CN111437847A - 一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法 - Google Patents

一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法 Download PDF

Info

Publication number
CN111437847A
CN111437847A CN202010445956.8A CN202010445956A CN111437847A CN 111437847 A CN111437847 A CN 111437847A CN 202010445956 A CN202010445956 A CN 202010445956A CN 111437847 A CN111437847 A CN 111437847A
Authority
CN
China
Prior art keywords
cobalt
ordered porous
nano material
nickel
porous nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010445956.8A
Other languages
English (en)
Inventor
徐联宾
龙新
张艺馨
董静
李帅帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202010445956.8A priority Critical patent/CN111437847A/zh
Publication of CN111437847A publication Critical patent/CN111437847A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法,属于催化剂技术领域。所制备的镍钴双金属磷化物纳米材料具有三维有序相互连通的大孔/介孔结构,其中相邻大孔之间都有相互贯通的窗口,大孔呈现有序排列,孔径大小均一,平均孔径大小在300nm左右;且在每个大孔骨架壁上明显的环状介孔结构,介孔直径大小范围为4~6nm。本发明提供的过渡金属磷化物纳米材料的电催化析氢活性高,且制备方法简单、重复性好,有利于实现工业化规模生产。

Description

一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法
技术领域
本发明涉及一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法,属于金属磷化物纳米材料科学技术与电催化制氢技术领域。
背景技术
能源,可以分为不可再生能源和可再生能源。人类对于化石燃料等不可再生能源的严重依赖不可避免地导致了它们的迅速消耗,以及随之而来的环境污染问题。因此可再生能源的开发和利用对于解决目前存在的能源短缺和环境污染等问题具有重大意义。在诸多可再生能源中,氢能由于其能量密度高、产物绿色清洁等优势,是目前最有应用前景的可再生能源之一。其中电解水技术实现了电解池与可再生能源发电技术的相结合,具有工艺流程简单、运行稳定、操作简便等优点,已经形成一定的工业规模。电解水技术的关键在于催化剂的使用,但是目前工业应用的电解水析氢(HER)催化剂主要是Pt/C等贵金属催化剂,但是高成本和稀有性限制了它们的大规模应用。因此,开发低成本且高效的非贵金属电解水催化剂对于推进电解水技术的工业应用具有非常重要的意义。
过渡金属磷化物是继金属碳化物、硫化物与氮化物之后出现的一类新型过渡金属复合催化剂,由金属与磷形成的一类化合物,兼具金属与半导体特性。由于其独特的双重性质、良好的电子结构效应、高的导电性和较好的耐用性,以及在宽范围pH下均具有良好的HER性能而备受关注。在各种已建立的基于过渡金属磷化物的HER催化剂中,基于Ni和Co的过渡金属磷化物被广泛认为是有前途的贵金属替代品,并且占过渡金属磷化物催化剂的很大比例。由于各组分的协同催化作用,双组分过渡金属磷化物催化剂的电催化性能明显优于单组分金属磷化物催化剂。与此同时,催化剂的尺寸、维度和形态等结构因素都对催化剂的HER活性有强烈影响。为了能够有效地提高镍/钴磷化物的HER性能,研究工作者制备了各种多孔结构的镍/钴磷化物;然而它们大多数存在孔道排列无规律、孔径分布较广等缺点,这导致电解质中的活性分子很难快速传递到多孔催化剂的内部活性位点上,从而很大程度上限制多孔材料的HER性能。因此通在在三维有序大孔材料中引入有序介孔从而构建分层有序、相互连通的分层有序多孔纳米材料是一种提高过渡金属磷化物电催化性能的有效方法。并且分层有序多孔材料可以同时实现多种孔径机制所提供的电催化优势,例如介孔有助于赋予材料较大的表面积和孔体积,从而可提供大量的反应位点,分子的尺寸选择性以及较大的反应界面面积;介孔可以与较大的大孔(直径>50nm)结合,从而可以提高通过结构的质量传输速率,从而消除了纯介孔材料中存在的扩散限制。制备分层有序多孔材料通常采用基于硬模板(如胶体晶体、碳等)和软模板(如非离子表面活性剂)的双模板技术。
因此,如何提供一种催化活性高、稳定性好、且形状可控、比表面积大的过渡金属磷化物材料成为本领域亟待解决的课题。本发明将双模板法推广到分层有序多孔镍钴双金属磷化物纳米材料的制备。
发明内容
本发明的目的在于提供一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法。
本发明的第二目的在于提供一种分层有序多孔镍钴双金属磷化物作为电解水析氢催化剂的应用。
为达到上述目的,本发明提供一种过渡金属磷化物纳米材料,该过渡金属磷化物纳米材料具有分层有序多孔结构(包括三维有序大孔和环状介孔)。本发明的特点在于所采用的制备过程简单易行,条件温和可控,并且可通过改变浸泡模板的目标前驱体的种类调控分层有序多孔镍钴双金属磷化物的金属组分。
本发明上述的分层有序多孔镍钴双金属磷化物纳米材料按以下步骤制备:
1)硬模板(聚甲基丙烯酸甲酯(PMMA)胶体晶体)的合成:制备PMMA胶体晶体首先需要制备粒径均一的单分散的PMMA微球:首先通过氢氧化钠溶液碱洗提纯甲基丙烯酸甲酯(MMA),然后将提纯得到的甲基丙烯酸甲酯(MMA)在水溶液和引发剂条件下发生聚合反应生成PMMA微球的乳浊液,并通过减压过滤除去上述制备的微球乳液中的杂质,转移过滤后的溶液在离心机中离心形成PMMA胶体晶体,然后进行焙烧增强球体之间接触紧密性。
(2)配制含有软模版剂P123和镍钴带结晶水的硝酸盐等的混合前驱体有机溶液,将步骤(1)得到的PMMA胶体晶体作为硬模板浸泡到前驱体有机溶液中形成金属固化前体;过滤干燥,将含有前驱体的硬模板进行低温热解和氧化处理,得到相应的分层有序多孔镍钴双金属氧化物纳米材料。
(3)将所得纳米材料与次磷酸钠进行气固相磷化反应,得到相应的分层有序镍钴双金属磷化物纳米材料。
步骤(2)中有机溶剂为体积比为3:2的乙二醇和无水甲醇混合液。
步骤(2)中每1g软模版剂P123对应8-12ml的有机溶剂、8-12mmol的金属硝酸盐。金属硝酸盐中硝酸镍和硝酸钴的摩尔比根据需要调节。
步骤(2)中低温热解和氧化处理:首先将含有前驱体的硬模板转移至管式炉,在N2中以1℃min-1的速度从室温升温至300℃,保持3h后冷却至室温;然后将样品转移至马弗炉,在空气气氛中以1℃min-1的速度从室温升温至450℃,并保持4h,保证硬质模板和软模板完全去除,冷却至室温得到HOP NiCo2O4
步骤(3):气固相磷化具体步骤如下:称取HOP NiCo2O4和次磷酸钠,分别放置在两个独立瓷舟中,其中装有次磷酸钠的瓷舟放在石英管内上游,装有HOP NiCo2O4的瓷舟放在石英管内的下游,石英管中间用石英棉隔开,石英管两端用石英棉固定,并从石英管上游持续通入氮气,使整个反应体系处于惰性气氛中,然后进行焙烧:在氮气气氛中,从室温开始以2℃ min-1的升温速率升到300℃,保持3h;将反应后自然冷却的产物用乙醇和去离子水交叉洗涤数次,干燥。
本发明通过双模板法制备的分层有序多孔镍钴双金属磷化物纳米材料。所制备的特殊纳米结构的镍钴双金属磷化物纳米材料呈现出三维有序相互连通的大孔/介孔结构。该纳米材料的独特结构不仅缩短了催化剂的质量和电荷输运路径,使催化活性位点得到了充分暴露,也使反应物种得到了更充分的反应,从而使催化剂在电解水析氢过程中表现出较高HER性能。
附图说明
图1为实施例1制备的分层有序多孔镍钴双金属磷化物的分层式整体扫描电镜图。
图2为实施例1制备的分层有序多孔镍钴双金属磷化物的上层扫描电镜图。
图3为实施例1制备的分层有序多孔镍钴双金属磷化物的大比例尺寸透射电镜图。
图4为实施例1制备的分层有序多孔镍钴双金属磷化物的小比例尺寸透射电镜图。
图5为实施例2制备的镍钴双金属磷化物纳米颗粒的扫描电镜图。
图6为采用本发明的方法制备的分层有序多孔镍钴双金属磷化物和镍钴双金属磷化物纳米颗粒的HER性能线性扫描曲线(A)和塔菲尔曲线(B).
图7为气固相磷化过程示意图。
具体实施方式
以下结合实例对本发明的方法作进一步的说明。这些实例进一步描述和说明了本发明范围内的实施方案。给出的实例仅用于说明的目的,对本发明不构成任何限定,在不背离本发明精神和范围的条件下可对其进行各种改变。
这些实施例说明了有序多级孔道结构的镍钴双金属磷化物(HOP NiCoP)及其对比样品NiCoP纳米颗粒(NPs)的合成过程。
实施例1
分层有序多孔镍钴双金属磷化物(HOP NiCoP)的制备方法,步骤如下:
1)步骤(1):PMMA胶体晶体的合成:制备PMMA胶体晶体主要分为以下三步:首先提纯MMA:量取100ml的MMA置于500ml的烧杯中,并加入100ml的NaOH溶液(0.1M),搅拌5min后,用分液漏斗进行分液,重复两次,以除去MMA中的阻聚剂,将碱洗后的MMA在0.9MPa和40~45℃下进行减压蒸馏得到一定量的馏出液(即为提纯的MMA),共为78ml。其次聚合反应生成PMMA微球:量取体积为287ml的去离子水,加入四口圆底烧瓶中并放在温度为80℃,转速为330r min-1的油浴锅中,加入MMA馏出液;准确称取0.29g引发剂2,2'-偶氮二异丁基脒二盐酸盐(AAPH),溶于10ml的去离子水中,预热至70℃后缓慢加入到上述四口烧瓶中,氩气下反应2h后,冷却至室温。最后离心沉降生成PMMA胶体晶体:使用玻维滤纸对上述制备的微球乳液进行减压过滤,然后将滤液放至离心机中以1500r min-1的速度离心48h,取下层白色固体在室温下干燥3天,形成PMMA胶体晶体单块。最后将其在115℃下焙烧20min得到结实的PMMA胶体晶体,以增强每个球体之间的接触紧密性。用于分层有序多孔材料合成的PMMA球的直径范围为320±5nm。
步骤(2):多级有序孔道镍钴双金属氧化物(HOP NiCo2O4)的合成:将1g P123溶解在10mL体积比为3:2的乙二醇和无水甲醇混合溶液后加入3mmol的Ni(NO3)2·6H2O和7mmolCo(NO3)2·6H2O,搅拌获得透明均匀的前驱液;将2.0g PMMA胶体晶体浸泡在前驱液中,挥发至模板微球的空隙被透明溶液完全填充。采用漏斗过滤多余的液体后,将获得的湿颗粒在60℃下恒温干燥。最后通过两段升温程序将含有前驱液的固体转变为相应的氧化物,具体升温程序如下:首先将干燥的颗粒转移至管式炉,在200mL min-1的N2中以1℃min-1的速度从室温升温至300℃,保持3h后冷却至室温;然后将样品转移至马弗炉,在空气气氛中以1℃min-1的速度从室温升温至450℃,并保持4h,保证大孔和介孔模板完全去除,冷却至室温得到HOP NiCo2O4
步骤(3):HOP NiCoP的合成:气固相磷化具体步骤如下:称取一定量的HOP NiCo2O4和10倍量的次磷酸钠,分别放置在两个独立瓷舟中,其中装有次磷酸钠的瓷舟放在石英管内上游,装有HOP NiCo2O4的瓷舟放在石英管内的下游,石英管中间用石英棉隔开,石英管两端用石英棉固定,并从石英管上游持续通入氮气,使整个反应体系处于惰性气氛中,然后进行焙烧:在氮气气氛中,从室温开始以2℃ min-1的升温速率升到300℃,保持3h;将反应后自然冷却的产物用乙醇和去离子水交叉洗涤数次,离心收集产物,在真空干燥箱中过夜干燥,即得到黑色粉末状的HOP NiCoP。
图1和图2是产物的扫描电镜(SEM)图。扫描电镜(SEM)图表明,所得多级有序孔道镍钴双金属磷化物具有大量相互连通的三维大孔结构,所述的三维大孔结构为空腔球壁结构,且每个空腔球壁上均有至少三个小孔窗口;空腔球壁呈现有序排列,空腔球壁成层状排列,每一层又成阵列排布,每一个空腔球壁通过上述的小孔窗口使得整个所有的空腔球壁的空腔相互贯通;空腔球壁的直径大小均一,平均大小在300nm左右,稍小于PMMA微球的粒径(320±5nm),这是由于金属固化前体在生成产物过程中发生体积收缩。此外,每个空腔球壁里都可以观察到三个大小在100~150nm范围内的小孔窗口,这是由于反胶体晶体和胶体晶体之间的互补结构,即每一个PMMA球下面由3个PMMA球支撑。当高温去除这三个PMMA微球之后,微球之间的接触点就会形成3个小孔窗口。这些不同大小的大孔有利于电解液的进入与多级有序孔道镍钴双金属磷化物中活性位点反应和电解水产物的析出,从而提高催化剂的电解水析氢性能。
图3和图4是产物的透射电镜(TEM)图。从透射电镜(TEM)图可知,可以看出在每个空腔球壁骨架壁上明显的介孔形成的环状孔结构,这说明多级有序孔道镍钴双金属磷化物内部存在着多层次三维有序大孔/介孔结构。其中壁厚为20~24nm和介孔直径为4~6nm。
实施例2(即对比例)
NiCoP纳米颗粒(NPs)的制备方法,步骤同实施例1,不同之处是没有使用硬模板(PMMA胶体晶体)和软模版(P123)。
图5是NiCoP NPs的扫描电镜(SEM)图。扫描电镜(SEM)图表明,图中显示产物的微观外形为球状,但是由于NiCoP纳米颗粒具有较高的表面极性,表面能高,较多的纳米粒子聚集成团,颗粒的边界非常模糊,且颗粒分布不均匀,观察的颗粒是团聚体,未观察到存在多孔的存在。
测试例1有序多级孔道结构的镍钴双金属磷化物(HOP NiCoP)纳米材料的HER性能测试
采用三电极电化学工作站测试实施例1制备的HOP NiCoP和NiCoP NPs纳米材料的电催化性能。其三电极体系由工作电极(负载有催化剂的旋转圆盘电极)、参比电极(Ag/AgCl(饱和KCl溶液))以及对电极(Pt电极)组成。试验液为1M KOH溶液。
实验在298±2K温度范围内进行。将制备得到的分层有序多孔结构的镍钴双金属磷化物(HOP NiCoP)纳米材料(0.025mg)涂布涂敷在玻碳电极上,1M KOH溶液中测试获得HOP NiCoP纳米材料的线性扫描(LSV)曲线,并根据LSV曲线得到塔菲尔(Tafel)
曲线。
图6为本发明实施例1制备的分层有序多孔结构的NiCoP纳米材料和对比材料NiCoP NPs的电催化析氢性能LSV曲线(a)和Tafel曲线(b)。从图6(a)中看出,本发明实施例制备的HOP NiCoP纳米材料相比于NiCoP NPs具有优异的电催化析氢性能,在电流密度为10mA cm-2时,过电位分别为73mV,明显小于NiCoP NPs在相同电流密度下的过电位(158mV);从图6(b)中看出,HOP NiCoP在线性范围内的Tafel斜率,为60mV dec-1,同样小于NiCoP NPs的Tafel斜率为92mV dec-1

Claims (6)

1.一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法,其特征在于,包括以下步骤:
1)硬模板即聚甲基丙烯酸甲酯(PMMA)胶体晶体的合成:制备PMMA胶体晶体首先需要制备粒径均一的单分散的PMMA微球:首先通过氢氧化钠溶液碱洗提纯甲基丙烯酸甲酯(MMA),然后将提纯得到的甲基丙烯酸甲酯(MMA)在水溶液和引发剂条件下发生聚合反应生成PMMA微球的乳浊液,并通过减压过滤除去上述制备的微球乳液中的杂质,转移过滤后的溶液在离心机中离心形成PMMA胶体晶体,然后进行焙烧增强球体之间接触紧密性;
(2)配制含有软模版剂P123和镍钴带结晶水的硝酸盐等的混合前驱体有机溶液,将步骤(1)得到的PMMA胶体晶体作为硬模板浸泡到前驱体有机溶液中形成金属固化前体;过滤干燥,将含有前驱体的硬模板进行低温热解和氧化处理,得到相应的分层有序多孔镍钴双金属氧化物纳米材料;
(3)将所得纳米材料与次磷酸钠进行气固相磷化反应,得到相应的分层有序镍钴双金属磷化物纳米材料。
2.按照权利要求1所述的一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法,其特征在于,步骤(2)中有机溶剂为体积比为3:2的乙二醇和无水乙醇混合液。
3.按照权利要求1所述的一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法,其特征在于,步骤(2)中每1g软模版剂P123对应8-12ml的有机溶剂、8-12mmol的金属硝酸盐。金属硝酸盐中硝酸镍和硝酸钴的摩尔比根据需要调节。
4.按照权利要求1所述的一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法,其特征在于,步骤(2)中低温热解和氧化处理:首先将含有前驱体的硬模板转移至管式炉,在N2中以1℃min-1的速度从室温升温至300℃,保持3h后冷却至室温;然后将样品转移至马弗炉,在空气气氛中以1℃min-1的速度从室温升温至450℃,并保持4h,保证硬质模板和软模板完全去除,冷却至室温得到HOP NiCo2O4
5.按照权利要求1-4任一项所述的方法制备得到的分层有序多孔镍钴双金属磷化物纳米材料。
6.按照权利要求1-4任一项所述的方法制备得到的分层有序多孔镍钴双金属磷化物纳米材料得应用,作为电解水析氢催化剂的应用。
CN202010445956.8A 2020-05-22 2020-05-22 一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法 Withdrawn CN111437847A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010445956.8A CN111437847A (zh) 2020-05-22 2020-05-22 一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010445956.8A CN111437847A (zh) 2020-05-22 2020-05-22 一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法

Publications (1)

Publication Number Publication Date
CN111437847A true CN111437847A (zh) 2020-07-24

Family

ID=71657098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010445956.8A Withdrawn CN111437847A (zh) 2020-05-22 2020-05-22 一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN111437847A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614994A (zh) * 2020-12-10 2021-04-06 三峡大学 一种水系锌钴电池叠层正极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407969A (zh) * 2013-07-31 2013-11-27 济南大学 一种三维有序大孔-介孔金属氧化物或复合氧化物的气相渗透-沉淀制备方法及所得产品
CN106824238A (zh) * 2017-01-10 2017-06-13 北京化工大学 用于电解水的双功能催化剂纳米级Ni2P‑CoP双金属磷化物
CN109319753A (zh) * 2018-11-26 2019-02-12 同济大学 一种三维有序大孔镍铁磷化物材料及其制备和应用
WO2019241717A1 (en) * 2018-06-15 2019-12-19 University Of Houston System HIERARCHICAL METAL PHOSPHIDE-SANDWICHED Ni5P4-BASED MICROSHEET ARRAYS AS ROBUST PH-UNIVERSAL ELECTROCATALYSTS FOR EFFICIENT HYDROGEN GENERATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407969A (zh) * 2013-07-31 2013-11-27 济南大学 一种三维有序大孔-介孔金属氧化物或复合氧化物的气相渗透-沉淀制备方法及所得产品
CN106824238A (zh) * 2017-01-10 2017-06-13 北京化工大学 用于电解水的双功能催化剂纳米级Ni2P‑CoP双金属磷化物
WO2019241717A1 (en) * 2018-06-15 2019-12-19 University Of Houston System HIERARCHICAL METAL PHOSPHIDE-SANDWICHED Ni5P4-BASED MICROSHEET ARRAYS AS ROBUST PH-UNIVERSAL ELECTROCATALYSTS FOR EFFICIENT HYDROGEN GENERATION
CN109319753A (zh) * 2018-11-26 2019-02-12 同济大学 一种三维有序大孔镍铁磷化物材料及其制备和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614994A (zh) * 2020-12-10 2021-04-06 三峡大学 一种水系锌钴电池叠层正极材料的制备方法
CN112614994B (zh) * 2020-12-10 2023-02-07 三峡大学 一种水系锌钴电池叠层正极材料的制备方法

Similar Documents

Publication Publication Date Title
Li et al. Interface engineering of transitional metal sulfide–MoS 2 heterostructure composites as effective electrocatalysts for water-splitting
Chen et al. Well-defined CoSe 2@ MoSe 2 hollow heterostructured nanocubes with enhanced dissociation kinetics for overall water splitting
Yan et al. Self-supported FeNi-P nanosheets with thin amorphous layers for efficient electrocatalytic water splitting
US20240228296A1 (en) Fabrication method and application of cobalt and nitrogen co-doped three-dimensional structured carbon matrix
Sun et al. Self-supporting metal–organic framework-based hydrogen and oxygen electrocatalysts
Si et al. Co–NiFe layered double hydroxide nanosheets as an efficient electrocatalyst for the electrochemical evolution of oxygen
Peng et al. Ordered macroporous MOF-based materials for catalysis
CN108315758B (zh) 一种电解水产氢催化剂及其制备方法
Zhou et al. Phase and composition controllable synthesis of nickel phosphide-based nanoparticles via a low-temperature process for efficient electrocatalytic hydrogen evolution
CN110614105A (zh) 用于析氢的Mo2C/NiCoSex异质结电催化材料及其制备方法
Yang et al. Synthetic strategies of two-dimensional porous materials towards highly effective catalysts
Xiao et al. Facile synthesis of ultrafine iron-cobalt (FeCo) nanocrystallite-embedded boron/nitrogen-codoped porous carbon nanosheets: Accelerated water splitting catalysts
CN108499584B (zh) Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法
Yu et al. 4-Methyl-5-vinyl thiazole modified Ni-MOF/g-C3N4/CdS composites for efficient photocatalytic hydrogen evolution without precious metal cocatalysts
CN114836780A (zh) 一种水解制氢用六元高熵泡沫及其制备方法
He et al. Deciphering engineering principle of three-phase interface for advanced gas-involved electrochemical reactions
CN110013855B (zh) 高效氧化钴镍/氢氧化镍复合物电催化剂及其制备方法和应用
CN112156794A (zh) 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用
CN111437847A (zh) 一种分层有序多孔镍钴双金属磷化物纳米材料的制备方法
CN108479809B (zh) 一种MnS/Ni3S4复合材料及其制备方法和应用
He et al. Black phosphorous dots phosphatized bio-based carbon nanofibers/bimetallic organic framework as catalysts for oxygen evolution reaction
CN116493024A (zh) 三元In2O3@SnIn4S8/CdS异质结光催化剂的制备方法及其应用
CN113731424B (zh) 一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用
CN112661203B (zh) 一种纳米棒状NiCo2O4材料的制备方法及其应用
CN113293405B (zh) 磷化物纳米晶@氮碳分级纳米片阵列及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200724

WW01 Invention patent application withdrawn after publication