源于热交换器(5)中制冷剂过冷放出的热量,无需额外增加再生热源。
5.根据权利要求1所述的基于调湿与蒸发冷却的无霜空气源热泵系统,其特征在于,该系统在夏季工况运行时,利用所述调湿器(14)在对进入翅片管换热器(9)的空气降温时产生的低温水,在热交换器(5)中实现制冷剂过冷。
CN201610857703.5A 2016-09-27 2016-09-27 基于调湿与蒸发冷却的无霜空气源热泵系统 Active CN106322810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610857703.5A CN106322810B (zh) 2016-09-27 2016-09-27 基于调湿与蒸发冷却的无霜空气源热泵系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610857703.5A CN106322810B (zh) 2016-09-27 2016-09-27 基于调湿与蒸发冷却的无霜空气源热泵系统

Publications (2)

Publication Number Publication Date
CN106322810A CN106322810A (zh) 2017-01-11
CN106322810B true CN106322810B (zh) 2021-11-23

Family

ID=57820271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610857703.5A Active CN106322810B (zh) 2016-09-27 2016-09-27 基于调湿与蒸发冷却的无霜空气源热泵系统

Country Status (1)

Country Link
CN (1) CN106322810B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606843B (zh) * 2017-08-18 2019-11-05 浙江海洋大学 一种带溶液除湿的新型无霜冰柜制冷装置
CN109099614B (zh) * 2018-07-26 2021-03-19 东南大学 一种新型太阳能无霜空气源热泵系统
CN109373622A (zh) * 2018-10-12 2019-02-22 广州市华德工业有限公司 一种空调系统及数据机房空调
CN110319616B (zh) * 2019-06-26 2021-03-05 上海理工大学 无霜型燃气热泵系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105347A (zh) * 2007-07-19 2008-01-16 上海交通大学 可调节湿度的热泵空调器
CN103267325B (zh) * 2013-05-31 2015-06-17 东南大学 基于综合利用的一体化热源塔热泵装置
CN103940164B (zh) * 2014-05-16 2017-01-04 清华大学 一种溶液喷淋式无霜空气源热泵装置
CN203928192U (zh) * 2014-06-23 2014-11-05 青岛海尔空调器有限总公司 具有空气预处理功能的空调室外机
CN105299987B (zh) * 2015-10-13 2017-10-20 东南大学 基于超疏水翅片管换热器的空气源热泵喷淋除霜装置
CN105402937B (zh) * 2015-12-22 2019-01-15 广东志高暖通设备股份有限公司 一种空调系统
CN105890070B (zh) * 2016-06-01 2018-09-28 江苏慧居建筑科技有限公司 多冷凝器及双回风旁通的除湿新风机组及空气调节方法
CN206207778U (zh) * 2016-09-27 2017-05-31 东南大学 一种无霜空气源热泵系统

Also Published As

Publication number Publication date
CN106322810A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN106546028B (zh) 一种无霜型制冷剂双循环新风空调机组
CN100595490C (zh) 基于热湿独立处理的冷水机组及其空气处理方法
WO2017063321A1 (zh) 基于超疏水翅片管换热器的空气源热泵喷淋除霜装置
CN105444446B (zh) 一种机房的制冷控制系统、方法及装置
CN106322810B (zh) 基于调湿与蒸发冷却的无霜空气源热泵系统
CN101261024A (zh) 热湿分段处理的空调机组装置及其空气处理方法
CN109556210B (zh) 一种低温型三联供热泵系统的控制方法
CN107677010B (zh) 一种无露点控制的空调系统及控制方法
CN203550344U (zh) 蒸发式冷凝器、具有该蒸发式冷凝器的蒸发冷却式压缩冷凝机组及蒸发冷却式冷水机组
WO2015027573A1 (zh) 利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置
CN103615836A (zh) 一种螺杆式全热回收风冷热泵空调机组
CN103759468B (zh) 一种双温热源热泵系统
CN112944522A (zh) 一种空调、地暖、生活热水三联供系统
CN107270456B (zh) 一种节能型供冷供热除湿一体化装置
CN106440137A (zh) 一种节能空调系统和制冷方法
CN103423815B (zh) 一种溶液辅助储能型家用空调器
CN111397008A (zh) 一种节能型出风温度可调的除湿工艺系统
CN103267325A (zh) 基于综合利用的一体化热源塔热泵装置
CN206478771U (zh) 一种多联式机房空调系统
CN105352234B (zh) 一种自适应相变冷凝空调系统及其实现方法
CN109186119B (zh) 膜蒸馏再生的无霜型空气源热泵系统装置及方法
CN109724289B (zh) 多效再生无霜热泵系统装置及方法
CN208382439U (zh) 一种粮库用蒸发冷凝式空调机组
CN203595316U (zh) 一种螺杆式全热回收风冷热泵空调机组
CN202993383U (zh) 溶液式恒温除湿机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant