CN111397519A - 一种纳米涂层厚度的检测方法 - Google Patents

一种纳米涂层厚度的检测方法 Download PDF

Info

Publication number
CN111397519A
CN111397519A CN202010321439.XA CN202010321439A CN111397519A CN 111397519 A CN111397519 A CN 111397519A CN 202010321439 A CN202010321439 A CN 202010321439A CN 111397519 A CN111397519 A CN 111397519A
Authority
CN
China
Prior art keywords
coating
blade
thickness
cleaning
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010321439.XA
Other languages
English (en)
Inventor
梁瑜
汤昌仁
徐伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jiangwu Cemented Carbide Co ltd
Original Assignee
Jiangxi Jiangwu Cemented Carbide Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jiangwu Cemented Carbide Co ltd filed Critical Jiangxi Jiangwu Cemented Carbide Co ltd
Priority to CN202010321439.XA priority Critical patent/CN111397519A/zh
Publication of CN111397519A publication Critical patent/CN111397519A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment

Abstract

本发明公开了一种纳米涂层厚度的检测方法,包括以下步骤,1)对刀片表面进行净化处理;2)将纳米涂层涂覆与刀片上,将涂覆好的刀片纵向切割;3)再利用钳子将切割后的刀片掰开,得到平整基体和涂层的截面,结合背散射电子成像观测方法观测纳米涂层的厚度。本发明本发明通过将涂层涂覆与刀片上后,将刀片切割掰开后,暴露出涂层的纵切面,由于金属具有一定韧性,切割后的金属不会出现抽丝、断层不均匀等问题,能更好的观测涂层,使测量厚度更精准,更直观,减小实际厚度与检测厚度数据的误差。

Description

一种纳米涂层厚度的检测方法
技术领域
本发明涉及涂层检测的技术领域,尤其涉及一种纳米涂层厚度的检测方法。
背景技术
涂层厚度测量方法有称重法、干涉显微计法、金相显微镜法、X衍射法等,行业中常用的测试方法有扫描电镜、金相显微镜以及X衍射法。
X衍射法测量厚度虽然可以不破坏样品,但被测结晶物质如果存在择优取向、晶格缺陷等,就会引起衍射线强度的变化,造成测量结果的误差。
而用金相显微镜观察,在制样时表面涂层容易崩落或倒角,制样困难且只能测试厚度,不能直观观察涂层断面形貌,金相显微镜可以测量厚度厚一点的涂层,但是当厚度低于0.4um,分辨率无法识别。所以针对一般厚度在1-2um左右的PVD涂层,只能采用扫描电镜测量,对于多层的涂层二次电子成像无法识别,只能采用背散射电子成像。
扫描电镜(SEM)主要是利用二次电子和背散射电子成像。背散射电子信号是由入射电子与样品发生了准弹性散射形成的,分析样品表面信息的深度通常是几百纳米。背散射电子成像的衬度主要取决于3种因素:一为原子序数衬度。原子序数越大,背散射电子越多,探头接收到的信号越强,反映在图像上就越亮;二为形貌衬度,即样品表层形貌信息,凸起、尖锐和倾斜面的背散射电子多,探头接收到的信号强,图像较亮;三为晶体取向信息。当入射电子束与晶面间的夹角越大时,溢出试样表面的背散射电子就越多,探头接收到的信号越强,图像亮度越高。此外,磁场等因素也会影响背散射电子成像的衬度。
发明内容
本发明为了解决现有技术的上述不足,提出了一种纳米涂层厚度的检测方法。
为了解决上述技术问题,本发明采用以下技术方案:一种纳米涂层厚度的检测方法,包括以下步骤,
1)对刀片表面进行净化处理;
2)将纳米涂层涂覆与刀片上,将涂覆好的刀片纵向切割;
3)再利用钳子将切割后的刀片掰开,得到平整基体和涂层的截面,结合背散射电子成像观测方法观测纳米涂层的厚度。
优选的,涂覆过程包括以下步骤:
a)将涂层放置真空室中进行处理;
b)向a步骤中的真空室内添加横向磁场,再采用阴极电弧离子镀进行离子沉积;
c)将b步骤中离子沉积后的涂层通过喷涂装置将涂层涂覆至刀片上。
一种纳米涂层厚度的检测装置,包括机架,机架的上方设置有用于传输刀片的传输装置和用于对刀片进行喷涂涂层的的喷涂装置。
优选的,传输装置包括第一传输带和第二传输带,第一传输带位于喷涂装置的正下方,便于对刀片喷涂,第二传输带用于将喷涂后的刀片传输至下个作业上。
优选的,机架还包括用于对第二传输带上喷涂后的刀片进行烘干的烘干装置。
优选的,第一传输带的下方设置有用于清洗第一传输带残留涂层的清洗装置。
优选的,清洗装置包括清洗件和用于清洗第一传输带的清洗软布,清洗软布位于清洗件的输出端。
优选的,清洗件包括可往返运动的电动推杆和位于电动推杆输出端的固定板,清洗软布位于固定板上。
与现有技术相比,本发明通过将涂层涂覆与刀片上后,将刀片切割掰开后,暴露出涂层的纵切面,由于金属具有一定韧性,切割后的金属不会出现抽丝、断层不均匀等问题,能更好的观测涂层,使测量厚度更精准,更直观,减小实际厚度与检测厚度数据的误差,通过刀片涂层的呈像结果,对产品涂层进行调整,使产品涂层厚度数据更加精准。
附图说明
图1为本发明的结构示意图。
图2为清洗装置结构示意图。
图3为对比例成像图。
图4为本实施例1成像图。
图中标记:1第一传输带,2第二传输带,3喷涂装置,4机架,5烘干装置,6电动推杆,7固定板。
具体实施方式
下面结合附图和实施例对发明进行详细的说明。
实施例1
本发明提出的一种纳米涂层厚度的检测方法,包括以下步骤,1)对刀片表面进行净化处理,用蒸馏水对刀片表面进行清洗;
2)将纳米涂层涂覆与刀片上,将涂覆好的刀片纵向切割;
3)再利用钳子将切割后的刀片掰开,得到平整基体和涂层的截面,结合背散射电子成像观测方法(扫描电子显微镜的一种)观测纳米涂层的厚度。
涂覆过程包括以下步骤:
a)将涂层放置真空室中进行预处理,真空压强为10torr,预处理时间为30min;
b)在a步骤中的真空室内添加横向磁场环境,再采用阴极电弧离子镀进行离子沉积,离子沉积时间为120min,涂层放置真空下直接采用阴极电弧离子镀进行离子沉积会产生金属原子和离子等不必要的杂质,且会对涂层的质量造成影响;
c)将b步骤中制得出的涂层通过喷涂装置将涂层涂覆至刀片上,图4为本实施例的成像图。
实施例2
一种纳米涂层厚度的检测方法,包括以下步骤,1)对刀片表面进行净化处理,用蒸馏水对刀片表面进行清洗;
2)将纳米涂层涂覆与刀片上,将涂覆好的刀片纵向切割;
3)再利用钳子将切割后的刀片掰开,得到平整基体和涂层的截面,结合背散射电子成像观测方法(扫描电子显微镜的一种)观测纳米涂层的厚度。
涂覆过程包括以下步骤:
a)将涂层放置真空室中进行预处理,真空压强为10.6torr,预处理时间为55min;
b)在a步骤中的真空室内添加横向磁场环境,再采用阴极电弧离子镀进行离子沉积,离子沉积时间为130min,涂层放置真空下直接采用阴极电弧离子镀进行离子沉积会产生金属原子和离子等不必要的杂质,且会对涂层的质量造成影响;
c)将b步骤中制得出的涂层通过喷涂装置将涂层涂覆至刀片上。
对比例1
将涂层涂覆在产品上,砸开后直接利用背散射电子成像观测方法检测厚度,涂层厚度数据。
利用背散射电子成像观测方法分别对实施例1、实施例2和对比例1进行对比可知,用线切割将刀片部分切割,如图3-4所示,图3为对比例成像图,图4为实施例1成像图,对比例是砸开的,砸开的涂层表面是凹凸不平,而且形状不规则,而本发明是先将涂层涂覆于刀片上再利用钳子将刀片掰开,掰开的表面很平整,就可以得到平整基体和涂层的截面,结合背散射电子成像观测方法观测纳米涂层的厚度,特别是纳米多层涂层,一般分辨率可以达到3-6个纳米,而对比例由于是直接对涂层厚度进行观测,并未将其分解,使得厚度数据不够精准化,使实际厚度数据和测量数据不一致,造成误差,而涂层厚度是涂层质量的一个重要参数,一般涂层厚度厚一点使用寿命更好,太薄会影响涂层使用寿命,测量数据误差越小,涂层使用寿命越长。
阴极电弧离子镀可提高涂层的附着力,还可去除涂层中颗粒状的杂质,提高涂层的密度,将涂层预处理时,放置真空下采用阴极电弧离子镀进行离子沉积,但阴极电弧离子镀在真空下工作时,除产生金属原子和离子外,还产生金属的液滴,因而,如果处理不当,将会对涂层的质量有严重的影响,而横向磁场可控制阴极弧斑在阴极面上的运动,能使弧斑运动速度加快,电弧电压增高,进而控制涂层中金属离子和原子的运动,也避免产生金属的液滴,使得涂层内的分层清晰。
实施例3
如图1-图2所示,一种纳米涂层厚度的检测装置,包括机架4,机架4的上方设置有用于传输刀片的传输装置和用于对刀片进行喷涂涂层的的喷涂装置3,对刀片均匀喷涂,避免出现厚度不一致,该喷涂装置3为本领域常见的可控制喷涂量的喷涂装置3。
本实施例中,传输装置包括第一传输带1和第二传输带2,第一传输带1位于喷涂装置3的正下方,便于对刀片喷涂,第二传输带2用于将喷涂后的刀片传输至下个作业上,将传输装置分为第一传输带1和第二传输带2,可避免刀片因喷涂时传输装置上残留的涂层,在进入下一个作业时出现涂层厚度的偏差,将传输带一分为二可避免该问题出现。本实施例中,机架4还包括用于对第二传输带2上喷涂后的刀片进行烘干的烘干装置5,该烘干装置5可以为烘干箱,第二传输带2将刀片传输至烘干箱内进行迅速烘干,避免因自然晾干涂层导致颜色不均匀等问题。
本实施例中,第一传输带1的下方设置有用于清洗第一传输带1残留涂层的清洗装置,对第一传输带1上残留涂层进行清洗,避免下一个刀片喷涂时,因第一传输带1上的残留物,造成喷涂厚度的偏差。
本实施例中,清洗装置包括清洗件和用于清洗第一传输带1的清洗软布,清洗软布位于清洗件的输出端,清洗软布上涂有可去除涂层的化学物清洗剂,该化学物清洗剂的成分根据涂层性质的不同进行改变,该发明不做一一阐述,清洗软布紧贴附于第一传输带1的下方,由于输送带为循环式转动,当第一传输带的上方污染后,通过输送带的循环式转动将有污染的部分转动至清洗软布处摩擦清洗。
本实施例中,清洗件包括可往返运动的电动推杆6和位于电动推杆6输出端的固定板7,清洗软布位于固定板7上,电动推杆6设置在机架4上,当需要更换清洗软布时,启动电动推杆6下降,更换后再上升继续对第一传输带1进行清洗,这里也可将电动推杆6更改为固定杆,当机械停止运转时在对清洗软布进行更换。
需注明的是,刀片为本发明观测时的道具,该均匀涂覆涂层的装置并不限制只可对刀片喷涂。
上述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利和保护范围应以所附权利要求书为准。

Claims (8)

1.一种纳米涂层厚度的检测方法,其特征在于,包括以下步骤:
1)对刀片表面进行净化处理;
2)将纳米涂层涂覆与刀片上,将涂覆好的刀片纵向切割;
3)再利用钳子将切割后的刀片掰开,得到平整基体和涂层的截面,结合背散射电子成像观测方法观测纳米涂层的厚度。
2.如权利要求1所述的一种纳米涂层厚度的检测方法,其特征在于,所述涂覆过程包括以下步骤:
a)将涂层放置真空室中进行处理;
b)向a步骤中的真空室内添加横向磁场,再采用阴极电弧离子镀进行离子沉积;
c)将b步骤中离子沉积后的涂层通过喷涂装置将涂层涂覆至刀片上。
3.一种纳米涂层厚度的检测装置,其特征在于,包括机架(4),所述机架的上方设置有用于传输刀片的传输装置和用于对刀片进行喷涂涂层的喷涂装置(3)。
4.如权利要求3所述的一种纳米涂层厚度的检测装置,其特征在于,所述传输装置包括第一传输带(1)和第二传输带(2),所述第一传输带(1)位于所述喷涂装置(3)的正下方,所述第二传输带(2)用于将喷涂后的刀片传输至下个作业上。
5.如权利要求4所述的一种均匀涂覆涂层的装置,其特征在于,所述机架(4)还包括用于对第二传输带(2)上喷涂后的刀片进行烘干的烘干装置(5)。
6.如权利要求4所述的一种纳米涂层厚度的检测装置,其特征在于,所述第一传输带(1)的下方设置有用于清洗第一传输带(1)残留涂层的清洗装置。
7.如权利要求6所述的一种均匀涂覆涂层的装置,其特征在于,所述清洗装置包括清洗件和用于清洗第一传输带(1)的清洗软布,所述清洗软布位于所述清洗件的输出端。
8.如权利要求7述的一种均匀涂覆涂层的装置,其特征在于,所述清洗件包括可往返运动的电动推杆(6)和位于电动推杆(6)输出端的固定板(7),所述清洗软布位于所述固定板(7)上。
CN202010321439.XA 2020-04-22 2020-04-22 一种纳米涂层厚度的检测方法 Pending CN111397519A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010321439.XA CN111397519A (zh) 2020-04-22 2020-04-22 一种纳米涂层厚度的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010321439.XA CN111397519A (zh) 2020-04-22 2020-04-22 一种纳米涂层厚度的检测方法

Publications (1)

Publication Number Publication Date
CN111397519A true CN111397519A (zh) 2020-07-10

Family

ID=71435308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010321439.XA Pending CN111397519A (zh) 2020-04-22 2020-04-22 一种纳米涂层厚度的检测方法

Country Status (1)

Country Link
CN (1) CN111397519A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117760347A (zh) * 2024-02-22 2024-03-26 中国航发北京航空材料研究院 一种高温合金热障涂层厚度的检测方法、装置以及一种存储介质、一种电子设备
CN117760347B (zh) * 2024-02-22 2024-05-17 中国航发北京航空材料研究院 一种高温合金热障涂层厚度的检测方法、装置以及一种存储介质、一种电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2778402Y (zh) * 2005-03-16 2006-05-10 何培炜 自动喷漆机的送料带清洗装置
CN103185676A (zh) * 2011-12-27 2013-07-03 国家纳米技术与工程研究院 一种镁合金表面碳化钨涂层断口的扫描电镜制样方法
US20130209745A1 (en) * 2012-02-10 2013-08-15 National Research Council Of Canada Method of coating of a substrate with a thermal spray coating material and coated substrate formed thereby
CN103695858A (zh) * 2013-12-26 2014-04-02 广东工业大学 一种用于刀具涂层沉积的多功能全自动离子镀膜机及其使用方法
CN108225195A (zh) * 2016-12-21 2018-06-29 肯纳金属公司 无损测试切削刀片以确定涂层厚度的方法
CN109059812A (zh) * 2018-09-11 2018-12-21 太原理工大学 一种精确测量曲面上多层微纳米薄膜厚度的方法
CN210125508U (zh) * 2019-04-08 2020-03-06 东莞市兆恒机械有限公司 一种高效率的喷涂装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2778402Y (zh) * 2005-03-16 2006-05-10 何培炜 自动喷漆机的送料带清洗装置
CN103185676A (zh) * 2011-12-27 2013-07-03 国家纳米技术与工程研究院 一种镁合金表面碳化钨涂层断口的扫描电镜制样方法
US20130209745A1 (en) * 2012-02-10 2013-08-15 National Research Council Of Canada Method of coating of a substrate with a thermal spray coating material and coated substrate formed thereby
CN103695858A (zh) * 2013-12-26 2014-04-02 广东工业大学 一种用于刀具涂层沉积的多功能全自动离子镀膜机及其使用方法
CN108225195A (zh) * 2016-12-21 2018-06-29 肯纳金属公司 无损测试切削刀片以确定涂层厚度的方法
CN109059812A (zh) * 2018-09-11 2018-12-21 太原理工大学 一种精确测量曲面上多层微纳米薄膜厚度的方法
CN210125508U (zh) * 2019-04-08 2020-03-06 东莞市兆恒机械有限公司 一种高效率的喷涂装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117760347A (zh) * 2024-02-22 2024-03-26 中国航发北京航空材料研究院 一种高温合金热障涂层厚度的检测方法、装置以及一种存储介质、一种电子设备
CN117760347B (zh) * 2024-02-22 2024-05-17 中国航发北京航空材料研究院 一种高温合金热障涂层厚度的检测方法、装置以及一种存储介质、一种电子设备

Similar Documents

Publication Publication Date Title
JP2014167474A (ja) デコレーションを用いたスライス・アンド・ビュー
DE112018006577T5 (de) Ionenfräsvorrichtung und Ionenquellen-Justierverfahren für Ionenfräsvorrichtung
WO2022121954A1 (zh) 一种pcb表面薄层品质分析方法
CN108010860B (zh) 一种自定位电迁移测试结构及透射电镜样品制备方法
DE102013102537B4 (de) Proben-vorbereitungsverfahren
CN111397519A (zh) 一种纳米涂层厚度的检测方法
CN109142415B (zh) 一种取向硅钢中抑制剂的分析方法
KR20010060194A (ko) 초음파 검사에 의해 양극 스퍼터 표적에서의 실제 결함크기를 결정하는 방법
CN105097580A (zh) 聚焦离子束分析方法
JP6498950B2 (ja) プログラムされたマニピュレータを用いた表面除層
CN115200518A (zh) 一种便捷化钛阳极涂层厚度检测及其均一性可视化方法
DE102009054060B4 (de) Vorrichtung und Verfahren zum Beschichten eines Substrates
Borghi et al. Quantitative Analysis of gold nano-aggregates by combining electron and probe microscopy techniques
US4335189A (en) Resolution standard for scanning electron microscope comprising palladium spines on a metal substrate
KR20130073282A (ko) 재료의 초미세 국부 변형률 측정방법
JP6634871B2 (ja) 透過型電子顕微鏡用試料の作製方法および確認方法
TWI752683B (zh) 製備半導體晶圓的方法
CN109313107B (zh) 试样表面的制作方法、试样表面的分析方法
Moriarty et al. Repeatability of Automated FIB Prepared TEM Samples with Low keV Cleaning
Kwon et al. Automated Sample Depth Targeting with Low kV Cleaning by Focused Ion Beam Microscopy for Atom Probe Tomography
Simko et al. Characterization of zirconium oxide-based pretreatment coatings Part 1–variability in coating deposition on different metal substrates
EP2952872A1 (en) Surface delayering with a programmed manipulator
DE19636492C2 (de) Verfahren und Vorrichtung zur Überwachung und Steuerung der flächigen galvanischen Abscheidung dicker Schichten auf elektrisch leitfähigen flexiblen Substraten
Wobrock Microplasticity of idealized single crystalline Ag cantilevers characterized with methods of high resolution
CN116106349A (zh) 一种扫描电镜图像定量分析α+β钛合金相比例的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200710

RJ01 Rejection of invention patent application after publication