CN113731424B - 一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用 - Google Patents

一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用 Download PDF

Info

Publication number
CN113731424B
CN113731424B CN202111131244.XA CN202111131244A CN113731424B CN 113731424 B CN113731424 B CN 113731424B CN 202111131244 A CN202111131244 A CN 202111131244A CN 113731424 B CN113731424 B CN 113731424B
Authority
CN
China
Prior art keywords
sulfur
zcs
visible light
hydrogen production
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111131244.XA
Other languages
English (en)
Other versions
CN113731424A (zh
Inventor
李镇江
杨丽娜
杨慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202111131244.XA priority Critical patent/CN113731424B/zh
Publication of CN113731424A publication Critical patent/CN113731424A/zh
Application granted granted Critical
Publication of CN113731424B publication Critical patent/CN113731424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明涉及一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用,属于半导体光催化领域。所述的Vs‑ZCS/Ni0.6Co0.4(OH)2复合材料,是以富含表面硫空位的Zn0.5Cd0.5S与硝酸镍、硝酸钴为原料,采用一步水热法合成,制备工艺简单,易于实现规模化生产。本发明的Vs‑ZCS/Ni0.6Co0.4(OH)2光催化剂在硫缺陷及S型电荷转移机理的协同作用下,同时实现了宽的光谱响应和高效的光生载流子分离,因而表现出高达58.9~64.6mmol·h‑1·g‑1的光催化分解水制氢性能。同时,Vs‑ZCS/Ni0.6Co0.4(OH)2光催化剂经过五个循环连续使用后依然保持大约93%的光催化活性,显示出良好的稳定性。

Description

一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及 其应用
技术领域
本发明涉及一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用,属于半导体光催化领域。
背景技术
为了解决由化石燃料的过度消耗所引起的能源短缺和环境污染问题,对新能源的开发和利用变得非常迫切。近年来,氢能作为一种具有高能量密度的清洁能源受到人们的青睐,而利用太阳光照射半导体光催化剂分解水制取氢气被广泛认为是一种具有潜力的获取氢气的方法。
过渡金属硫化物ZnCdS易合成,具备作为光催化剂应有的能带结构灵活可调、对可见光响应及耐光腐蚀的特点。然而,由于存在光生电子和空穴快速复合的缺点,ZnCdS的实际应用受到了限制。因此,需要对ZnCdS进行改性,以进一步提高其光催化活性。
近年来,采用纳米结构工程、元素掺杂、缺陷工程、负载贵金属(Ag/Pt)、构建异质结和引入助催化剂等策略,科学工作者获得了光催化活性得到明显提升的系列ZnCdS基光催化剂。其中,在半导体中引入缺陷,不仅可以增加自由电子的捕获位点以此降低光生载流子的复合速率,还可以引入掺杂能级,达到拓宽光谱响应范围从而缩小材料光学带隙并对光催化性能产生影响的目的。因此,缺陷工程逐渐成为调控半导体材料电子结构和界面电荷传输动力学性质的重要手段。例如,通过加入适量的NaBH4,Wang等人获得了产氢速率提升近10倍的含硫空位的ZnS光催化剂(Wang G,Huang B B,Li Z J,Lou Z Z,Wang Z Y,DaiY,Whangbo M-H,Scientific Reports 5(2015)8544);此外,通过对ZnCdS进行乙二胺锂处理,Ha团队获得了系列含Zn、S双空位的ZnCdS固溶体。所得ZnCdS光催化剂产氢速率最高达到33.6mmol·h-1·g-1(Ha E N,Ruan S H,Li D Y,Zhu Y M,Chen Y P,Qiu J Y,Chen Z H,Xu T T,Su J Y,Wang,L Y,Hu J Q,Nano Research(2021),DOI:10.1007/s12274-021-3587-5)。
过渡金属氢氧化物或具有大比表面积的层状双金属氢氧化物由于具有合适的能带结构和优异的载流子迁移效率,近年来被广泛用于电催化和超级电容器领域。此外,也有研究表明,在光催化剂表面沉积适量过渡金属氢氧化物可拓宽原有材料的光吸收范围,提升材料的光催化活性。例如,中国发明专利(ZL201710370306.X),公开了一种磁性四氧化三钴/氢氧化钴/还原氧化石墨烯三元异质结光催化剂的制备方法,所得产物在可见光照射下具有高达90%的光催化降解刚果红效率,比纯相Co3O4性能提升近四倍。铌酸锡反应活性且量子效率低,光催化还原CO2性能较差。中国发明专利(ZL201711052930.1)提供了一种一步法原位生成氢氧化钴后自组装为寡层的Co(OH)2/SnNb2O6复合材料。所得材料光催化还原CO2性能达到纯相SnNb2O6的近20倍;Gao等人通过将Ni(OH)2纳米片负载在无缺陷的Zn0.5Cd0.5S纳米粒子表面,获得了光催化产氢速率为6.87mmol·h-1·g-1,420nm处量子效率为16.8%的稳定2D/0D Ni(OH)2/Zn0.5Cd0.5S异质结,该性能几乎为纯相Zn0.5Cd0.5S的43倍(0.16mmol·h-1·g-1)。(Gao X Y,Zeng D Q,Yang J R,Ong W-J,Fujita T,He X L,Liu JQ,Wei Y Z,Chinese Journal of Catalysis 42(2021)1137)。
ZnCdS或含缺陷的ZnCdS光催化剂具有高于H+/H2的还原电位,而Ni-Co双金属氢氧化物氧化能力较强。采用缺陷和异质结协同策略,将含缺陷的ZnCdS与Ni-Co双金属氢氧化物进行复合可以获得Step(S)型异质结。在表面缺陷、内建电场、能带弯曲和静电引力的共同作用下,S型锌镉硫/镍钴氢氧化物异质结实现了更宽的可见光区光谱响应、更加高效的半导体内光生电子-空穴分离和更强的氧化还原能力,从而使光催化性能得到显著提升。
发明内容
本发明目的在于提供一种具有优异光催化性能的含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用。本发明将含表面硫缺陷的Zn0.5Cd0.5S(Vs-ZCS)与镍钴氢氧化物Ni0.6Co0.4(OH)2复合,形成具有S型界面电荷转移机制的Vs-ZCS/Ni0.6Co0.4(OH)2光催化异质结。所获得的异质结能够同时实现较宽的光谱响应和高效的光生载流子分离,因而表现出优异的光催化产氢性能。
为实现上述目的,本发明采用的技术方案为:
(1)含硫缺陷Vs-ZCS/Ni0.6Co0.4(OH)2复合光催化剂的制备
将所制备的含有硫空位的Vs-ZCS粉末超声分散到去离子水中,再将Ni(NO3)2·6H2O、Co(NO3)2·6H2O、NH4F和尿素依次加入到上述分散液中,并将上述分散液转移至反应釜中,在70~90℃下反应6~8h后,自然冷却至室温,离心分离出产物,并先后用去离子水和无水乙醇洗涤、真空干燥,即得到Vs-ZCS/Ni0.6Co0.4(OH)2复合可见光催化剂。
(2)光催化产氢体系的构筑
在密封反应器中进行光催化分解水制氢实验,并通过循环冷却水使反应温度保持在5℃。将制备得到的Vs-ZCS/Ni0.6Co0.4(OH)2复合材料分散在0.35M Na2S/0.25M Na2SO3混合水溶液中并将其转移至密闭反应器,抽真空后,在可见光照射下进行光解水制氢反应,采用气相色谱法(GC 7900Techcomp,Ar2为载气)对生成的氢气进行分析。
本发明所公开的一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用,与其他ZnCdS基催化剂相比,其显著优点在于:
(1)本发明采用一步水热反应法完成材料制备,工艺简单,易于控制,可大量制备;
(2)通过本发明制备得到的复合材料由纳米棒或纳米颗粒状含缺陷的Vs-ZCS与纳米纤维状Ni0.6Co0.4(OH)2构成。与纯相Vs-ZCS相比,Ni0.6Co0.4(OH)2与Vs-ZCS之间形成较多间隙,能够提供更多的光催化活性位点;
(3)通过本发明制备出的Vs-ZCS/Ni0.6Co0.4(OH)2复合材料,得益于空位和异质结的协同效应,表现出高达58.9~64.6mmol·h-1·g-1的产氢速率,经过五个连续循环的光催化产氢实验后依然保持大约93%的光催化活性,表现出良好的稳定性。
附图说明
图1是实施例1制备的Vs-ZCS/Ni0.6Co0.4(OH)2的透射电镜(TEM)和高分辨透射电镜(HRTEM)图;
图2是实施例1制备的Vs-ZCS/Ni0.6Co0.4(OH)2的原位电子顺磁共振(EPR)图;
图3是实施例1制备的Vs-ZCS/Ni0.6Co0.4(OH)2在可见光(λ≥420nm)照射下的光催化产氢性能图;
图4是实施例1制备的Vs-ZCS/Ni0.6Co0.4(OH)2在可见光(λ≥420nm)照射下的光催化产氢循环稳定性测试图;
图5是实施例2制备的Vs-ZCS/Ni0.6Co0.4(OH)2在可见光(λ≥420nm)照射下的光催化产氢性能图;
图6是实施例2制备的Vs-ZCS/Ni0.6Co0.4(OH)2在可见光(λ≥420nm)照射下的光催化产氢循环稳定性测试图;
图7是实施例3制备的Vs-ZCS/Ni0.6Co0.4(OH)2在可见光(λ≥420nm)照射下的光催化产氢性能图。
具体实施方式
下面通过具体的实施例对本发明做进一步的说明,附图及具体实施例仅是示例性的,不以任何方式限制本发明的范围。
实施例1:
(1)在搅拌下将5mmol Zn(Ac)2·2H2O、5mmol Cd(Ac)2·2H2O和12mmol硫脲加入到含有43mL水和7mL水合肼的混合溶液中,在室温下搅拌1h后将溶液转移至容积为100mL的反应釜内,在220℃下反应12h;待高压反应釜自然冷却至室温后,离心沉淀,分别用去离子水和乙醇洗涤沉淀3次,在60℃下真空干燥8h后得到含缺陷的Vs-ZCS粉末;
(2)称取0.1g Vs-ZCS粉末分散到30mL去离子水中,再将0.0094g Ni(NO3)2·6H2O和0.0063g Co(NO3)2·6H2O以及0.0059g NH4F、0.024g尿素依次加入到上述溶液中,搅拌1h后转移至100mL反应釜内,在90℃下反应6h,待高压反应釜冷却至室温后,分别用去离子水和乙醇洗涤沉淀3次,再在60℃下真空干燥8h,得到Vs-ZCS/Ni0.6Co0.4(OH)2复合光催化剂,其透射电镜(SEM)和EPR表征结果分别见说明书附图1和图2。从图1(a)可知,复合材料由纳米棒和纳米颗粒状Vs-ZCS与纳米纤维状Ni0.6Co0.4(OH)2构成。其中,Vs-ZCS纳米颗粒尺寸为40~50nm,纳米棒直径为40~120nm,Ni0.6Co0.4(OH)2纳米纤维直径为20~30nm。从高分辨透射电镜图1(b)中可看到清晰的晶格条纹,其分别对应于Vs-ZCS的(101)面(D=0.315nm)以及Ni0.6Co0.4(OH)2的(220)面(D=0.267nm),且两条纹相紧密的接触表明Vs-ZCS与Ni0.6Co0.4(OH)2异质结形成。图2显示,g=2.003处存在强的洛伦兹信号。这表明,复合光催化剂具有丰富的硫空位缺陷。
(3)光催化水分解实验在250ml密封Pyrex反应器(Labsolar-6A,Perfect Light,Beijing)中进行。通过将该反应器连接低温恒温槽,使反应温度维持在5℃。光源采用装有420nm紫外截止滤光片的PLMW2000 300W Xe灯,光照强度为254mW/cm2。将20mg实施例1制备的光催化剂分散在含有0.35M Na2S/0.25M Na2SO3的100mL水溶液中,搅拌抽真空30min后,开启光源。产生的氢气每30min自动取样一次,并采用气相色谱进行分析。催化剂的光催化产氢速率根据4h的产氢量进行评估,结果见说明书附图3。由图3可以看出,Vs-ZCS/Ni0.6Co0.4(OH)2复合光催化剂产氢速率高达64.6mmol·h-1·g-1
(4)光催化产氢循环稳定性测试步骤与光催化产氢速率测试相同。一个循环结束后,离心,收集催化剂,用去离子水和乙醇分别洗涤并干燥,然后超声分散到新鲜的牺牲剂溶液中进行下一个循环测试,如此循环5次。实施例1制备得到的光催化剂产氢循环稳定性测试结果见说明书附图4。从图4可以看出,所制备的Vs-ZCS/Ni0.6Co0.4(OH)2光催化剂经过20h连续5次的循环使用后依然保持首次使用催化剂93%的光催化活性。
实施例2:
称取按实施例1所述制备的Vs-ZCS粉末0.1g分散到30mL去离子水中,再将0.0113gNi(NO3)2·6H2O和0.0076g Co(NO3)2·6H2O以及0.0071g NH4F、0.029g尿素依次加入到上述溶液中;搅拌1h后转移至100mL反应釜内,在80℃下反应7h;待高压反应釜冷却至室温后,分别用去离子水和乙醇洗涤沉淀3次,再在60℃下真空干燥8h后得到Vs-ZCS/Ni0.6Co0.4(OH)2复合光催化剂。按照实施例1的步骤(3)、(4)进行光催化分解水制氢性能和循环稳定性能测试,结果见说明书附图5和图6。从图5可知,所制备复合催化剂的可见光光催化产氢速率可达60.3mmol·h-1·g-1。且图6显示,在经过20h的循环后,其依然保持93%的光催化活性。
实施例3:
称取按实施例1所述制备的Vs-ZCS粉末0.1g分散到30mL去离子水中,再将0.0132gNi(NO3)2·6H2O和0.0089g Co(NO3)2·6H2O以及0.0084g NH4F、0.0338g尿素依次加入到上述溶液中;搅拌1h后转移至100mL反应釜内,在70℃下反应8h;待高压反应釜冷却至室温后,分别用去离子水和乙醇洗涤沉淀3次,再在60℃下真空干燥8h后得到Vs-ZCS/Ni0.6Co0.4(OH)2复合光催化剂。按照实施例1的步骤(3)进行光催化分解水制氢性能测试,产氢性能见说明书附图7。从图7可以看到,在可见光照射下,Vs-ZCS/Ni0.6Co0.4(OH)2复合光催化剂产氢速率可达58.9mmol·h-1·g-1

Claims (2)

1.一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂在光催化产氢中的应用,其特征在于,含硫空位的Zn0.5Cd0.5S即Vs-ZCS与Ni0.6Co0.4(OH)2形成异质结,Vs-ZCS与Ni0.6Co0.4(OH)2的质量比为100 : 5 ~ 7,复合可见光催化剂的制备步骤为:
(1)将Vs-ZCS粉末超声分散到去离子水中,再按Ni(NO3)2·6H2O与Co(NO3)2·6H2O的摩尔比为3 : 2、Ni(NO3)2·6H2O+Co(NO3)2·6H2O与NH4F以及尿素的摩尔比为1 : 3 : 7.4,依次将Ni(NO3)2·6H2O、Co(NO3)2·6H2O、NH4F和尿素加入到上述分散液中;
(2)将步骤(1)所得分散液转移至反应釜中,在70 ~ 90 ℃下水热反应6 ~ 8 h;
(3)待反应釜自然冷却至室温,离心分离出产物,并先后用去离子水和无水乙醇洗涤、真空干燥,即得到Vs-ZCS/Ni0.6Co0.4(OH)2复合可见光催化剂。
2.根据权利要求1中所述的一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂在光催化产氢中的应用,其特征在于,在硫缺陷及S型电荷转移机制的协同作用下,所述的Vs-ZCS/Ni0.6Co0.4(OH)2复合可见光催化剂表现出优异的光催化产氢性能,可见光催化产氢速率达到58.9 ~ 64.6 mmol·h-1·g-1,经过五个循环连续使用后,其光催化产氢速率降低率小于7%。
CN202111131244.XA 2021-09-26 2021-09-26 一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用 Active CN113731424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111131244.XA CN113731424B (zh) 2021-09-26 2021-09-26 一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111131244.XA CN113731424B (zh) 2021-09-26 2021-09-26 一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用

Publications (2)

Publication Number Publication Date
CN113731424A CN113731424A (zh) 2021-12-03
CN113731424B true CN113731424B (zh) 2023-07-25

Family

ID=78741127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111131244.XA Active CN113731424B (zh) 2021-09-26 2021-09-26 一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用

Country Status (1)

Country Link
CN (1) CN113731424B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115400776B (zh) * 2022-08-01 2023-05-16 电子科技大学长三角研究院(湖州) 一种锌镉硫固溶体/石墨相氮化碳片片复合s型异质结光催化剂、制备及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239164A (ja) * 2000-02-29 2001-09-04 Korea Res Inst Of Chemical Technology 硫化カドミウム系水素発生用光触媒及びその製造方法とそれを用いる水素の製造方法
CN110327962A (zh) * 2019-07-15 2019-10-15 商丘师范学院 镍钴双金属氧化物@氮氧共掺杂碳材料/CdS光催化材料、制备方法及其应用
CN111495417A (zh) * 2020-05-26 2020-08-07 盐城工学院 一种泡沫镍负载铁钴镍金属纳米催化剂及其制备方法与应用
CN113209989A (zh) * 2021-04-08 2021-08-06 武汉工程大学 硫化锌镉纳米棒与镍纳米棒异质结光催化剂、其制备方法、产氢体系及产氢方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239164A (ja) * 2000-02-29 2001-09-04 Korea Res Inst Of Chemical Technology 硫化カドミウム系水素発生用光触媒及びその製造方法とそれを用いる水素の製造方法
CN110327962A (zh) * 2019-07-15 2019-10-15 商丘师范学院 镍钴双金属氧化物@氮氧共掺杂碳材料/CdS光催化材料、制备方法及其应用
CN111495417A (zh) * 2020-05-26 2020-08-07 盐城工学院 一种泡沫镍负载铁钴镍金属纳米催化剂及其制备方法与应用
CN113209989A (zh) * 2021-04-08 2021-08-06 武汉工程大学 硫化锌镉纳米棒与镍纳米棒异质结光催化剂、其制备方法、产氢体系及产氢方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Construction of Direct Z-Scheme Heterojunction NiFe-Layered Double Hydroxide(LDH)/Zn0.5Cd0.5S for Photocatalytic H2 Evolution;Yidong Sun et al.;《ACS Applied Materials & Interfaces》;第13卷(第33期);39331-39340 *
Efficient photocatalytic generation of hydrogen by twin Zn0.5Cd0.5S nanorods decorated with noble metal-free co-catalyst and reduction of 4-nitrophenol in water;Bharati Debnath et al.;《Applied Surface Science》;第550卷;No.149367 *
Hexagonal CdS assembled with lamellar NiCo LDH;Guoping Jiang et al.;《Materials Science in Semiconductor Processing》;第135卷;No.106128 *
Insights into the critical dual-effect of acid treatment on ZnxCd1-xS for enhanced photocatalytic production of syngas under visible light;An Li et al.;《Applied Catalysis B:Environmental》;第288卷;No.119976 *
Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution;Xuehua Wang et al.;《Nature Communications》;第12卷;No.4112 *
Novel photocatalyst incorporating Ni-Co layered double hydroxides with Pdoped CdS for enhancing photocatalytic activity towards hydrogen evolution;Songsong Li et al.;《Applied Catalysis B: Environmental》;第254卷;145-155 *
Zn1−xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2‑Production Activity;Qin Li et al.;《ACS Catalysis》;第3卷;882-889 *

Also Published As

Publication number Publication date
CN113731424A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
Huang et al. ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction
Dai et al. In-situ synthesis of Ni2P co-catalyst decorated Zn0. 5Cd0. 5S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation
Zhang et al. 0D β-Ni (OH) 2 nanoparticles/1D Mn0. 3Cd0. 7S nanorods with rich S vacancies for improved photocatalytic H2 production
Jin et al. Graphdiyne formed a novel CuI-GD/gC 3 N 4 S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution
Zhang et al. Robust S-scheme hierarchical Au-ZnIn2S4/NaTaO3: Facile synthesis, superior photocatalytic H2 production and its charge transfer mechanism
CN114377708B (zh) 一种含氧空位的碳酸氧铋纳米片及其制备方法和应用
CN113026047B (zh) 一种电化学催化转化二氧化碳合成甲醇的方法
CN113694925B (zh) 一种多孔二氧化钛-氧化亚铜复合材料及其制备方法和应用
Zou et al. Photocatalytic performance and mechanism of hydrogen evolution from water over ZnCdS/Co@ CoO in sacrificial agent-free system
Zhang et al. MOF templated to construct hierarchical ZnIn2S4-In2S3 hollow nanotube for enhancing photocatalytic performance
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
CN113171780A (zh) 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂
Huang et al. Two dimensional metal-organic frameworks-derived leaf-like Co4S3/CdS composite for enhancing photocatalytic water evolution
Ma et al. A thin clothe coated architecture of ZnIn2S4/H2Ta2O6 for enhanced photocatalytic hydrogen production
CN113731424B (zh) 一种含硫缺陷的锌镉硫/镍钴氢氧化物复合可见光催化剂及其应用
Yao et al. A novel hierarchical CdS-DETA@ CoP composite as highly stable photocatalyst for efficient H2 evolution from water splitting under visible light irradiation
Lu et al. Efficiently visible-light-induced photoactivity of MoS2 nanoflowers/chromic oxide/protonated titanate nanoflakes edge-on ternary heterostructures for production of hydrogen
Guo et al. Construction of S-Scheme Co2SnO4/graphdiyne heterojunction to promote carrier transfer for efficiently photocatalytic hydrogen evolution characterized with in situ XPS
Fan et al. Construct organic/inorganic heterojunction photocatalyst of benzene-ring-grafted g-C3N4/CdSe for photocatalytic H2 evolution
Wang et al. Metal-sulfide photocatalysts for solar-fuel generation across the solar spectrum
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes
Meng et al. Construction of ZnCdS@ CAU-17 heterostructures containing intermediate mediator Bi2S3 as a highly efficient photocatalyst for nitrogen reduction reaction
Wang et al. Hexagonal CdS single crystals coupled with layered CoAl LDH—a step-scheme heterojunction for efficient photocatalytic hydrogen evolution
CN114029043A (zh) 一种复合光催化材料的制备方法
Dong et al. Construction of in-situ core-shell Cu2-xS@ Mn0. 3Cd0. 7S S-scheme heterojunction with efficient photocatalytic H2 evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant