CN113171780A - 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂 - Google Patents

一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂 Download PDF

Info

Publication number
CN113171780A
CN113171780A CN202110498482.8A CN202110498482A CN113171780A CN 113171780 A CN113171780 A CN 113171780A CN 202110498482 A CN202110498482 A CN 202110498482A CN 113171780 A CN113171780 A CN 113171780A
Authority
CN
China
Prior art keywords
selenide
defect
hydrogen production
molybdenum
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110498482.8A
Other languages
English (en)
Other versions
CN113171780B (zh
Inventor
李镇江
王学花
王相虎
孟阿兰
杨慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110498482.8A priority Critical patent/CN113171780B/zh
Publication of CN113171780A publication Critical patent/CN113171780A/zh
Priority to ZA2021/09086A priority patent/ZA202109086B/en
Priority to LU500927A priority patent/LU500927B1/en
Priority to NL2030019A priority patent/NL2030019B1/en
Application granted granted Critical
Publication of CN113171780B publication Critical patent/CN113171780B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有优异光解水制氢性能的硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂,属于光催化技术领域。本发明是以自制的硫铟锌、二水合钼酸钠、二水合乙酸镉及硒粉为原料,水合肼为还原剂,通过一步水热法制备出具有微米花球结构的硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂。其中,纳米片状的硒化钼和颗粒状的硒化镉分别通过钼‑硫和镉‑硫键与富缺陷硫铟锌结合,从而在富缺陷硫铟锌与硒化钼及硒化镉之间形成紧密的异质结界面,进而形成强烈的内建电场。该光催化剂在可见光下的制氢速率可达66000~70000μmol·g‑1·h‑1,且经32小时内连续8次循环使用后的产氢效率仍能保持在首次使用时的91~97%。

Description

一种硒化钼/富缺陷硫铟锌/硒化镉双Z型光解水制氢催化剂
技术领域
本发明属于光催化技术领域,具体涉及一种性能优异的硒化钼/富缺陷硫铟锌/硒化镉双Z型光解水制氢催化剂。
背景技术
随着工业社会的发展,人类在享受工业文明发展所带来便利的同时,也面临着能源危机与环境污染等问题。因此,探索一种可持续的能源转化与利用方式是解决上述问题的有效途径。利用太阳能进行光催化分解水制氢,可将太阳能转化为氢能,而氢能燃烧后的产物依然是水,整个过程既不会造成能源浪费又不会产生环境污染,完美演绎了自然物质循环利用和持续发展的经典过程。然而,要使光解水制氢技术真正被应用到工业生产中,首先需要解决的问题就是开发出高效光催化剂。
硫铟锌(ZnIn2S4),是一种典型的具有层状结构的三元金属硫化物半导体,其直接带隙宽度约为2.06~2.85eV,具有良好的可见光响应,因此被广泛用作光解水制氢催化剂。然而,单一ZnIn2S4光催化剂往往面临着严重的光生载流子复合,导致其光催化效率较低。将ZnIn2S4与其他具有不同能带结构的半导体材料复合构建异质结,是提升其光解水制氢性能的有效途径之一。Meng等人通过水热法制备得到一种ZnIn2S4/g-C3N4异质结光催化剂,并将其应用于分解水制氢,优选光催化剂在可见光(λ>420nm)下的分解水制氢速率达6095.1μmol·g-1·h-1,分别是单独ZnIn2S4和g-C3N4光催化剂的2和6倍(Qin Y Y,Li H,Lu J,Feng YH,Meng F Y,Ma C C,Yan Y S,Meng M J,Applied Catalysis B:Environmental 277(2020)119254)。Lu等人采用溶剂热法将ZnIn2S4生长在Co9S8纳米管表面得到一种Co9S8/ZnIn2S4异质结光催化剂,该光催化剂在可见光照射下的分解水制氢效率达9039μmol·g-1·h-1(Zhang G P,Chen D Y,Li N J,Xu Q F,Li H,He J H and Lu J M,Angew.Chem.Int.Ed.,DOI:10.1002/anie.202000503)。中国发明专利(申请号:201710278270.2)公开了一种低成本二维硫化物纳米结(MoS2/Cu-ZnIn2S4)制氢光催化剂以及其制备方法和应用,该光催化剂在可见光(λ>420nm)照射下的分解水产氢效率达5489μmol·g-1·h-1,是单独Cu-ZnIn2S4光催化剂的65倍。
随着对光催化反应机理研究的不断深入,研究人员发现,传统的Ⅰ或Ⅱ型异质结虽然可以提高光生载流子的分离效率,但却降低了其氧化还原能力,这导致光解水制氢效率受到限制。相比较之下,通过构建Z型异质结,不仅能使光催化剂的光吸收能力及载流子分离效率获得显著提升,而且能将具有高反应活性的光生电子保留下来,因而能够获得较高的光解水制氢性能。要构建Z型异质结,首先要选择能带匹配的半导体,能带结构的不同有利于异质结界面处内建电场的形成,从而促进光生载流子在界面处按照Z型机制进行转移。此外,通过合适的制备工艺在不同的半导体间构建紧密的原子水平上的界面结合也是实现Z型电荷转移的有力保证。Zhang等人通过低温溶剂热法制备出一种通过化学键连接的CdS@ZnIn2S4直接Z型异质结光催化剂,机理研究结果表明,在光照下,ZnIn2S4导带上的电子在紧密的异质结界面及内建电场的协同作用下迁移到CdS的价带与光生空穴复合,使CdS导带上具有高还原能力的光生电子及ZnIn2S4价带上具有高氧化能力的光生空穴保留下来,从而实现了高效的光催化分解水制氢和双氧水性能(Zhang E H,Zhu Q H,Huang J H,Liu J,TanG Q,Sun C J,Li T,Liu S,Li Y M,Wang H Z,Wan X D,Wen Z H,Fan F T,Zhang J T,andAriga K,Applied Catalysis B:Environmental 293(2021)120213)。由Z型异质结光催化反应的基本原理可以推测,当将三种带隙结构合适的半导体紧密结合形成双Z型光催化剂时,不仅可以进一步促进光生载流子的分离,而且能保留更多的具有高反应活性的光生电子,同时,能够扩大光吸收范围。因而能获得比二元Z型异质结更优异的光解水制氢性能。因此,通过综合考虑能带结构及界面结合方式对异质结界面处电荷迁移的影响,有望实现对双Z型光催化剂的精准调控,从而获得具有优异分解水制氢性能的光催化剂。然而,相关的研究还鲜有报道。
本发明通过综合考虑能带结构及界面结合状态对Z型电荷转移机制的协同促进效应,通过简单的水热法制备出一种硒化钼/富缺陷硫铟锌/硒化镉双Z型光解水制氢催化剂。首先,硒化钼、硫铟锌及硒化镉的能级结构符合Z型电荷转移的能级要求。此外,富缺陷硫铟锌表面大量的不饱和硫原子可以为硒化钼和硒化镉的生长提供优异的活性位点,最终使硒化钼和硒化镉分别通过钼-硫及镉-硫键在富缺陷硫铟锌上原位形核并生长,这种以化学键连接的异质结界面能够为光生载流子的迁移提供快速的通道。在这两种效应的综合作用下,该硒化钼/富缺陷硫铟锌/硒化镉双Z型催化剂表现出显著提升的分解水制氢性能,显示出实际应用前景。
发明内容
本发明的目的在于提供一种具有高效可见光分解水制氢性能的硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂。
本发明的目的是通过以下技术方案实现:
(1)硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂的制备:
将水热法自制的硫铟锌加入到钼酸钠和乙酸镉的浓度分别为0.25~1.34mM和0.31~1.06mM的水溶液中,超声分散。同时,将硒粉加入浓度为80wt%的水合肼溶液中,80℃水浴条件下搅拌溶解,制成浓度为7.64~24.54mM的硒前驱体溶液。再将上述溶液按照8:1的体积比混合,之后转移至反应釜中,在200~260℃下进行水热反应12~30小时,离心洗涤,干燥产物,即得到硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂。
(2)硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂的分解水制氢性能测试:
将制得的硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂应用于光催化分解水制氢,具体的测试步骤如下:称取5mg硒化钼/富缺陷硫铟锌/硒化镉光催化剂,超声分散至含有1.7616g抗坏血酸牺牲剂的100mL水溶液中,于250mL密闭的光催化反应器中,在可见光照射下进行光催化反应,然后通过气相色谱测定氢气产量并计算产氢速率。
(3)硒化钼/富缺陷硫铟锌/硒化镉光催化剂的分解水制氢循环稳定性测试:
将进行一次光催化反应后的含有光催化剂的反应溶液从反应器中倒出,重新加入1.7612g抗坏血酸牺牲剂,并超声分散30分钟。将该反应液重新加入到250mL密闭的反应器中,按照(2)中同样的方法进行光催化分解水制氢性能测试。上述过程共进行8次。
本发明所公开的硒化钼/富缺陷硫铟锌/硒化镉双Z型光解水制氢催化剂,与现有光催化剂相比,其优越性在于:
(1)本发明中,所用硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂是由富缺陷硫铟锌纳米片、硒化镉纳米颗粒和硒化钼纳米片组成的一种新型的光催化材料,且该光催化剂表现出优异的光解水制氢性能。
(2)本发明中,硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂中硫缺陷的产生及硒化镉与硒化钼在富缺陷硫铟锌上的生长是在一步水热过程中实现的,且硒化钼与硒化镉分别是通过与富缺陷硫铟锌表面不饱和硫原子形成钼-硫及镉-硫键与硫铟锌结合。这种特殊的界面化学键一方面能保证复合光催化剂的结构稳定性,更重要的是能为光生载流子在富缺陷硫铟锌与硒化钼及硒化镉之间的传输提供直接的通道,因而有利于实现Z型电荷转移,从而提高光解水制氢性能。
附图说明
图1为实施例1中所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂在可见光(λ>420nm)照射下的分解水制氢性能图;
图2为实施例1中所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂在可见光(λ>420nm)照射下的分解水制氢循环稳定性测试图;
图3为实施例1中所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂的透射电镜以及高分辨透射电镜照片;
图4为实施例1中所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂的电子顺磁共振谱图;
图5为实施例1中所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂的拉曼光谱图;
图6为实施例2所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂在可见光(λ>420nm)照射下的分解水制氢性能图;
图7为实施例2所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂在可见光(λ>420nm)照射下的分解水制氢循环稳定性测试图;
图8为实施例3所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂在可见光(λ>420nm)照射下的分解水制氢性能图。
图9为实施例3所制备的硒化钼/富缺陷硫铟锌/硒化镉光催化剂在可见光(λ>420nm)照射下的分解水制氢循环稳定性测试图;
具体实施方式
以下结合附图及具体实施例对本发明作进详细说明,但附图及具体实施例仅作为示例,不以任何方式限制本发明的范围。
实施例1
首先,称取100mg自制的硫铟锌与0.0037g二水合钼酸钠和0.0043g二水合乙酸镉共同溶于20mL去离子水中,超声1小时分散。同时,称取0.0037g硒粉加入到浓度为80wt%的水合肼溶液中,80℃水浴溶解,得到紫色透明的硒前驱体溶液。最后,将上述两种溶液按照体积比为8:1的比例混合,并于室温下搅拌30分钟。之后将混合液转移至50mL水热反应釜中,于240℃反应24小时,反应结束后自然冷却至室温。依次用去离子水和乙醇反复洗涤,离心收集产物,最后于60℃真空干燥箱中干燥4小时,得到硒化钼/富缺陷硫铟锌/硒化镉复合光催化剂。其在可见光(λ>420nm)照射下的光解水制氢性能见说明书附图1。从图1中可以得知,在可见光照射下,该光催化剂分解水制氢速率高达70781μmol·g-1·h-1。其光解水制氢循环稳定性测试结果见说明书附图2。从图2中可以看出,经过32小时内连续8次循环使用后,其分解水产氢速率保持在首次使用时的97%。其透射电镜照片见说明书中附图3。从图3A中可以观察到硒化钼/富缺陷硫铟锌/硒化镉光催化剂呈现出由纳米颗粒和纳米片组成的微米花球形貌。从图3B的高分辨电镜中可以清楚地看到,间距为0.32nm的晶格条纹对应于六方相硫铟锌的(102)晶面,在硫铟锌纳米片上附着的颗粒状结构区域呈现出晶面间距为0.35nm的晶格条纹,对应于六方相硒化镉的(111)晶面,此外,在硫铟锌纳米片表面,还可以发现一些窄的晶格条纹,其晶面间距为0.24nm,对应于2H相硒化钼的(103)晶面。该结果证实了硒化钼/富缺陷硫铟锌/硒化镉光催化剂的成功制备,且硒化镉和硒化钼分别是以纳米颗粒和纳米片的形貌生长在硫铟锌表面。其电子顺磁共振谱(EPR)见说明书中附图4,从图中可以看出,硒化钼/富缺陷硫铟锌/硒化镉复合光催化剂中存在丰富的不饱和配位的硫原子。其拉曼光谱图见说明书附图5,从图中可以看出,在三元光催化剂的拉曼光谱中除对应于硫铟锌、硒化镉及硒化钼的峰以外,还存在对应于钼-硫及镉-硫键的拉曼峰,进一步证实了硒化钼和硒化镉分别通过形成钼-硫及镉-硫键生长在富缺陷硫铟锌表面。
实施例2
首先,称取100mg自制的硫铟锌与0.0037g二水合钼酸钠和0.0043g二水合乙酸镉共同溶于20mL去离子水中,超声1小时分散。同时,称取0.0037g硒粉加入到浓度为80wt%的水合肼溶液中,80℃水浴溶解,得到紫色透明的硒前驱体溶液。最后,将上述两种溶液按照体积比为8:1的比例混合,并于室温下搅拌30分钟。之后将混合液转移至50mL水热反应釜中,于220℃反应24小时,反应结束后自然冷却至室温。依次用去离子水和乙醇反复洗涤,离心收集产物,最后于60℃真空干燥箱中干燥4小时,得到硒化钼/富缺陷硫铟锌/硒化镉复合光催化剂。其在可见光(λ>420nm)照射下的光解水制氢性能见说明书附图6。从图6中可以得知,在可见光照射下,该光催化剂分解水制氢速率高达66804μmol·g-1·h-1。其光解水制氢循环稳定性测试结果见说明书附图7。从图7中可以看出,经过32小时内连续8次循环使用后,其分解水产氢速率保持在首次使用时的95%。
实施例3
首先,称取100mg自制的硫铟锌与0.0037g二水合钼酸钠和0.0072g二水合乙酸镉共同溶于20mL去离子水中,超声1小时分散。同时,称取0.0045g硒粉加入到浓度为80wt%的水合肼溶液中,80℃水浴溶解,得到紫色透明的硒前驱体溶液。最后,将上述两种溶液按照体积比为8:1的比例混合,并于室温下搅拌30分钟。之后将混合液转移至50mL水热反应釜中,于240℃反应24小时,反应结束后自然冷却至室温。依次用去离子水和乙醇反复洗涤,离心收集产物,最后于60℃真空干燥箱中干燥4小时,得到硒化钼/富缺陷硫铟锌/硒化镉复合光催化剂。其在可见光(λ>420nm)照射下的光解水制氢性能见说明书附图8。从图8中可以得知,在可见光照射下,该光催化剂分解水制氢速率高达69434μmol·g-1·h-1。其光解水制氢循环稳定性测试结果见说明书附图9。从图9中可以看出,经过32小时内连续8次循环使用后,其分解水产氢速率保持在首次使用时的91%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种硒化钼/富缺陷硫铟锌/硒化镉双Z型光解水制氢催化剂,其特征在于,所述双Z型催化剂是以富缺陷硫铟锌微米花球为载体,在其上同时修饰硒化镉纳米颗粒和硒化钼纳米片,且硒化镉和硒化钼分别是以镉-硫键和钼-硫键与富缺陷硫铟锌结合。其制备方法如下:将水热法自制的硫铟锌加入到含有乙酸镉(浓度为0.25~1.34mM)和钼酸钠(浓度为0.31~1.06mM)的水溶液中,超声分散。同时,将硒粉加入到80%的水合肼溶液中,80℃水浴条件下搅拌溶解,制成浓度为7.64~24.54mM硒前驱体溶液。最后,将上述两种溶液按照体积比为8:1的比例混合,之后转移至水热反应釜中,在200~260℃下进行保温12~30小时,离心洗涤,干燥,得到硒化钼/富缺陷硫铟锌/硒化镉双Z型光催化剂。
2.根据权利1中所述的硒化钼/富缺陷硫铟锌/硒化镉双Z型光解水制氢催化剂,其特征在于,在该光催化剂中,硒化钼与硒化镉的质量比为3~6:4,硒化镉和硒化钼的总质量与硫铟锌的质量比为3~9:100。
3.根据权利1中所述的硒化钼/富缺陷硫铟锌/硒化镉双Z型光解水制氢催化剂,其特征在于,该光催化剂由于具有特殊的双Z型电荷转移机制和紧密的界面结合,使其能够进行高效的可见光驱动分解水制氢,其制氢速率可达66000~70000μmol·g-1·h-1,且经32小时8次循环后其光解水制氢效率仍能保持在首次使用时的91~97%。
CN202110498482.8A 2021-05-08 2021-05-08 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂 Active CN113171780B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110498482.8A CN113171780B (zh) 2021-05-08 2021-05-08 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂
ZA2021/09086A ZA202109086B (en) 2021-05-08 2021-11-16 Mose2/defect-rich znin2s4/cdse dual z-scheme photocatalyst for photocatalytic water splitting to hydrogen
LU500927A LU500927B1 (en) 2021-05-08 2021-11-30 MoSe2/DEFECT-RICH ZnIn2S4/CdSe DUAL Z-SCHEME PHOTOCATALYST FOR PHOTOCATALYTIC WATER SPLITTING TO HYDROGEN
NL2030019A NL2030019B1 (en) 2021-05-08 2021-12-03 MoSe2/DEFECT-RICH ZnIn2S4/CdSe DUAL Z-SCHEME PHOTOCATALYST FOR PHOTOCATALYTIC WATER SPLITTING TO HYDROGEN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110498482.8A CN113171780B (zh) 2021-05-08 2021-05-08 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂

Publications (2)

Publication Number Publication Date
CN113171780A true CN113171780A (zh) 2021-07-27
CN113171780B CN113171780B (zh) 2022-06-10

Family

ID=76928391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110498482.8A Active CN113171780B (zh) 2021-05-08 2021-05-08 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂

Country Status (4)

Country Link
CN (1) CN113171780B (zh)
LU (1) LU500927B1 (zh)
NL (1) NL2030019B1 (zh)
ZA (1) ZA202109086B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602509A (zh) * 2022-04-13 2022-06-10 青岛科技大学 一种富S缺陷ZnIn2S4/In2Se3异质结光催化剂及应用
CN114682274A (zh) * 2022-04-08 2022-07-01 青岛科技大学 一种富S缺陷ZnIn2S4/SnSe2欧姆结光催化剂
CN114772635A (zh) * 2022-05-24 2022-07-22 合肥工业大学 一种二氧化钛纳米锥阵列/含硫空位的硫化铟锌光催化剂的制备方法
CN114797905A (zh) * 2022-04-11 2022-07-29 青岛科技大学 一种高效ZnIn2S4/SnSe2/In2Se3光解水制氢催化剂
CN115837279A (zh) * 2022-08-29 2023-03-24 南昌航空大学 一种原位负载构建CdS与ZnIn2S4异质结的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140174905A1 (en) * 2012-12-20 2014-06-26 Sunpower Technologies Llc Photo-catalytic systems for the production of hydrogen
CN106563431A (zh) * 2016-11-07 2017-04-19 杭州同净环境科技有限公司 一种复合光催化剂及其制备方法、应用
CN109794269A (zh) * 2019-01-24 2019-05-24 广州大学 一种MoSe2-CdS/CdSe复合光催化剂及其制备方法
CN110961123A (zh) * 2019-12-21 2020-04-07 青岛科技大学 水热法制备的全固态直接Z型ZnIn2S4-MoSe2高效光催化剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140174905A1 (en) * 2012-12-20 2014-06-26 Sunpower Technologies Llc Photo-catalytic systems for the production of hydrogen
CN106563431A (zh) * 2016-11-07 2017-04-19 杭州同净环境科技有限公司 一种复合光催化剂及其制备方法、应用
CN109794269A (zh) * 2019-01-24 2019-05-24 广州大学 一种MoSe2-CdS/CdSe复合光催化剂及其制备方法
CN110961123A (zh) * 2019-12-21 2020-04-07 青岛科技大学 水热法制备的全固态直接Z型ZnIn2S4-MoSe2高效光催化剂

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682274A (zh) * 2022-04-08 2022-07-01 青岛科技大学 一种富S缺陷ZnIn2S4/SnSe2欧姆结光催化剂
CN114682274B (zh) * 2022-04-08 2023-11-17 青岛科技大学 一种富S缺陷ZnIn2S4/SnSe2欧姆结光催化剂
CN114797905A (zh) * 2022-04-11 2022-07-29 青岛科技大学 一种高效ZnIn2S4/SnSe2/In2Se3光解水制氢催化剂
CN114797905B (zh) * 2022-04-11 2023-08-08 青岛科技大学 一种高效ZnIn2S4/SnSe2/In2Se3光解水制氢催化剂
CN114602509A (zh) * 2022-04-13 2022-06-10 青岛科技大学 一种富S缺陷ZnIn2S4/In2Se3异质结光催化剂及应用
CN114602509B (zh) * 2022-04-13 2023-08-18 青岛科技大学 一种富S缺陷ZnIn2S4/In2Se3异质结光催化剂及应用
CN114772635A (zh) * 2022-05-24 2022-07-22 合肥工业大学 一种二氧化钛纳米锥阵列/含硫空位的硫化铟锌光催化剂的制备方法
CN114772635B (zh) * 2022-05-24 2024-02-20 合肥工业大学 一种二氧化钛纳米锥阵列/含硫空位的硫化铟锌光催化剂的制备方法
CN115837279A (zh) * 2022-08-29 2023-03-24 南昌航空大学 一种原位负载构建CdS与ZnIn2S4异质结的方法

Also Published As

Publication number Publication date
NL2030019B1 (en) 2022-11-24
CN113171780B (zh) 2022-06-10
ZA202109086B (en) 2022-02-23
LU500927B1 (en) 2022-05-30

Similar Documents

Publication Publication Date Title
CN113171780B (zh) 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂
Gong et al. Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution
Xu et al. In situ derived Ni2P/Ni encapsulated in carbon/g-C3N4 hybrids from metal–organic frameworks/g-C3N4 for efficient photocatalytic hydrogen evolution
Shen et al. In-situ construction of metallic Ni3C@ Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production
Dai et al. In-situ synthesis of Ni2P co-catalyst decorated Zn0. 5Cd0. 5S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation
Sun et al. S-scheme MnCo2S4/g-C3N4 heterojunction photocatalyst for H2 production
CN107349937B (zh) 一种石墨烯基双金属硫化物纳米复合光催化剂的制备方法
CN110694648B (zh) 一种光催化水裂解产氢钼掺杂硫化铟锌空心分级结构光催化剂及其制备方法
Huang et al. A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
Yi et al. Crystal phase dependent solar driven hydrogen evolution catalysis over cobalt diselenide
CN110280280B (zh) 黑磷纳米片、硫化锌/黑磷纳米片的制备方法及其应用
CN114377708B (zh) 一种含氧空位的碳酸氧铋纳米片及其制备方法和应用
Zou et al. Photocatalytic performance and mechanism of hydrogen evolution from water over ZnCdS/Co@ CoO in sacrificial agent-free system
Jin et al. Graphdiyne (CnH2n-2) based NiS S-scheme heterojunction for efficient photocatalytic hydrogen production
CN115069262B (zh) 一种氧空位修饰的MoO3-x/Fe-W18O49光催化剂及其制备和固氮中的应用
Wu et al. Self-assembly of a heterogeneous microreactor with carbon dots embedded in Ti-MOF derived ZnIn 2 S 4/TiO 2 microcapsules for efficient CO 2 photoreduction
Zhang et al. In situ integration of efficient photocatalyst Cu1. 8S/ZnxCd1-xS heterojunction derived from a metal-organic framework
Chang et al. In-situ phosphorylated CoV-LDH with Co2P synergistically photocatalytic hydrogen evolution
Guo et al. Direct Z-scheme high-entropy metal phosphides/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen evolution
CN113697783B (zh) 一种多孔g-C3N4纳米薄片的制备方法及其应用
CN114602509B (zh) 一种富S缺陷ZnIn2S4/In2Se3异质结光催化剂及应用
CN105088266A (zh) 通过在半导体材料上复合共催化剂制备光电化学电池纳米结构光电极的方法
CN115400776A (zh) 一种锌镉硫固溶体/石墨相氮化碳片片复合s型异质结光催化剂、制备及其应用
Wang et al. High performance of visible-light driven hydrogen production over graphdiyne (gC n H 2n− 2)/MOF S-scheme heterojunction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant