CN111413329B - 一种应用于污染物质和实际水样检测的生物急性毒性检测方法 - Google Patents

一种应用于污染物质和实际水样检测的生物急性毒性检测方法 Download PDF

Info

Publication number
CN111413329B
CN111413329B CN202010375058.XA CN202010375058A CN111413329B CN 111413329 B CN111413329 B CN 111413329B CN 202010375058 A CN202010375058 A CN 202010375058A CN 111413329 B CN111413329 B CN 111413329B
Authority
CN
China
Prior art keywords
sample
luminous
detection
actual water
acute toxicity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010375058.XA
Other languages
English (en)
Other versions
CN111413329A (zh
Inventor
张乐柠
汪恂
何苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202010375058.XA priority Critical patent/CN111413329B/zh
Publication of CN111413329A publication Critical patent/CN111413329A/zh
Application granted granted Critical
Publication of CN111413329B publication Critical patent/CN111413329B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Abstract

本发明属于环境检测技术领域,具体涉及一种应用于污染物质和实际水样检测的生物急性毒性检测方法,包括以下步骤:(1)制备实验样品和阴性对照样品;(2)取得过滤后的水体样品;(3)在无菌条件下制备发光细菌菌液;(4)生物毒性测试:得到I0和I15;(5)生物毒性计算:根据发光强度计算发光抑制率,选择适当的函数模型,计算单一的污染物质对发光细菌急性毒性的EC50值;对比阴性对照和实际水样的发光抑制率,测得实际水体的生物毒性。发光细菌生物毒性试验相对于水蚤生物毒性试验、藻类毒性试验和鱼类毒性试验,具有周期短、准确度好、检测范围宽、检测场所任意(现场、实验室)的优点,能够快速的完成对实际水体进行测定。

Description

一种应用于污染物质和实际水样检测的生物急性毒性检测 方法
技术领域
本发明属于环境检测技术领域,具体涉及一种应用于污染物质和实际水样检测的生物急性毒性检测方法。
背景技术
随着工业的发展,进入环境中的毒性污染物呈现种类多样、数量频发的趋势,对环境的危害趋于复杂化和综合化。重污染产业飞速发展,工业废水大量排入城市污水处理厂,废水中有毒物质种类也随之增多,传统的水质检测手段已经无法快速、有效地应对各种复杂的污染状况,需要一种快速、灵敏、低成本检测环境毒性的生物检测方法。
生物毒性检测所采用的方法主要是生物毒性试验,如鱼类急、慢性毒性试验、溞类毒性试验、藻类毒性试验、微生物毒性试验及斑马鱼胚胎发育技术毒性检测方法等。
随着微生物以及发光细菌的深入研究和现代光学检测技术的突破,基于发光细菌法的水质急性毒性检测法成为一种新型的检测手段,并逐步应用于环境毒性检测的研究。
发明内容
本发明的目的在于提供一种应用于污染物质和实际水样检测的生物急性毒性检测方法,以解决上述背景技术中提出的问题。
本发明实现目的所采用的方案是:一种应用于污染物质和实际水样检测的生物急性毒性检测方法,包括以下步骤:
(1)制备若干不同浓度、不同种类的实验样品和阴性对照样品;
(2)按照标准取样方法对实际水体进行取样,并对实际水体样品进行过滤除杂,取得过滤后的水体样品;
(3)在无菌条件下制备发光细菌菌液:取冻干菌,加入复苏液,摇匀后放到4℃下平衡复苏,然后采用2%NaCl溶液稀释至一定发光强度;
(4)生物毒性测试:取稀释后的菌液100μL置于96孔板上,该菌液用微孔板发光检测仪测发光强度,记为I0,然后加入等体积样品,轻轻震荡,混合均匀,用微孔板发光检测仪测定加入样品15min时发光细菌的发光强度,记为I15
(5)生物毒性计算:根据发光强度计算发光抑制率,选择适当的函数模型对各实验样品的单一污染物质的“剂量-效应”数据进行拟合,得到污染物质对发光细菌的“剂量-效应”曲线、拟合函数及拟合参数,计算单一的污染物质对发光细菌急性毒性的EC50值;对比阴性对照和实际水样的发光抑制率,测得实际水体的生物毒性。
所述步骤(1)中,采用0.20μm的聚四氟乙烯滤膜对实际水体样品进行过滤,取得过滤后的水体样品。
优选地,所述步骤(1)中,阴性对照样品为2%NaCl溶液。
优选地,所述步骤(1)中,实验样品种类包括重金属离子和有机溶剂,向其中加入氯化钠,配成一定浓度的溶液,使污染物质NaCl质量浓度为2%,有机溶剂先加入质量浓度为1%的甲醇。
优选地,所述步骤(1)中,将配好的实验样品溶液用质量浓度为2%的氯化钠溶液等对数间距梯度稀释,得到2-1、2-2、2-3、2-4、2-5、2-6、2-7、2-8、2-9、2-10共10个浓度梯度的稀释溶液,共得到11个浓度梯度,每个浓度设置多个平行样;所述步骤(2)中,向水体样品中加入氯化钠,使样品NaCl质量浓度为2%,每个水样设置多个平行样。
优选地,所述步骤(3)中,稀释后发光细菌菌液的发光强度为500-700万RLU。
优选地,所述步骤(4)中,用微孔板发光检测仪测发光强度的温度条件为恒温15℃。
优选地,所述步骤(4)中,微孔板发光检测仪具体型号为Berthold LB960。
优选地,所述步骤(5)中,96孔板各孔发光抑制率Ht的计算如下:
式(1)中Ht为加入样品15min后的抑制率,It为加入样品后15min后的实际发光强度,Ict为加入样品15min后的校正发光强度,其计算如下:
式(2)中I0为未加入样品和阴性对照时96孔板上活化菌液的发光强度,fkt为空白平行样校正因子的平均值,0.6<fkt<1.8,其计算如下:
式(3)中Ikt为阴性对照在接触时间为15min后的发光强度。
优选地,所述步骤(5)中,对实验数据进行处理、分析、绘图的软件为MicrosoftOffice Excel 2016软件和Origin2018软件。
优选地,所述步骤(5)中,计算单一污染物质对发光细菌急性毒性的EC50值的函数模型为
式中,y为抑制率,x为溶液浓度,A1为标准曲线上渐近线,A2为标准曲线下渐进线,x0为标准曲线拐点,p为标准曲线拐点处斜率。
本发明具有以下优点和有益效果:
(1)本发明采用微孔板发光检测仪和96孔板,可同时测试多个污染物质和实际水样,流程简单、成本低、准确率高,采用自动化仪器,节省人力,测试效率高,实现了毒性测试的高通量化。
(2)发光细菌生物毒性试验相对于水蚤生物毒性试验、藻类毒性试验和鱼类毒性试验,具有周期短、准确度好、检测范围宽、检测场所任意(现场、实验室)的优点,能够快速的完成对实际水体进行测定。
附图说明
图1是实施例1中Cu2+、Zn2+溶液在96孔板中的布局图;
图2是实施例1中Cu2+使用logistic函数拟合后的曲线图;
图3是实施例1中Zn2+使用logistic函数拟合后的曲线图;
图4是实施例2中苯、二甲苯溶液在96孔板中的布局图;
图5是实施例2中苯使用logistic函数拟合后的曲线图;
图6是实施例2中二甲苯使用logistic函数拟合后的曲线图;
图7是实施例3中水样1、2、3、4在96孔板中的布局图;
图8是实施例3中水样1、2、3、4对发光细菌的发光抑制率。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
实施例1
一种应用于污染物质和实际水样检测的生物急性毒性检测方法,包括以下步骤:
制备Cu2+、Zn2+溶液:Cu2+溶液使用浓度为500mg/L且氯化钠溶液质量浓度为2%,Zn2+溶液使用浓度为125mg/L且氯化钠溶液质量浓度为2%,用质量浓度为2%的氯化钠溶液等对数间距梯度稀释,2种溶液分别得到2-1、2-2、2-3、2-4、2-5、2-6、2-7、2-8、2-9、2-1010个浓度梯度的稀释溶液,共得到11个浓度梯度,分别标记为Cu2+1-11、Zn2+1-11,2种溶液的每个浓度设置3个平行样。
制备对照样品:以2%NaCl溶液为阴性对照样品。
制备发光细菌菌液:取-20℃储存的冻干菌一支,加入4℃复苏液1mL(2%NaCl),摇匀后放到4℃冰箱平衡5分钟,4h之内用完。
测试:取复苏后的菌液100μL置于96孔板上,布板如图1。该菌液在15℃恒温条件下用微孔板发光检测仪测发光量,记为I0,然后向发光细菌菌液中对应加入等体积的阴性对照和不同浓度的Cu2+溶液和Zn2+溶液,轻轻震荡,混合均匀,用微孔板发光检测仪测定加入样品15min时发光细菌的发光强度,记为I15
通过公式(1)计算发光抑制率,计算结果取3次平行试验的平均值:
式(1)中Ht为加入样品15min后的抑制率,It为加入样品后15min后的实际发光强度,Ict为加入样品15min后的校正发光强度:
式(2)中I0为未加入样品和阴性对照时96孔板上活化菌液的发光强度,fkt为空白平行样校正因子的平均值,0.6<fkt<1.8:
式(3)中Ikt为阴性对照在接触时间为15min后的发光强度。
绘图:采用Origin2018对实验得到数据进行非线性拟合的函数为logistic函数,拟合出Cu2+、Zn2+对发光细菌急性毒性的EC50值为13.72mg/L、2.56mg/L,见图2、图3。
拟合结果来看,相对Cu2+来说,Zn2+对发光细菌的毒性上升较为急剧。一般情况下,污染物质对发光细菌急性毒性的强弱是用毒性物质的半数效应浓度EC50值的大小来表征的,EC50值越小,则毒性越高。拟合曲线后,2种金属离子毒性由强到弱为Zn2+>Cu2+
实施例2
一种应用于污染物质和实际水样检测的生物急性毒性检测方法,包括以下步骤:
制备苯、二甲苯溶液:苯溶液使用浓度为5000mg/L,溶于1%的甲醇,氯化钠溶液质量浓度为2%,二甲苯溶液使用浓度为5000mg/L,溶于1%的甲醇,氯化钠溶液质量浓度为2%,用质量浓度为2%的氯化钠溶液等对数间距梯度稀释,2种溶液分别得到2-1、2-2、2-3、2-4、2-5、2-6、2-7、2-8、2-99个浓度梯度的稀释溶液,共得到10个浓度梯度,分别标记为苯1-10、二甲苯1-10,2种溶液的每个浓度设置3个平行样。
制备对照样品:以2%NaCl溶液为阴性对照样品。
制备发光细菌菌液:取-20℃储存的冻干菌一支,加入4℃复苏液1mL(2%NaCl),摇匀后放到4℃冰箱平衡5分钟,4h之内用完。
测试:取复苏后的菌液100μL置于96孔板上,布板如图4。该菌液在15℃恒温条件下用微孔板发光检测仪测发光量,记为I0,然后向发光细菌菌液中对应加入等体积的阴性对照和不同浓度的苯溶液和二甲苯溶液,轻轻震荡,混合均匀,用微孔板发光检测仪测定加入样品15min时发光细菌的发光强度,记为I15
通过公式(1)计算发光抑制率,计算结果取3次平行试验的平均值:
式(1)中Ht为加入样品15min后的抑制率,It为加入样品后15min后的实际发光强度,Ict为加入样品15min后的校正发光强度:
式(2)中I0为未加入样品和阴性对照时96孔板上活化菌液的发光强度,fkt为空白平行样校正因子的平均值,0.6<fkt<1.8:
式(3)中Ikt为阴性对照在接触时间为15min后的发光强度。
绘图:采用Origin2018对实验得到数据进行非线性拟合的函数为logistic函数,拟合出苯、二甲苯对发光细菌急性毒性的EC50值为394.23mg/L、595.58mg/L,见图5、图6。
一般情况下,污染物质对发光细菌急性毒性的强弱是用毒性物质的半数效应浓度EC50值的大小来表征的,EC50值越小,则毒性越高。从拟合曲线结果来看,2种有机物毒性由强到弱为苯>二甲苯。
实施例3
一种应用于污染物质和实际水样检测的生物急性毒性检测方法,包括以下步骤:
按照标准取样方法对4家企业的工业废水进行取样,并对水体样品进行除杂处理,采用0.20μm的聚四氟乙烯滤膜对水体样品进行过滤,取得过滤后的水体样品,加入氯化钠溶液,使水样中NaCl质量浓度为2%,每个水样设置3个平行样。
制备对照样品:以2%NaCl溶液为阴性对照样品。
制备发光细菌菌液:取-20℃储存的冻干菌一支,加入4℃复苏液1mL(2%NaCl),摇匀后放到4℃冰箱平衡5分钟,4h之内用完。
测试:取复苏后的菌液100μL置于96孔板上,布板如图7。该菌液在15℃恒温条件下用微孔板发光检测仪测发光量,记为I0,然后向发光细菌菌液中对应加入等体积的阴性对照和水样1、水样2、水样3和水样4,轻轻震荡,混合均匀,用微孔板发光检测仪测定加入样品15min时发光细菌的发光强度,记为I15
通过公式(1)计算4个水样的发光抑制率,计算结果取3次平行试验的平均值:
式(1)中Ht为加入样品15min后的抑制率,It为加入样品后15min后的实际发光强度,Ict为加入样品15min后的校正发光强度:
式(2)中I0为未加入样品和阴性对照时96孔板上活化菌液的发光强度,fkt为空白平行样校正因子的平均值,0.6<fkt<1.8:
式(3)中Ikt为阴性对照在接触时间为15min后的发光强度。
如图8所示,水样1、水样2、水样3和水样4对发光细菌的急性发光抑制率分别为79.5%、98.9%、42%、8.2%,4个水样对发光细菌均表现出了抑制作用,抑制作用由强到弱为水样1>水样2>水样3>水样4。
因此,本发明提供的检测方法对单一的污染物质和实际水样检测都适用,能够同步、高通量检测物质对发光细菌的生物急性毒性。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (5)

1.一种应用于污染物质和实际水样检测的生物急性毒性检测方法,其特征在于,包括以下步骤:
(1)制备若干不同浓度、不同种类的实验样品和阴性对照样品;
(2)按照标准取样方法对实际水体进行取样,并对实际水体样品进行过滤除杂,取得过滤后的水体样品;
(3)在无菌条件下制备发光细菌菌液:取冻干菌,加入复苏液,摇匀后放到4℃下平衡复苏,然后采用2% NaCl溶液稀释至一定发光强度;
(4)生物毒性测试:取稀释后的菌液100µL置于96孔板上,该菌液用微孔板发光检测仪测发光强度,记为I0,然后加入等体积样品,轻轻震荡,混合均匀,用微孔板发光检测仪测定加入样品15min时发光细菌的发光强度,记为I15
(5)生物毒性计算:根据发光强度计算发光抑制率,选择适当的函数模型对各实验样品的单一污染物质的“剂量-效应”数据进行拟合,得到污染物质对发光细菌的“剂量-效应”曲线、拟合函数及拟合参数,计算单一的污染物质对发光细菌急性毒性的EC50值;对比阴性对照和实际水样的发光抑制率,测得实际水体的生物毒性;
所述步骤(5)中,96孔板各孔发光抑制率Ht的计算如下:
(1)
式(1)中Ht为加入样品15min后的抑制率,It为加入样品后15min后的实际发光强度,Ict为加入样品15min后的校正发光强度,其计算如下:
(2)
式(2)中I0为未加入样品和阴性对照时96孔板上活化菌液的发光强度,fkt为空白平行样校正因子的平均值,0.6<fkt<1.8,其计算如下:
(3)
式(3)中Ikt为阴性对照在接触时间为15min后的发光强度;
计算单一污染物质对发光细菌急性毒性的EC50值的函数模型为
(4)
式中,y为抑制率,x为溶液浓度,A1为标准曲线上渐近线,A2为标准曲线下渐进线,x0为标准曲线拐点,p为标准曲线拐点处斜率;
所述步骤(1)中,实验样品种类包括重金属离子和有机溶剂,向其中加入氯化钠,配成一定浓度的溶液,使污染物质NaCl质量浓度为2%,有机溶剂先加入质量浓度为1%的甲醇;
所述步骤(3)中,稀释后发光细菌菌液的发光强度为500-700万RLU;
所述步骤(4)中,用微孔板发光检测仪测发光强度的温度条件为恒温15℃。
2.根据权利要求1所述的应用于污染物质和实际水样检测的生物急性毒性检测方法,其特征在于:所述步骤(1)中,阴性对照样品为2%NaCl溶液。
3.根据权利要求1所述的应用于污染物质和实际水样检测的生物急性毒性检测方法,其特征在于:所述步骤(1)中,将配好的实验样品溶液用质量浓度为2%的氯化钠溶液等对数间距梯度稀释,得到2-1、2-2、2-3、2-4、2-5、2-6、2-7、2-8、2-9、2-10共10个浓度梯度的稀释溶液,共得到11个浓度梯度,每个浓度设置多个平行样;所述步骤(2)中,向水体样品中加入氯化钠,使样品NaCl质量浓度为2%,每个水样设置多个平行样。
4. 根据权利要求1所述的应用于污染物质和实际水样检测的生物急性毒性检测方法,其特征在于:所述步骤(4)中,微孔板发光检测仪具体型号为Berthold LB960。
5. 根据权利要求1所述的应用于污染物质和实际水样检测的生物急性毒性检测方法,其特征在于:所述步骤(5)中,对实验数据进行处理、分析、绘图的软件为Microsoft OfficeExcel 2016软件和Origin2018软件。
CN202010375058.XA 2020-04-30 2020-04-30 一种应用于污染物质和实际水样检测的生物急性毒性检测方法 Active CN111413329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010375058.XA CN111413329B (zh) 2020-04-30 2020-04-30 一种应用于污染物质和实际水样检测的生物急性毒性检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010375058.XA CN111413329B (zh) 2020-04-30 2020-04-30 一种应用于污染物质和实际水样检测的生物急性毒性检测方法

Publications (2)

Publication Number Publication Date
CN111413329A CN111413329A (zh) 2020-07-14
CN111413329B true CN111413329B (zh) 2023-08-01

Family

ID=71490378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010375058.XA Active CN111413329B (zh) 2020-04-30 2020-04-30 一种应用于污染物质和实际水样检测的生物急性毒性检测方法

Country Status (1)

Country Link
CN (1) CN111413329B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505067A (zh) * 2021-06-22 2022-12-23 北京化工大学 可选择性靶向脑钠肽的聚合物及应用
CN113884413A (zh) * 2021-08-25 2022-01-04 中国环境科学研究院 一种汽油车尾气颗粒物对水生生物毒性效应的试验方法
CN113930478A (zh) * 2021-10-14 2022-01-14 南京大学 一种高通量快速检测水样急性毒性的方法
CN114324310B (zh) * 2022-01-17 2023-05-12 生态环境部南京环境科学研究所 一种利用发光菌检测砷污染土壤急性毒性的方法
CN114397418B (zh) * 2022-01-21 2023-10-24 浙江清华长三角研究院 一种基于Logistic拟合的水质综合毒性及疑似毒性物质测试方法
CN114594091A (zh) * 2022-03-08 2022-06-07 无锡坤上环境科技有限公司 一种利用发光细菌对土壤中有效态重金属毒性进行检测的方法
CN114577785B (zh) * 2022-05-05 2022-09-30 杭州泽天春来科技有限公司 一种水质毒性检测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919645A (en) * 1991-04-09 1999-07-06 Azur Environmental Method for the direct determination of the toxicity of particulate solids
CN101915759A (zh) * 2010-07-20 2010-12-15 同济大学 基于青海弧菌q67的环境污染物长期微板毒性分析法
CN102175606A (zh) * 2011-01-19 2011-09-07 西安建筑科技大学 一种污水急性生物毒性的检测方法
CN103805679A (zh) * 2012-11-06 2014-05-21 华东师范大学 一种肿瘤抑制剂的激酶酶谱筛选方法
CN105588831A (zh) * 2016-01-04 2016-05-18 中国科学院城市环境研究所 一种应用淡水发光细菌检测稀土尾矿库周边地下水污染急性毒性的方法
CN107238599A (zh) * 2017-06-02 2017-10-10 河海大学 一种基于发光细菌法的土壤综合毒性检测方法
CN108507999A (zh) * 2018-03-26 2018-09-07 成都飞航智库科技有限公司 一种应用于生物技术中生物毒性检测方法
CN110441292A (zh) * 2019-07-11 2019-11-12 南京信息职业技术学院 一种发光细菌的生长作用和急慢性毒性检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919645A (en) * 1991-04-09 1999-07-06 Azur Environmental Method for the direct determination of the toxicity of particulate solids
CN101915759A (zh) * 2010-07-20 2010-12-15 同济大学 基于青海弧菌q67的环境污染物长期微板毒性分析法
CN102175606A (zh) * 2011-01-19 2011-09-07 西安建筑科技大学 一种污水急性生物毒性的检测方法
CN103805679A (zh) * 2012-11-06 2014-05-21 华东师范大学 一种肿瘤抑制剂的激酶酶谱筛选方法
CN105588831A (zh) * 2016-01-04 2016-05-18 中国科学院城市环境研究所 一种应用淡水发光细菌检测稀土尾矿库周边地下水污染急性毒性的方法
CN107238599A (zh) * 2017-06-02 2017-10-10 河海大学 一种基于发光细菌法的土壤综合毒性检测方法
CN108507999A (zh) * 2018-03-26 2018-09-07 成都飞航智库科技有限公司 一种应用于生物技术中生物毒性检测方法
CN110441292A (zh) * 2019-07-11 2019-11-12 南京信息职业技术学院 一种发光细菌的生长作用和急慢性毒性检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水中发光细菌的急性毒性快速检测技术;刘康;《现代科学仪器》;20130815(第04期);第181-182、186页 *

Also Published As

Publication number Publication date
CN111413329A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN111413329B (zh) 一种应用于污染物质和实际水样检测的生物急性毒性检测方法
Besmer et al. Laboratory-scale simulation and real-time tracking of a microbial contamination event and subsequent shock-chlorination in drinking water
Pereira et al. Chromium fractionation and speciation in natural waters
CN112986197A (zh) 用于检测汞离子的比率荧光探针、荧光纸芯片和检测方法
CN106442483A (zh) 快速检测和预警食源性毒素污染的流动注射发光细菌法及应用
Wu et al. Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset
CN106442448B (zh) 一种快速检测硫离子的方法
Lu et al. Spatial and environmental characteristics of colloidal trace Cu in the surface water of the Yellow River Estuary, China
Babapoor et al. Biosensor design for detection of mercury in contaminated soil using rhamnolipid biosurfactant and luminescent bacteria
Wang et al. Ionic liquid-based hollow fiber-supported liquid-phase microextraction enhanced electrically for the determination of neutral red
Richter et al. Identification and significance of sulphonamides (p-TSA, o-TSA, BSA) in an urban water cycle (Berlin, Germany)
CN113049577A (zh) 一种基于聚醚砜材料的铜离子检测试剂盒及检测方法
CN107515287B (zh) 一种基于动态培养的污水生物可降解溶解性有机氮测定方法
Huang et al. Phosphorus characteristics and microbial community in the sediment-water-algal system during algal growth
Li et al. A novel high-throughput analytical method to quantify microplastics in water by flow cytometry
CN111707652B (zh) 基于三维荧光光谱的水体中雌激素生物降解潜力评价方法
Capelo et al. In situ continuous monitoring of chloride, nitrate and ammonium in a temporary stream: comparison with standard methods
Hao et al. Performance and mechanisms for V (V) bio-reduction by straw: Key influencing factors
CN115436309B (zh) 一种快速准确测量铅浓度的紫外检测法
Al-Moniee et al. Laboratory-Scale Evaluation of Single Analyte Bacterial Monitoring Strategies in Water Injection Systems
Yang et al. Solid-phase room-temperature fluorescence using a nylon membrane for the determination of 2-naphthalene sulfonic acid
CN109520907B (zh) 一种快速估算芬顿-超滤联用中膜污染程度的方法
JP5078685B2 (ja) 微生物計数方法
CN107219215A (zh) 基于发光细菌法的大气颗粒物中有机污染物毒性检测方法
Pan et al. Occurrence and fate of microplastics from wastewater treatment plants assessed by a fluorescence-based protocol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant