CN111398390B - 纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用 - Google Patents

纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用 Download PDF

Info

Publication number
CN111398390B
CN111398390B CN202010377333.1A CN202010377333A CN111398390B CN 111398390 B CN111398390 B CN 111398390B CN 202010377333 A CN202010377333 A CN 202010377333A CN 111398390 B CN111398390 B CN 111398390B
Authority
CN
China
Prior art keywords
molybdenum carbide
nano molybdenum
dopamine
carbon paste
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010377333.1A
Other languages
English (en)
Other versions
CN111398390A (zh
Inventor
混旭
秦娜娜
张慧
马宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202010377333.1A priority Critical patent/CN111398390B/zh
Publication of CN111398390A publication Critical patent/CN111398390A/zh
Application granted granted Critical
Publication of CN111398390B publication Critical patent/CN111398390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

本发明属于分析化学与光致电化学传感器领域,具体涉及纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用。通过超声剥离方法剥离纳米碳化钼,将其修饰到碳糊电极上,构建了碳化钼修饰碳糊电极光电化学传感器。该传感器对多巴胺具有选择性响应。方法简单,成本低。

Description

纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用
技术领域
本发明属于分析化学与光致电化学传感器领域,具体为一种检测多巴胺的纳米碳化钼修饰碳糊电极光致电化学传感器制备方法。另外,本发明还涉及采用所述的光致电化学传感器测多巴胺的方法。
背景技术
多巴胺是一种下丘脑和脑垂体腺中的关键神经元物质,中枢神经系统中多巴胺的浓度则会直接影响到人们的情绪,同时多巴胺的大剂量使用时有正性肌力作用,而且收缩血管的作用明显,同时能够使血压升高。多巴胺的测定方法的研究在对于神经生理学研究、疾病诊断及其相关药物的质量控制都具有十分重要的意义。因此,检测这一类微量神经递质以及其代谢产物对研究这一类递质的生理机能和有关的疾病诊断显得极其重要。在目前测定盐酸多巴胺的方法主要分为毛细管电泳法、分光光度法、高效液相色谱法、电化学分析法以及化学发光法等几类。其中液相色谱分离-电化学检测法是目前在生物样品中测定多巴胺的最为有效的方法。这些方法无法满足实际需要。光致电化学分析法因为其测定灵敏度高、方法简单快捷,从而在分析检测中也获得了广泛的应用与发展。
发明内容
鉴于现有技术的不足,本发明的目的在于提供一种检测多巴胺的纳米碳化钼修饰电极光致电化学传感器制备方法及应用,以及提供一种采用所述的光致电化学传感器测多巴胺的方法。
本发明的目的是这样实现的:用纳米碳化钼修饰碳糊电极,构建光致电化学传感器以实现对多巴胺的测定;一种检测多巴胺的纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用,包括如下步骤:
(1)纳米碳化钼的制备
取1mg~50mg碳化钼(MoC)与1mL~100mL N,N-二甲基甲酰胺于烧杯中,将小磁子放入烧杯中,然后用保鲜膜封住烧杯杯口,置于磁力搅拌器中搅拌1min~100min,之后将小磁子取出,最后把用保鲜膜封好的小烧杯放入超声波清洗器中超声0.1h-100h,得剥离的MoC。利用透射电镜对碳化钼的形貌表征(图1)。从图1(A)中可以知,剥离的MoC是薄层片状结构,且片层较薄。而未剥离的MoC有局部阴影,这说明未剥离的MoC是多层MoC叠加在一起形成的片状结构,TEM图像中的黑色阴影部分说明MoC试剂粉末分散的不均匀,而且颜色深浅不一同时也说明了厚度存在较大的差异。从两个图的对比中可以看出,超声剥离对于MoC的分散有显著的效果。
(2)纳米碳化钼修饰碳糊电极的制备
吸取1μL~50μL纳米碳化钼溶液滴涂于刚处理过的碳糊电极的表面并将其铺展开,做好标记,置于泡沫板上使其自然干燥,得纳米碳化钼修饰碳糊电极光致电化学传感器。
一种利用上述方法制备的光致电化学传感器检测多巴胺含量的方法,将光致电化学传感器插入含多巴胺的PBS溶液中时,多巴胺被氧化,得光致电化学信号I,以I为分析信号,进行多巴胺的测定。
由于上述方法制备的光致电化学传感器可以检测多巴胺,因此,本发明提供了光致电化学传感器在检测多巴胺含量中的应用。
与现有技术相比,本发明涉及的光致电化学传感器具有如下优点和显著地进步:目标物多巴胺的浓度在1.0×10-10M到1.0×10-5M范围内与光致电化学信号成线性函数关系式。线性函数关系式为:I/nA=570.7log(c/M)+6459.5(c是多巴胺的浓度),其中R2=0.9901,相对标准偏差(RSD)为3.21%,检出限为3.0×10-11M。
碳糊电极的光致电信号趋于零,这是因为没有感光材料可以激发。而碳化钼修饰的碳糊电极有明显的电流峰值。同时,通过剥离的碳化钼与未剥离的碳化钼相比较,剥离的碳化钼修饰的碳糊电极比未剥离的碳化钼修饰的碳糊电极电流峰值大,电流变化更为稳定平稳。因此,说明成功构建了基于碳化钼修饰碳糊电极的传感器,剥离的碳化钼修饰的碳糊电极具有良好的光致电现象。
以上所用的PBS浓度为10mM,由Na2HPO4、Na2HPO4和NaCl组成,其中NaCl的浓度为0.9%。
附图说明
图1透射电镜图。剥离的碳化钼(A);未剥离的碳化钼(B)。
图2不同电极光致电化学信号。A、D、F为裸电极、剥离碳化钼修饰电极、未剥离碳化钼修饰电极在PBS中的响应,B、C、E为裸电极、剥离碳化钼修饰电极、未剥离碳化钼修饰电极在含1mM DA的PBS中的响应。
图3pH优化。左图,a`~e`是pH 6.5~8.5时剥离MoC修饰电极的光致电化学响应;a~e是pH 6.5~8.5时裸电极的光致电化学响应;右图为修饰电极与裸电极信号差值折线图。
图4电位优化。左图,A~G是电压为-0.3V~0.3V时剥离MoC修饰电极在含1mM DA的PBS中的响应;a~g电压为-0.3V~0.3V时裸电极的光致电化学响应。右图为修饰电极与裸电极信号差值折线图。
图5纳米碳化钼用量优化。左图,A~E是修饰剂体积为5~25mL时剥离MoC修饰电极的光致电化学响应;a~e裸电极的光致电化学响应;右图为修饰电极与裸电极信号差值折线图
图6光致电化学信号与多巴胺浓度关系图。
具体实施方式
下面结合具体实施例进一步说明本发明,但不构成对发明的进一步限制。
实施例1pH优化
将电极分别在pH为6.5、7.0、7.4、8.0、8.5、9.0的10mM PBS中测定光致电化学信号。图3为在不同pH条件下测定的光致电化学信号响应。可以看出,光致电化学信号随pH变化呈现先增大后减小的趋势。当pH小于7.4时,光致电化学信号随着pH的增加而增加,然而当pH大于7.4时,光致电化学信号却随着pH的增加而减小。当pH为7.4时,光致电化学信号值达到最大。所以选择检测介质的pH为7.4。
实施例2电位优化
制备的光致化学传感器可能会因为电极电位的不同来改变自身的电子传递系统,从而对光致电化学信号测定产生一定的影响。分别在-0.3V、-0.2V、-0.1V、0.0V、0.1V、0.2V、0.3V不同工作电位下测定光致电化学信号。图4为不同电位下的光致电化学信号响应。显而易见,纳米碳化钼修饰碳糊电极在电位为-0.1V时光致电化学信号最大,所以最终选择的电极电位为-0.1V。
实施例3纳米碳化钼用量的优化
用移液枪分别准确移取0μL、5μL、10μL、15μL、20μL、25μL的纳米碳化钼溶液滴涂在碳糊电极上,测定光致电化学信号。图5为不同纳米碳化钼用量情况下的光致电化学信号。可以看出,当纳米碳化钼用量在5μL-15μL之间时,光致电化学信号随着其的体积的增加而增加;而当纳米碳化钼用量大于15μL时,光致电化学信号反而降低,并在纳米碳化钼用量为15μL时,所得到的的分析信号值最大。所以选15μL为纳米碳化钼的最佳用量。
实施例4方法灵敏度
(1)纳米碳化钼的制备
取25mg碳化钼(MoC)与50mL N,N-二甲基甲酰胺于烧杯中,将小磁子放入烧杯中,然后用保鲜膜封住烧杯杯口,置于磁力搅拌器中搅拌30min,之后将小磁子取出,最后把用保鲜膜封好的小烧杯放入超声波清洗器中超声12h,得剥离的MoC。
(2)纳米碳化钼修饰碳糊电极的制备
吸取15μL纳米碳化钼溶液滴涂于刚处理过的碳糊电极的表面并将其铺展开,做好标记,置于泡沫板上使其自然干燥,得纳米碳化钼修饰碳糊电极光致电化学传感器。
考察了方法测定的灵敏度和线性范围等分析特性。在优选的条件下,目标物多巴胺的浓度在1.0×10-10M到1.0×10-5M范围内与光致电化学信号成线性函数关系式(图6)。线性函数关系式为:I/nA=570.7log(c/M)+6459.5(c是多巴胺的浓度,mol/L),其中R2=0.9901,相对标准偏差(RSD)为3.21%,检出限为3.0×10-11M。
实施例5方法的选择性
利用构建的传感器分别对多巴胺、甲硫氨酸、赖氨酸、苏氨酸、丝氨酸、精氨酸、亮氨酸、缬氨酸、异亮氨酸、脯氨酸、苯丙氨酸、谷氨酸、丙氨酸、半胱氨酸、胱氨酸进行考察,发现上述物质为1mM时对传感器的响应中,其中空白为325nA,多巴胺的信号为2978nA,其余的物质产生的信号在278nA和341nA之间。说明传感器对多巴胺具有选择性,可实现对多巴胺的选择性测定。即,只有多巴胺对光致电化学信号有明显的增强做作用,说明传感器对多巴胺具有选择性,可实现对多巴胺的选择性测定。

Claims (4)

1.用于检测多巴胺的纳米碳化钼修饰碳糊电极光致电化学传感器制备方法,其特征在于包括如下步骤:
(1)纳米碳化钼的制备
取1mg~50mg碳化钼MoC与1mL~100mL N,N-二甲基甲酰胺于烧杯中,将小磁子放入烧杯中,然后用保鲜膜封住烧杯杯口,置于磁力搅拌器中搅拌1min~100min,之后将小磁子取出,最后把用保鲜膜封好的小烧杯放入超声波清洗器中超声0.1h-100h,得剥离的纳米碳化钼MoC;
(2)纳米碳化钼修饰碳糊电极的制备
吸取5μL~15μL纳米碳化钼溶液滴涂于刚处理过的碳糊电极的表面并将其铺展开,置于泡沫板上使其自然干燥,得纳米碳化钼修饰碳糊电极光致电化学传感器。
2.一种利用权利要求1所述制备方法所制备的用于检测多巴胺的纳米碳化钼修饰碳糊电极光致电化学传感器。
3.根据权利要求2的光致电化学传感器,其特征在于利用所述光致电化学传感器分别对1mM的多巴胺、甲硫氨酸、赖氨酸、苏氨酸、丝氨酸、精氨酸、亮氨酸、缬氨酸、异亮氨酸、脯氨酸、苯丙氨酸、谷氨酸、丙氨酸、半胱氨酸、胱氨酸进行考察,只有多巴胺对光致电化学信号有明显的增强做作用,说明所述光致电化学传感器能够实现对多巴胺的选择性测定。
4.权利要求2所述的用于检测多巴胺的纳米碳化钼修饰碳糊电极光致电化学传感器在检测多巴胺含量中的应用,其特征在于将所述光致电化学传感器插入含多巴胺的PBS溶液中时,所述PBS溶液的pH为7.4,得光致电化学信号I,以I为分析信号,进行多巴胺的测定。
CN202010377333.1A 2020-05-07 2020-05-07 纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用 Active CN111398390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010377333.1A CN111398390B (zh) 2020-05-07 2020-05-07 纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010377333.1A CN111398390B (zh) 2020-05-07 2020-05-07 纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用

Publications (2)

Publication Number Publication Date
CN111398390A CN111398390A (zh) 2020-07-10
CN111398390B true CN111398390B (zh) 2022-11-25

Family

ID=71431786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010377333.1A Active CN111398390B (zh) 2020-05-07 2020-05-07 纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用

Country Status (1)

Country Link
CN (1) CN111398390B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924503A (zh) * 2021-01-26 2021-06-08 青岛科技大学 一种光电流读出电位型传感器信号的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176386B (zh) * 2011-01-12 2013-01-02 南开大学 染料敏化太阳能电池对电极及其制备方法
CN102980929B (zh) * 2012-12-06 2015-04-22 江南大学 用于高灵敏检测多巴胺的纳米光电化学传感器
CN105021672B (zh) * 2015-06-23 2017-10-27 江南大学 基于原位氧化还原反应的光电化学方法检测多巴胺
CN108311167A (zh) * 2018-03-21 2018-07-24 合肥工业大学 一种负载型碳化钼/金属纳米颗粒复合催化剂及其制备方法和催化降解重金属铬的应用
CN109839416B (zh) * 2019-03-12 2021-02-19 青岛科技大学 纳米二硒化钨修饰金电极光致电化学传感器检测多巴胺的方法
CN109813774B (zh) * 2019-03-14 2021-02-19 青岛科技大学 一种光致电化学传感器检测瘦肉精雷托帕明的方法
CN110803685B (zh) * 2019-11-13 2023-05-05 南方科技大学 一种石墨化碳泡沫支撑碳材料/碳化钼复合材料及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"A photoelectrochemical sensor for ultrasensitive dopamine detection based on single-layer NanoMoS2 modified gold electrode";Xu Hun 等;《Sensors and Actuators B: Chemical》;20170413;第83-89页 *

Also Published As

Publication number Publication date
CN111398390A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
Sun et al. Electrochemical dopamine sensor based on superionic conducting potassium ferrite
Feng et al. New voltammetric method for determination of tyrosine in foodstuffs using an oxygen-functionalized multi-walled carbon nanotubes modified acetylene black paste electrode
Elfiky et al. Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials
Yan et al. Voltammetric determination of uric acid with a glassy carbon electrode coated by paste of multiwalled carbon nanotubes and ionic liquid
WO2016140543A1 (ko) 효소 기반의 전위차법 글루코스 검출용 센서 및 이의 제조방법
Deng et al. Sensitive voltammetric determination of tryptophan using an acetylene black paste electrode modified with a Schiff's base derivative of chitosan
Chandra et al. Determination of dopamine in presence of uric acid at poly (eriochrome black T) film modified graphite pencil electrode
Tigari et al. Poly (glutamine) film-coated carbon nanotube paste electrode for the determination of curcumin with vanillin: an electroanalytical approach
CN111398390B (zh) 纳米碳化钼修饰碳糊电极光致电化学传感器制备方法及应用
Babaei et al. A new sensor for simultaneous determination of tyrosine and dopamine using iron (III) doped zeolite modified carbon paste electrode
Ghoreishi et al. Electrochemical determination of tyrosine in the presence of uric acid at a carbon paste electrode modified with multi-walled carbon nanotubes enhanced by sodium dodecyl sulfate
CN101344501A (zh) 一种丝网印刷电极、制备工艺及其应用
Shams et al. Voltammetric determination of dopamine at a zirconium phosphated silica gel modified carbon paste electrode
Chitravathi et al. Electrochemical studies of sodium levothyroxine at surfactant modified carbon paste electrode
Mohammadizadeh et al. Carbon paste electrode modified with ZrO 2 nanoparticles and ionic liquid for sensing of dopamine in the presence of uric acid
Zhang et al. Electrochemical detection of dopamine in real samples by an indium tin oxide-coated glass electrode modified with carbon nanotubes
Guo et al. Voltammetric determination of tetracycline by using multi-wall carbon nanotube–ionic liquid film coated glassy carbon electrode
CN109187678A (zh) 利用纳米金石墨烯修饰电化学方法的亚硝酸盐检测装置
Mohammadi et al. Application of a modified carbon paste electrode using core–shell magnetic nanoparticle and modifier for simultaneous determination of norepinephrine, acetaminophen and tryptophan
CN210720235U (zh) 一种用于酪氨酸辅助检测的丝网印刷电极
Mohammadi et al. A novel electrochemical sensor based on graphene oxide nanosheets and ionic liquid binder for differential pulse voltammetric determination of droxidopa in pharmaceutical and urine samples
CN111426729B (zh) 纳米硒化锌修饰金电极光致电化学传感器制备方法及应用
TWI329738B (zh)
CN113295749B (zh) 氮掺杂石墨烯/离子液体复合材料修饰玻碳电极、其制备方法及肾上腺素定量检测方法
Liu et al. Improved Voltammetric Response of L‐Tyrosine on Multiwalled Carbon Nanotubes‐Ionic Liquid Composite Coated Glassy Electrodes in the Presence of Cupric Ion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant