CN111389430B - 一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法 - Google Patents

一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法 Download PDF

Info

Publication number
CN111389430B
CN111389430B CN202010412218.3A CN202010412218A CN111389430B CN 111389430 B CN111389430 B CN 111389430B CN 202010412218 A CN202010412218 A CN 202010412218A CN 111389430 B CN111389430 B CN 111389430B
Authority
CN
China
Prior art keywords
mwcnts
cop
catalyst
preparation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010412218.3A
Other languages
English (en)
Other versions
CN111389430A (zh
Inventor
李保军
李中爽
刘艳艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202010412218.3A priority Critical patent/CN111389430B/zh
Publication of CN111389430A publication Critical patent/CN111389430A/zh
Application granted granted Critical
Publication of CN111389430B publication Critical patent/CN111389430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于电解水制氢技术领域,公开一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法。所述催化剂CoPxSy/MWCNTs为磷掺杂CoS2纳米片与多壁碳纳米管的复合材料,其中,0<y<2,x=2‑y。制备方法:将MWCNTs超声分散在1#水中,制得悬浮液;将Co(NO3)2·6 H2O、Al(NO3)3·6 H2O和CO(NH2)2溶于2#水中,搅拌溶解至澄清,搅拌下加入到所得悬浮液中,然后搅拌均匀,移入反应釜中,120‑150℃水热反应6‑9 h,冷却后离心、洗涤、干燥,制得CoAl‑LDH/MWCNTs复合材料;将CoAl‑LDH/MWCNTs复合材料在NaOH溶液中室温浸泡,过滤,洗涤、干燥,获得α‑Co(OH)/MWCNTs样品;将α‑Co(OH)/MWCNTs置于管式炉下游、P2S5置于管式炉上游,在惰性气氛下,升温至450‑550℃保持1‑2 h,冷却后获得催化剂CoPxSy/MWCNTs。本发明所制备的CoPxSy/MWCNTs催化剂用于电解水制氢具有超高的活性。

Description

一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法
技术领域
本发明属于电解水制氢技术领域,具体涉及一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法。
背景技术
随着环境污染的加剧和化石燃料的不断消耗,不断促使研究者致力于发展高效、清洁和可再生能源。在各种可持续能源中,氢能,因其能量密度高、环境友好、来源丰富及可再生等特性,被认为是绿色能源,是未来取代传统化石燃料的最有希望的清洁能源候选者之一。
电解水制氢技术被认为是可持续制氢的理想方法,析氢反应(HER),作为电解水的一个重要过程,已经引起了研究者的广泛关注,这就要求高效的电催化剂用于HER,以降低过电位,提高能量利用率。目前,在传统贵金属中,Pt基材料依然被认为是最有效的HER催化剂,但是其价格昂贵和储量低限制了大规模的实际应用。
因此,研究开发廉价高效的非贵金属催化剂是实现低成本电解水制氢的关键科学问题之一,也是目前该领域的研究热点和重点。各种非贵金属基HER电催化剂,包括过渡金属硫化物、硒化物、磷化物、碳化物和氮化物等由于其具有高效的电催化性能而被广泛研究,用以取代贵金属催化剂。硫化钴作为非贵金属材料的一种,由于其独特的特性(如成本低、易于调控结构),在电催化方向具有广泛应用。掺杂其它元素可以调控原有结构的电子结构,对硫化钴原位掺杂P,可以调控材料电子结构,增加活性位点,已经在各种情况下表现出极好的电化学性能,被认为是一种有前景的电化学HER催化剂。CNTs因其高的导电性而作为复合材料的应用优势已经得到证实,其原位生长的纳米片可以与CNTs表面接触阻止材料聚集,并且进一步增加了材料的导电性和反应传质,从而改善催化性能。因此,P掺杂CoS2纳米片通过复合CNTs有望达到理想的接近贵金属的催化性能。
发明内容
针对上述现有技术的缺陷与不足,本发明的目的在于提供一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种电解水制氢用催化剂CoPxSy/MWCNTs,所述催化剂CoPxSy/MWCNTs为磷掺杂CoS2纳米片与多壁碳纳米管的复合材料,其中,CoPxSy代表磷掺杂CoS2纳米片,MWCNTs代表多壁碳纳米管,0<y<2,x=2-y。
制备方法,步骤如下:
(1)、将MWCNTs超声分散在1#水中,制得悬浮液;
(2)、将Co(NO3)2·6 H2O、Al(NO3)3·6 H2O和CO(NH2)2溶于2#水中,搅拌溶解至澄清,制得澄清液;搅拌下将澄清液加入到步骤(1)所得悬浮液中,然后搅拌均匀,移入反应釜中,120-150 ℃水热反应6-9 h,冷却后离心、洗涤、干燥,制得CoAl-LDH/MWCNTs复合材料;
(3)、将CoAl-LDH/MWCNTs复合材料在NaOH溶液中室温浸泡,过滤,洗涤、干燥,获得α-Co(OH)/MWCNTs样品;
(4)、将α-Co(OH)/MWCNTs置于管式炉下游、P2S5置于管式炉上游,在惰性气氛下,升温至450-550 ℃保持1-2 h,冷却后获得催化剂CoPxSy/MWCNTs。
较好地,步骤(1)和步骤(2)中,原料配比为MWCNTs∶1#水∶Co(NO3)2‧6 H2O∶Al(NO3)3‧6 H2O∶CO(NH2)2∶2#水= (15-30)mg∶(20-40)mL∶(1-3)mmol∶(1-2) mmol∶(1-10)mol∶(30-50)mL。
较好地,步骤(3)中,NaOH溶液的浓度为4-6 mol/L。
较好地,步骤(3)中,浸泡10-12 h。
较好地,步骤(2)和步骤(3)中,洗涤时分别用水和乙醇洗涤数次,干燥时的温度为70-90 ℃。
较好地,步骤(4)中,以质量比计,α-Co(OH)/MWCNTs复合材料∶P2S5 = 1∶(5–10)。
较好地,步骤(4)中,以5-10 ℃/min的速率升温。
与现有技术相比,本发明采用P2S5分子高温硫磷化α-Co(OH)/MWCNTs可实现对硫化钴的原位P掺杂获得CoPxSy/MWCNTs催化剂,所制备的CoPxSy/MWCNTs催化剂用于电解水制氢具有超高的活性。
附图说明
图1:对照例1制备的催化剂CoP0.8S1.2的EDX集成光谱图像。
图2:对照例1制备的催化剂CoP0.8S1.2的场发射扫描电子显微镜图(a)和透射电子显微镜图(b)。
图3:实施例1制备的催化剂CoP0.8S1.2/MWCNTs的场发射扫描电子显微镜图(a)和透射电子显微镜图(b)。
图4:对照例1制备的催化剂CoP0.8S1.2以及实施例1制备的催化剂CoP0.8S1.2/MWCNTs的X射线粉末衍射图。
图5:对照例1制备的催化剂CoP0.8S1.2以及实施例1制备的催化剂CoP0.8S1.2/MWCNTs电解水制氢的极化曲线(LSV)图(a)、塔菲尔斜率图(b)以及电化学阻抗(EIS)图(c)。
具体实施方式
为使本发明更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
催化剂CoP0.8S1.2/MWCNTs的制备方法,步骤如下:
(1)、取30 mg MWCNTs超声搅拌2 h分散在30 mL 重蒸水中,制得悬浮液;
(2)、将Co(NO3)2‧6 H2O (3 mmol)、Al(NO3)3‧6 H2O (1 mmol)和CO(NH2)2 (10 mol)溶于40 mL重蒸水中,搅拌溶解至澄清,搅拌下滴入步骤(1)所得悬浮液中,然后搅拌30min,移入100 mL 反应釜中,150 ℃水热6 h,冷却后离心,分别用水和无水乙醇洗涤三次,70 ℃干燥,制得片状钴铝双氢氧化物与多壁碳纳米管复合材料即CoAl-LDH/MWCNTs复合材料;
(3)、将CoAl-LDH/MWCNTs复合材料在5 M NaOH溶液中浸泡10 h,过滤,分别用水和无水乙醇洗涤三次,70 ℃干燥,获得α-Co(OH)/MWCNTs样品;
(4)、取50 mg α-Co(OH)/MWCNTs倒入磁舟中置于管式炉下游,取0.5 g P2S5倒入磁舟中置于管式炉上游,两个磁舟的中心相距大约5 cm,在Ar气气氛下,以5 ℃/min升温至500 ℃,在500 ℃保持1 h,冷却后获得催化剂CoP0.8S1.2/MWCNTs。
对照例1
催化剂CoP0.8S1.2的制备方法,与实施例1的区别在于:不添加MWCNTs,具体步骤如下:
(1)、将Co(NO3)2‧6 H2O (3 mmol)、Al(NO3)3‧6 H2O (1 mmol)和CO(NH2)2 (10 mol)溶于40 mL重蒸水中,搅拌溶解至澄清,移入100 mL 反应釜中,150 ℃水热6 h,冷却后离心,分别用水和无水乙醇洗涤三次,70 ℃干燥,制得片状钴铝双氢氧化物即CoAl-LDH;
(2)、将CoAl-LDH在5 M NaOH溶液中浸泡10 h,过滤,分别用水和无水乙醇洗涤三次,70 ℃干燥,获得α-Co(OH)样品;
(3)、取50 mg α-Co(OH)倒入磁舟中置于管式炉下游,取0.5 g P2S5倒入磁舟中置于管式炉上游,两个磁舟的中心相距大约5 cm,在Ar气气氛下,以5 ℃/min升温至500 ℃,在500 ℃保持1 h,冷却后获得催化剂CoP0.8S1.2
催化剂结构表征
图1为对照例1制备的催化剂CoP0.8S1.2的EDX集成光谱图像。表明样品含有Co、P、S以及O四种元素,O元素的出现是因为样品表面吸附的氧。表1为对应的EDX元素含量数据,其中P和S的原子含量比例为0.8∶1.2。EDX集成光谱图像以及EDX元素含量数据证实:对照例1制备的催化剂分子式为CoP0.8S1.2
Figure 385810DEST_PATH_IMAGE001
图2为对照例1制备的催化剂CoP0.8S1.2的场发射扫描电子显微镜图(a)和透射电子显微镜图(b)。从图2(a)、(b)中可以看出:CoP0.8S1.2呈纳米片状,且均匀分散。
由于实施例1和对照例1的区别仅在于制备过程中添加了MWCNTs,而MWCNTs并不影响磷的掺杂,所以可以推定实施例1制备的催化剂实质为CoP0.8S1.2纳米片与MWCNTs的复合材料,即分子式为CoP0.8S1.2/MWCNTs。
图3为实施例1制备的催化剂CoP0.8S1.2/MWCNTs的场发射扫描电子显微镜图(a)和透射电子显微镜图(b)。从图3(a)、(b)中可以看出:片状的CoP0.8S1.2纳米片与MWCNTs结合在一起。图3(a)中能清楚看到:较小且无规则的CoP0.8S1.2纳米片复合MWCNTs,且可以看出CoP0.8S1.2纳米片上分布着许多的孔结构。图3(b)中可以看到:CoP0.8S1.2纳米片呈分层结构,图中圆圈中呈管状的MWCNTs阻止了CoP0.8S1.2纳米片的聚集。
图4为对照例1制备的催化剂CoP0.8S1.2以及实施例1制备的催化剂CoP0.8S1.2/MWCNTs的X射线粉末衍射图。从图4中可以看出:2θ角度在28.2°、32.8°、36.6°、40.3°、46.9°、55.6°、60.6°和63.3°处均出现了衍射峰,全部介于CoS2相(JCPDS No. 41-1471)和CoPS相(JCPDS No. 27-0139)衍射峰的中间,分别对应的(111)、(200)、(210)、(211)、(220)、(311)、(320)和(321)晶面,表明了P引入到CoS2中引起了晶格的变化,MWCNTs的引入对材料晶相结构没有显著影响。。
催化剂性能测试
将对照例1制备的催化剂CoP0.8S1.2以及实施例1制备的催化剂CoP0.8S1.2/MWCNTs用于电解水制氢,条件为:温度25 ℃。将催化剂3 mg、重蒸水 330 µL、N,N-二甲基甲酰胺170µL和Nafion溶液(5 wt %)50 µL超声形成均匀的混合液后,吸取5 µL滴在玻璃碳电极(GCE)上作为工作电极,然后以甘汞电极做为参比电极,石墨棒做为辅助电极形成三电极体系,0.5 M H2SO4作为电解液,CHI660E电化学工作站检测催化剂的催化性能,包括极化曲线(LSV)图和对应的塔菲尔斜率图以及电化学阻抗(EIS)图,其中各项测试条件为:线性扫描扫速为5 mV/s,-0.1 V vs RHE恒电压测试电化学阻抗的频率范围为100000-0.1 Hz。同时,以GC电极(裸玻碳电极)和Pt/C(Pt的质量百分含量为20%)分别作为对照工作电极。
图5为对照例1制备的催化剂CoP0.8S1.2以及实施例1制备的催化剂CoP0.8S1.2/MWCNTs电解水制氢的极化曲线(LSV)图(a)、塔菲尔斜率图(b)以及电化学阻抗(EIS)图(c)。从图5(a)中可以看出:CoP0.8S1.2/MWCNTs具有比CoP0.8S1.2更高的催化活性,电流密度在10mA/cm2时CoP0.8S1.2和CoP0.8S1.2/MWCNTs催化剂对应的过电势分别为57 mV和49 mV。从图5(b)中可以看出:CoP0.8S1.2和CoP0.8S1.2/MWCNTs表现出小的塔菲尔斜率,其值分别为41和39mV/dec,达到了接近贵金属20 wt% Pt/C催化剂的催化性能。从图5(c)中可以看出:CoP0.8S1.2/MWCNTs也表现出小的传荷阻值,其值为61 Ω,小于CoP0.8S1.2的66 Ω,表明了MWCNTs的引入使得催化剂表面和电解液之间的电子转移过程速率提升,具有了更高的催化活性。

Claims (7)

1.一种电解水制氢用催化剂CoPxSy/MWCNTs的制备方法,其特征在于,所述催化剂CoPxSy/MWCNTs为磷掺杂CoS2纳米片与多壁碳纳米管的复合材料,其中,0<y<2,x=2-y;制备步骤如下:
(1)、将MWCNTs超声分散在1#水中,制得悬浮液;
(2)、将Co(NO3)2·6 H2O、Al(NO3)3·6 H2O和CO(NH2)2溶于2#水中,搅拌溶解至澄清,制得澄清液;搅拌下将澄清液加入到步骤(1)所得悬浮液中,然后搅拌均匀,移入反应釜中,120-150 ℃水热反应6-9 h,冷却后离心、洗涤、干燥,制得CoAl-LDH/MWCNTs复合材料;
(3)、将CoAl-LDH/MWCNTs复合材料在NaOH溶液中室温浸泡,过滤,洗涤、干燥,获得α-Co(OH)/MWCNTs样品;
(4)、将α-Co(OH)/MWCNTs置于管式炉下游、P2S5置于管式炉上游,在惰性气氛下,升温至450-550 ℃保持1-2 h,冷却后获得催化剂CoPxSy/MWCNTs。
2.如权利要求1所述的电解水制氢用催化剂CoPxSy/MWCNTs的制备方法,其特征在于:步骤(1)和步骤(2)中,原料配比为MWCNTs∶1#水∶Co(NO3)2‧6 H2O∶Al(NO3)3‧6 H2O∶CO(NH2)2∶2#水=(15-30)mg∶(20-40)mL∶(1-3)mmol∶(1-2)mmol∶(1-10)mol∶(30-50)mL。
3.如权利要求1所述的电解水制氢用催化剂CoPxSy/MWCNTs的制备方法,其特征在于:步骤(3)中,NaOH溶液的浓度为4-6 mol/L。
4.如权利要求1所述的电解水制氢用催化剂CoPxSy/MWCNTs的制备方法,其特征在于:步骤(3)中,浸泡10-12 h。
5.如权利要求1所述的电解水制氢用催化剂CoPxSy/MWCNTs的制备方法,其特征在于:步骤(2)和步骤(3)中,洗涤时分别用水和乙醇洗涤数次,干燥时的温度为70-90 ℃。
6.如权利要求1所述的电解水制氢用催化剂CoPxSy/MWCNTs的制备方法,其特征在于:步骤(4)中,以质量比计,α-Co(OH)/MWCNTs复合材料∶P2S5 = 1∶(5–10)。
7.如权利要求1所述的电解水制氢用催化剂CoPxSy/MWCNTs的制备方法,其特征在于:步骤(4)中,以5-10 ℃/min的速率升温。
CN202010412218.3A 2020-05-15 2020-05-15 一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法 Active CN111389430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010412218.3A CN111389430B (zh) 2020-05-15 2020-05-15 一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010412218.3A CN111389430B (zh) 2020-05-15 2020-05-15 一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法

Publications (2)

Publication Number Publication Date
CN111389430A CN111389430A (zh) 2020-07-10
CN111389430B true CN111389430B (zh) 2022-10-25

Family

ID=71418700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010412218.3A Active CN111389430B (zh) 2020-05-15 2020-05-15 一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法

Country Status (1)

Country Link
CN (1) CN111389430B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855205B (zh) * 2022-04-11 2024-02-09 浙江理工大学 一种多级结构的三元金属硫化物三维电极的制备方法
CN114934293B (zh) * 2022-05-27 2024-02-27 河南科技大学 一种CoPS/黑磷烯垂直异质结构材料的制备方法、CoPS/黑磷烯复合材料及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111191A1 (en) * 2016-12-12 2018-06-21 Nanyang Technological University Activating transition metal phosphochalcogenide for highly efficient hydrogen evolution
CN108301017A (zh) * 2018-03-12 2018-07-20 郑州大学 一种电解水制氢用催化剂Co9S8@CNT及其制备方法
CN108383093A (zh) * 2018-05-11 2018-08-10 西北师范大学 一种双金属磷化物碳纳米管复合材料的制备和应用
CN108588752A (zh) * 2018-04-26 2018-09-28 郑州大学 一种电解水制氢用催化剂Co9S8/rGO及其制备方法
CN109289894A (zh) * 2018-10-19 2019-02-01 浙江大学 一种磷化钴/氮掺多孔碳复合催化材料及其制备方法和应用
CN109847778A (zh) * 2019-01-04 2019-06-07 华中师范大学 一种用于电解水析氧的二硫化钴/碳氮复合材料及其合成方法
CN110745801A (zh) * 2019-11-08 2020-02-04 扬州大学 一种表面硫掺杂磷化钴纳米材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112620A2 (en) * 2010-03-08 2011-09-15 University Of Washington Composite photoanodes
US20170044679A1 (en) * 2015-08-11 2017-02-16 Wisconsin Alumni Research Foundation High performance earth-abundant electrocatalysts for hydrogen evolution reaction and other reactions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111191A1 (en) * 2016-12-12 2018-06-21 Nanyang Technological University Activating transition metal phosphochalcogenide for highly efficient hydrogen evolution
CN108301017A (zh) * 2018-03-12 2018-07-20 郑州大学 一种电解水制氢用催化剂Co9S8@CNT及其制备方法
CN108588752A (zh) * 2018-04-26 2018-09-28 郑州大学 一种电解水制氢用催化剂Co9S8/rGO及其制备方法
CN108383093A (zh) * 2018-05-11 2018-08-10 西北师范大学 一种双金属磷化物碳纳米管复合材料的制备和应用
CN109289894A (zh) * 2018-10-19 2019-02-01 浙江大学 一种磷化钴/氮掺多孔碳复合催化材料及其制备方法和应用
CN109847778A (zh) * 2019-01-04 2019-06-07 华中师范大学 一种用于电解水析氧的二硫化钴/碳氮复合材料及其合成方法
CN110745801A (zh) * 2019-11-08 2020-02-04 扬州大学 一种表面硫掺杂磷化钴纳米材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
""Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction"";Jingyan Zhang et.al.;《Electrochimica Acta》;20171110;第259卷;第995页摘要 *

Also Published As

Publication number Publication date
CN111389430A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
Sha et al. In situ grown 3D hierarchical MnCo2O4. 5@ Ni (OH) 2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation
Lin et al. Perovskite nanoparticles@ N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
CN109701545B (zh) 一种负载钒钴合金纳米颗粒的电催化材料及其制备方法
CN110767914B (zh) 一种Co-N掺杂多孔碳包覆碳纳米管核壳结构催化剂及其制备方法与应用
Lv et al. Carbon-quantum-dots-involved Fe/Co/Ni phosphide open nanotubes for high effective seawater electrocatalytic decomposition
Wang et al. Iron phosphides supported on three-dimensional iron foam as an efficient electrocatalyst for water splitting reactions
CN110479271B (zh) 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法
Sun et al. One-pot synthesis of N and P Co-doped carbon layer stabilized cobalt-doped MoP 3D porous structure for enhanced overall water splitting
CN112447990B (zh) Fe/Fe3C嵌入N掺杂碳复合材料及其制备方法与其在微生物燃料电池中的应用
Chang et al. Fabrication of bimetallic Co/Zn leaf blade structure template derived Co3O4-ZIF/Zn and its ORR catalytic performance for MFC
CN108315758B (zh) 一种电解水产氢催化剂及其制备方法
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN111389430B (zh) 一种电解水制氢用催化剂CoPxSy/MWCNTs及其制备方法
CN111653792A (zh) 一种同步制备多级孔钴和氮共掺杂纳米棒负载铂钴合金纳米氧还原电催化剂的方法
CN111282588A (zh) 一种电解水析氢催化剂及其制备方法与应用
CN112522726A (zh) 一种由天然琼脂衍生的氮掺杂多孔碳/二硫化钼复合材料的制备方法及其应用
Al‐Dhaifallah et al. Co‐decorated reduced graphene/titanium nitride composite as an active oxygen reduction reaction catalyst with superior stability
Lan et al. Bimetallic zeolitic imidazole framework derived Co@ NC materials as oxygen reduction reaction catalysts application for microbial fuel cells
Zhang et al. Melamine-assisted synthesis of paper mill sludge-based carbon nanotube/nanoporous carbon nanocomposite for enhanced electrocatalytic oxygen reduction activity
CN113667995B (zh) 二维片状多巴胺热解碳包覆钌纳米团簇催化剂及制备使用方法
Cai et al. Recent advances in metal-free electrocatalysts for the hydrogen evolution reaction
CN111804313B (zh) Fe2O3@Co9S8双中空核壳结构纳米复合材料制备方法及其应用
CN113903930A (zh) 锰掺杂聚苯胺基碳纳米纤维作为载体负载铂基催化剂、制备方法及其应用
Zhao et al. CoSe2 nanocrystals embedded into carbon support as coralline-like catalysts for hydrogen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant