CN111377660B - 一种用于混凝土裂缝修复的聚合物材料及其制备方法 - Google Patents

一种用于混凝土裂缝修复的聚合物材料及其制备方法 Download PDF

Info

Publication number
CN111377660B
CN111377660B CN202010198313.8A CN202010198313A CN111377660B CN 111377660 B CN111377660 B CN 111377660B CN 202010198313 A CN202010198313 A CN 202010198313A CN 111377660 B CN111377660 B CN 111377660B
Authority
CN
China
Prior art keywords
silane
polymer
solution
monomer
mass concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010198313.8A
Other languages
English (en)
Other versions
CN111377660A (zh
Inventor
孙申美
黄福仁
钟开红
唐孟雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Academy Of Building Sciences Group Co ltd
Original Assignee
Guangzhou Academy Of Building Sciences Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Academy Of Building Sciences Group Co ltd filed Critical Guangzhou Academy Of Building Sciences Group Co ltd
Priority to CN202010198313.8A priority Critical patent/CN111377660B/zh
Publication of CN111377660A publication Critical patent/CN111377660A/zh
Application granted granted Critical
Publication of CN111377660B publication Critical patent/CN111377660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

本发明公开了一种用于混凝土裂缝修复的聚合物材料及其制备方法。用于混凝土裂缝修复的聚合物材料及其制备方法,其由硅烷聚合物和缩聚催化剂复合组成;所述硅烷聚合物分子结构含有硅烷基团和聚醚基团;所述硅烷聚合物的制备方法:由硅烷类单体、聚醚类单体和羧酸单体通过自由基共聚反应获得;所述缩聚催化剂为烷基胺。采用所述聚合物和催化剂配制的水泥浆体具有高粘结性,展现优良的耐候性和耐久性,具有显著的应用价值。

Description

一种用于混凝土裂缝修复的聚合物材料及其制备方法
技术领域
本发明涉及一种聚合物材料,属于混凝土修复技术领域,尤其涉及一种用于混凝土裂缝修复的聚合物材料及其制备方法。
背景技术
水泥混凝土具有抗压强度高、耐久性好和成本低等优点,已成为目前用量最大、使用最广泛的的建筑材料。但混凝土抗拉强度较低,脆性较大,在混凝土结构施工和服役过程中,受各种环境条件(温湿度、荷载等)的影响,不可避免地产生不同尺寸的混凝土裂缝。外界中的有害物质通过裂缝渗透进混凝土结构中,轻则导致混凝土结构渗水,重则腐蚀其钢筋结构,影响混凝土结构的使用功能和服役寿命,危及混凝土结构的安全性,这些危害使混凝土裂缝修复技术显得尤为重要。
对于混凝土裂缝的修复,国内外的研究主要集中在如何提升混凝土修复界面的粘结性能。如史长城等人(地质聚合物界面剂对新老混凝土粘结强度影响研究.新型建筑材料,2017(03).)采用地质聚合物水泥浆界面剂增强修复界面的粘结强度,研究发现地质聚合物水泥浆界面剂对普通硅酸盐水泥的增强效果最好;与同水胶比水泥净浆界面剂相比,在地质聚合物掺量较小时,其粘结劈拉强度小于水泥净浆界面剂,随着地质聚合物掺量的增大逐渐超过水泥净浆界面剂。
专利CN201910691604.8公布了一种混凝土构件表面损伤修复用高粘结强度聚合物水泥砂浆的制备方法,采用3-氨丙基三乙氧基硅烷(KH-550)作为偶联剂,选用乳化环氧树脂为界面处理剂对修复界面进行改性,配制了高粘结强度聚合物水泥砂浆。
现有研究在提高混凝土修复界面粘结性能方面取得了较好的效果,但这些研究多在混凝土结构承受单调荷载的条件下进行。在实际工程中,重复荷载对混凝土修复界面性能的影响不容忽视,因为在重复荷载作用下,即使荷载水平低于极限荷载,受力混凝土构件修复界面可能出现疲劳破坏,导致混凝土裂缝的表面修复不能满足高耐久性要求,严重影响混凝土裂缝修复的效力。
因此,亟需研发新的混凝土裂缝修复体系或材料,提高新旧混凝土界面的韧性和粘结性,降低重复荷载对混凝土修复界面的疲劳破坏,实现混凝土裂缝界面修复的高耐久性。
发明内容
为解决现有技术中存在的上述技术问题,本发明的目的是提供一种用于混凝土裂缝修复的聚合物,该聚合物具有与混凝土基体的高反应活性,可在修复材料与混凝土基体间形成梯度结构界面,这种具有梯度结构的修复界面可以增强裂缝修复界面的韧性,提高裂缝界面修复的耐久性。
本发明的另一目的是提供一种上述用于混凝土裂缝修复的聚合物的制备方法。
为实现上述发明目的,本发明采用如下的技术方案:
本发明所述的用于混凝土裂缝修复的聚合物材料是由硅烷聚合物和缩聚催化剂复合组成:将缩聚催化剂配制成适当质量浓度的水溶液,加入硅烷聚合物水溶液中,搅拌适当时间,获得聚合物修复材料;
所述硅烷聚合物分子结构含有硅烷基团和聚醚基团,由下述步骤制备得到:
由硅烷类单体a、聚醚单体b和羧酸单体c在水溶液中进行自由基共聚反应;所述硅烷类单体a、聚醚单体b和羧酸单体c的摩尔比为1:(2.0~5.0):(1.0~2.5);
所述缩聚催化剂为烷基胺;用量占硅烷聚合物总质量的0.5%~1.5%。
进一步而言,本发明中的所述硅烷类单体a选自三甲氧基烯丙基硅烷,3-(异丁烯酰氧)丙基三甲氧基硅烷,三乙氧基-2-丙烯基硅烷,烯丁基三乙氧基硅烷,异丁烯三乙氧基硅烷;这些单体单独使用或以两种以上成份的混合物形式使用。
进一步而言,本发明中的所述聚醚单体b的相对分子量范围为600~1200;选自烯丙基聚氧乙烯醚,甲基烯丙基聚氧乙烯醚,这些单体单独使用或以两种以上成份的混合物形式使用。
进一步而言,本发明中的所述羧酸单体c选自丙烯酸,甲基丙烯酸;这些单体单独使用或以两种以上成份的混合物形式使用。
进一步而言,本发明中的所述缩聚催化剂为烷基胺,是水溶性有机胺,选自二乙胺,三乙胺,丙胺;这些烷基胺单独使用或以两种以上成份的混合物形式使用。
在本发明范围内,硅烷类单体a是必须的,其经聚合后赋予聚合物高反应活性的硅烷基团,硅烷基团可以与混凝土基体中的硅氧组分进行缩聚反应,使修复材料与混凝土基体通过化学键结合,产生极强的粘结力。如果单体a的比例较低,硅烷基团含量偏低,聚合物对混凝土基体的粘结力将减弱;如果单体a的比例较高,硅烷单体在进行自由基聚合反应时易自聚,生成氧化硅,导致聚合物丧失对混凝土基体的反应活性和粘结力。
在本发明范围内,聚醚类单体b是必须的,其经聚合后将给聚合物带来聚醚侧链,聚醚的分子构型可卷曲,属于柔性结构。聚醚基团可以赋予缩聚后的硅氧网状结构弹性,令粘结界面展现韧性,缓解界面应力,避免裂缝再次产生。为保证更好的增韧效果,聚醚类单体的相对分子量应该在600~1200之间,如果聚醚单体的相对分子量小于600,缩聚获得的硅氧结构韧性较小;如果聚醚单体的相对分子量大于1200,缩聚获得硅氧结构的弹性过大,不利于修复材料的粘结强度发展。
在本发明范围内,羧酸类单体c是必须的,羧酸基团可以令硅烷聚合物具有更强的亲水性,提高其对混凝土基体的渗透性;同时,羧酸基团可以保证聚合物溶液具有弱酸性,抑制硅烷基团的自缩聚。如果单体c的比例较低,反应体系的酸性偏弱,硅烷基团自缩聚程度将增加,严重影响硅烷聚合物与混凝土基体的反应,削弱修复材料的粘结强度;如果单体c的比例较高,反应体系的酸性偏高,减缓硅烷与混凝土基体的缩聚反应,不利于修复界面的快速形成。
在本发明范围内,烷基胺是必须的,烷基胺为缩聚催化剂,可以加速硅烷聚合物与混凝土基体中硅氧组分的缩聚反应,有利于混凝土裂缝修复的快速完成。如果烷基胺的用量偏低,其对硅烷缩聚反应的催化效力较差;如果烷基胺的用量偏高,易导致硅烷聚合物发生自缩聚,影响硅烷聚合物与混凝土基体的反应,减弱界面粘结力。
所述自由基共聚反应的引发剂为水溶性氧化还原体系引发剂,该类引发剂可以保证较低温度下实现高效的聚合反应。引发剂选自L-抗坏血酸/过氧化氢体系和过硫酸铵/亚硫酸氢钠体系,这些体系单独使用或以两种以上成份的混合物形式使用。引发剂中氧化组分的用量占单体(a+b+c)总质量的0.2%~0.8%,体系中氧化组分与还原组分两者的质量比例为(1.5~3.0):1。
所述自由基共聚反应采用水溶性的链转移剂以调控聚合反应,阻止聚合过程中出现爆聚现象。水溶性链转移剂选自巯基乙酸和巯基丙酸,这些转移剂单独使用或以两种以上成份的混合物形式使用。链转移剂在聚合反应中的用量为单体(a+b+c)总质量的0.2%~1.0%。
所述水相自由基共聚反应的反应温度30~55℃。反应温度与所采用的引发剂体系密切相关。
所述自由基共聚反应中,单体a为硅烷类单体,具有高反应活性,在聚合反应中,将单体a和单体c进行混合配制成反应溶液,通过单体c产生的酸性抑制单体a的自聚。
所述自由基共聚反应中,单体b为聚醚单体,其分子量较高,聚合活性较低,为了提高单体b的转化率,在聚合反应前,将单体b全部投入反应釜中,并通过搅拌形成水溶液。
所述自由基共聚反应中,引发剂中的氧化组分在聚合前全部加入反应釜。
所述自由基共聚反应中,单体a和单体c配制的反应溶液,以及引发剂中的还原组分和链转移剂配成水溶液,采用匀速滴加的方式加入反应釜中。滴加时间控制在2~4h,其中,引发剂中的还原组分水溶液较单体溶液滴加时间延长0.5~1h。为提高单体转化率,在引发剂溶液滴加完毕后,仍需要对反应釜进行保温,保温时间控制在0.5~2h。
另外,本发明还提供了一种上述用于混凝土裂缝修复的聚合物材料的制备方法,包括以下工艺步骤:
由硅烷聚合物和缩聚催化剂复合组成:将缩聚催化剂配制成水溶液,质量浓度为5~20%,优选为10~15%;加入硅烷聚合物水溶液中,质量浓度为30~60%,优选为 35~45%;搅拌获得聚合物修复材料,搅拌时间为10~50s,优选为25~35s。
所述缩聚催化剂为烷基胺,选自水溶性有机胺,优选为二乙胺,三乙胺,丙胺中的一种或以上以任意比例的混合;
所述缩聚催化剂的用量占硅烷聚合物总质量的0.5%~1.5%。
进一步而言,所述的硅烷聚合物的制备方法包括以下步骤:
1)将聚醚b溶于水中,配成溶液P1,其质量浓度为40~80%,优选为50~70%;所述聚醚单体b相对分子量为600~1200;选自烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯醚中的一种或两者以任意比例的混合;
2)将硅烷类单体a和羧酸类单体c按照摩尔比1.0:(1.0~2.5)进行混合,配成溶液P2;所述硅烷类单体a选自三甲氧基烯丙基硅烷、3-(异丁烯酰氧)丙基三甲氧基硅烷、三乙氧基-2-丙烯基硅烷、烯丁基三乙氧基硅烷、异丁烯三乙氧基硅烷中任一种或以上按照任意比例的混合;所述羧酸单体c选自丙烯酸,甲基丙烯酸中的一种或两者以任意比例的混合;
3)将链转移剂和引发剂中的还原组分溶于水中,配成溶液P3,其质量浓度为 1.0~4.0%,优选为1.4~2.8%;所述链转移剂优选为巯基乙酸和巯基丙酸;所述引发剂为氧化还原引发体系,为L-抗坏血酸/过氧化氢和亚硫酸氢钠/过硫酸铵体系,其还原成分分别为L-抗坏血酸和亚硫酸氢;
4)将溶液P1升温至设定反应温度,反应温度为30~55℃,优选为35~40℃;将引发体系中的氧化组分加入到P1中,引发体系的氧化组分为过氧化氢和过硫酸铵;然后将溶液P2和P3在不同时间内滴加到P1中,溶液P2的滴加时间为2.0~4.0h,优选为 3.0~4.0h;溶液P3的滴加时间为2.5~5.5h,优选为3.0~4.5h;待全部滴加完毕后,再继续反应一段时间,反应时间为0.5~2.0h,优选为0.5~1.5h;然后将反应液温度降至室温,用水稀释,获得适宜质量浓度的聚合物溶液,质量浓度35%~50%,优选为35%~45%,即得到本发明所述的硅烷聚合物。
与现有技术相比,本发明采用上述技术方案所能达到的有益效果是:
1)本发明采用的硅烷基团赋予聚合物具有与混凝土基体中硅氧成分的高反应活性,提高修复材料与混凝土基体的粘结强度;
2)本发明采用的聚氧乙烯基团提高聚合物与混凝土基体缩聚反应物的韧性,减缓界面应力集中,避免裂缝再次生成,提升修复界面的耐久性;
3)本发明采用的羧酸基团可以抑制硅烷的自缩聚,改善硅烷聚合物对混凝土基体的反应活性;
4)本发明采用的烷基胺催化剂可以提高聚合物与混凝土基体表面的反应速率,促使混凝土修复界面的快速形成。
附图说明
图1是本发明实施例获得的硅烷聚合物的红外图谱分析图。
具体实施方式
为更清楚起见,下面通过以下具体实施例结合效果试验例进行详细说明。
本发明公开了一种用于混凝土裂缝修复的聚合物材料及其制备方法。该用于混凝土裂缝修复的聚合物材料是由硅烷聚合物和缩聚催化剂复合组成。所述硅烷聚合物分子结构含有硅烷基团和聚醚基团。所述硅烷聚合物的制备方法是:由硅烷类单体、聚醚类单体和羧酸单体通过自由基共聚反应获得;所述缩聚催化剂为烷基胺。
采用所述硅烷聚合物和缩聚催化剂配制的水泥浆体具有高粘结性,与混凝土基体形成韧性界面,缓和界面应力集中,避免形成新的裂缝,展现优良的耐候性和耐久性,具有显著的应用价值。
实施例1-4和对比例1-2中使用了表1的代号:
表1采用的单体及其代号
Figure BDA0002418419940000051
Figure BDA0002418419940000061
实施例1
一种用于混凝土裂缝修复的聚合物材料,是通过以下工艺步骤制备而成:
1)将单体b1(140g)溶于100g水中,配成溶液(P1);将a1(10g)和c1(6g)混合配成溶液P2;将巯基丙酸0.5g和L-抗坏血酸0.25g溶于50g水中,配成溶液P3;
2)将溶液P1升温至35℃,将过氧化氢0.45g加入到溶液P1中,然后将溶液P2和P3同时滴加到溶液P1中,溶液P2的滴加时间为3.0h,溶液P3的滴加时间为3.5h;
3)待全部滴加完毕后,再继续保温反应1h,然后加水稀释,获得质量浓度为40%的透明液体。
4)将0.4g三乙胺加入水中配制成10%的水溶液,快速加入125g聚合物溶液(40%)中,搅拌30s,获得聚合物修复溶液。
对获得的硅烷聚合物进行了红外图谱分析,见附图1所示。图1中透射强的信号峰分别位于3500cm-1,2880cm-1,1640cm-1和1100cm-1附近,分别由羟基,亚甲基,羰基和硅氧基振动产生,同时未发现单体烯基的振动峰,这表明各单体已进行共聚反应,生成了目标聚合物。
实施例2
一种用于混凝土裂缝修复的聚合物材料,是通过以下工艺步骤制备而成:
1)将单体b2(120g)溶于100g水中,配成溶液P1;将单体a1(8.5g)和单体c1(6g) 混合配成溶液P2;将巯基丙酸0.5g和L-抗坏血酸0.3g溶于50g水中,配成溶液P3;
2)将溶液P1升温至35℃,将过氧化氢0.45g加入到P1中,然后将溶液P2和P3 同时滴加到溶液P1中,溶液P2的滴加时间为3.5h,溶液P3的滴加时间为4.0h;
3)待全部滴加完毕后,再继续保温反应1h,然后加水稀释,获得质量浓度为40%的透明液体;
4)将0.25g三乙胺加入水中配制成10%的水溶液,快速加入125g聚合物溶液(40%) 中,搅拌30s,获得聚合物修复溶液。
实施例3
一种用于混凝土裂缝修复的聚合物材料,是通过以下工艺步骤制备而成:
1)将单体b1(140g)溶于100g水中,配成溶液P1;将单体a2(11.0g)和单体c1(5g)混合配溶液P2;将巯基丙酸0.4g和L-抗坏血酸0.35g溶于50g水中,配成溶液P3;
2)将溶液P1升温至35℃,将过氧化氢0.55g加入到溶液P1中,然后将溶液P2和 P3同时滴加到溶液P1中,溶液P2的滴加时间为3.0h,溶液P3的滴加时间为3.5h;
3)待全部滴加完毕后,再继续保温反应1h,然后加水稀释,获得质量浓度为40%的透明液体;
4)将0.5g三乙胺加入水中配制成10%的水溶液,快速加入125g聚合物溶液(40%)中,搅拌30s,获得聚合物修复溶液。
实施例4
一种用于混凝土裂缝修复的聚合物材料,是通过以下工艺步骤制备而成:
1)将单体b1(200g)溶于100g水中,配成溶液(P1);将单体a2(15.0g)和单体c1(6g)混合配成溶液P2;将巯基丙酸0.8g和L-抗坏血酸0.5g溶于50g水中,配成溶液P3;
2)将溶液P1升温至40℃,将过氧化氢0.85g加入到溶液P1中,然后将溶液P2和 P同时滴加到溶液P1中,溶液P2的滴加时间为3.0h,溶液P3的滴加时间为3.5h;
3)待全部滴加完毕后,再继续保温反应1h,然后加水稀释,获得质量浓度为40%的透明液体;
4)将0.65g三乙胺加入水中配制成15%的水溶液,快速加入125g聚合物溶液(40%) 中,搅拌30s,获得聚合物修复溶液。
以下为效果应用试验例的内容。
效果试验例1
按照标准《混凝土结构修复用聚合物水泥砂浆》(JG/T336-2011)的规定,采用实施例1-4和对比例1(环氧树脂类乳液),对比例2(聚丙烯酸酯类乳液),进行了聚合物水泥砂浆性能的测试,试验结果见表2。
表2聚合物砂浆的粘结性能
Figure BDA0002418419940000071
Figure BDA0002418419940000081
从表2数据可以发现,采用实施例聚合物材料制备的修复砂浆1d和28d粘结强度高于市售聚合物乳液,这表明本发明实施例制备的聚合物修复材料具有更强的粘结力,并展现了快速形成修复界面的特点;同时,经过25次冻融循环,本发明实施例聚合物砂浆的粘结强度仍高于对比例,表现了较好的耐久性。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,故凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (6)

1.一种用于混凝土裂缝修复的聚合物材料的制备方法,其特征在于,所述聚合物材料是由硅烷聚合物和缩聚催化剂复合组成:将缩聚催化剂配制成适当质量浓度的水溶液,加入硅烷聚合物水溶液中,搅拌适当时间,获得聚合物修复材料;
所述硅烷聚合物分子结构含有硅烷基团和聚醚基团;所述用于混凝土裂缝修复的硅烷聚合物是由下述步骤制备得到:
由硅烷类单体a、聚醚单体b和羧酸单体c在水溶液中进行自由基共聚反应,硅烷类单体a、聚醚单体b和羧酸单体c的摩尔比为1.0:(2.0~5.0):(1.0~2.5);
所述缩聚催化剂为烷基胺,用量占硅烷聚合物总质量的0.5%~1.5%;
所述硅烷聚合物的制备方法包括以下步骤:
1)将聚醚单体b溶于水中,配成溶液P1,其质量浓度为40~80%;
所述聚醚单体b相对分子量为600~1200;选自烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯醚中的一种或两者以任意比例的混合;
2)将硅烷类单体a和羧酸类单体c按照摩尔比1.0:(1.0~2.5)进行混合,配成溶液P2;
所述硅烷类单体a选自三甲氧基烯丙基硅烷、3-(异丁烯酰氧)丙基三甲氧基硅烷、三乙氧基-2-丙烯基硅烷、烯丁基三乙氧基硅烷、异丁烯三乙氧基硅烷中任一种或以上按照任意比例的混合;
所述羧酸单体c选自丙烯酸,甲基丙烯酸中的一种或两者以任意比例的混合;
3)将链转移剂和引发剂中的还原组分溶于水中,配成溶液P3,其质量浓度为1.0~4.0%;
所述链转移剂为巯基乙酸和巯基丙酸;所述引发剂为氧化还原引发体系,为L-抗坏血酸/过氧化氢和亚硫酸氢钠/过硫酸铵体系,其还原成分分别为L-抗坏血酸和亚硫酸氢;
4)将溶液P1升温至设定反应温度30~55℃,将引发体系中的氧化组分加入到P1中,然后将溶液P2和P3在不同时间内滴加到P1中,溶液P2的滴加时间为2.0~4.0h,溶液P3的滴加时间为2.5~5.5h;
待全部滴加完毕后,再继续反应0.5~2.0h,然后将反应液温度降至室温,用水稀释,获得适宜的质量浓度,即得到质量浓度为35%~50%的硅烷聚合物。
2.如权利要求1所述的用于混凝土裂缝修复的聚合物材料的制备方法,其特征在于:所述缩聚催化剂的质量浓度为5~20%;所述硅烷聚合物水溶液的质量浓度为30~60%;搅拌时间为10~50s。
3.如权利要求1所述的用于混凝土裂缝修复的聚合物材料的制备方法,其特征在于:所述缩聚催化剂的质量浓度为10~15%;所述硅烷聚合物水溶液的质量浓度为35~45%;搅拌时间为25~35s。
4.如权利要求1所述的用于混凝土裂缝修复的聚合物材料的制备方法,其特征在于:所述引发剂氧化还原引发体系中,氧化组分的用量占单体(a+b+c)总质量的0.2%~0.8%,体系中氧化组分与还原组分两者的质量比例为(1.5~3.0):1。
5.如权利要求1所述的用于混凝土裂缝修复的聚合物材料的制备方法,其特征在于:所述烷基胺为水溶性有机胺,选自二乙胺,三乙胺,丙胺中的一种或以上以任意比例的混合。
6.如权利要求1所述的用于混凝土裂缝修复的聚合物材料的制备方法,其特征在于:
步骤1)中,所述聚醚单体b的质量浓度为50~70%;
步骤3)中,所述溶液P3的质量浓度为1.4~2.8%;
步骤4)中,所述反应温度为35~40℃;引发体系的氧化组分为过氧化氢和过硫酸铵;溶液P2的滴加时间为3.0~4.0h;溶液P3的滴加时间为3.0~4.5h;滴加完毕后继续反应时间为0.5~1.5h;所述聚合物的质量浓度为35%~45%。
CN202010198313.8A 2020-03-19 2020-03-19 一种用于混凝土裂缝修复的聚合物材料及其制备方法 Active CN111377660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010198313.8A CN111377660B (zh) 2020-03-19 2020-03-19 一种用于混凝土裂缝修复的聚合物材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010198313.8A CN111377660B (zh) 2020-03-19 2020-03-19 一种用于混凝土裂缝修复的聚合物材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111377660A CN111377660A (zh) 2020-07-07
CN111377660B true CN111377660B (zh) 2022-03-15

Family

ID=71215421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010198313.8A Active CN111377660B (zh) 2020-03-19 2020-03-19 一种用于混凝土裂缝修复的聚合物材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111377660B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876468A (zh) * 2015-05-15 2015-09-02 武汉理工大学 一种配合硅灰使用的功能化聚羧酸减水剂及其制备方法
CN105036602A (zh) * 2015-09-15 2015-11-11 哈尔滨工业大学 一种水溶性混凝土硅烷乳液防水剂的制备方法
WO2019147263A1 (en) * 2018-01-26 2019-08-01 Hewlett-Packard Development Company, L.P. Three-dimensional printed part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876468A (zh) * 2015-05-15 2015-09-02 武汉理工大学 一种配合硅灰使用的功能化聚羧酸减水剂及其制备方法
CN105036602A (zh) * 2015-09-15 2015-11-11 哈尔滨工业大学 一种水溶性混凝土硅烷乳液防水剂的制备方法
WO2019147263A1 (en) * 2018-01-26 2019-08-01 Hewlett-Packard Development Company, L.P. Three-dimensional printed part

Also Published As

Publication number Publication date
CN111377660A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN106478895B (zh) 一种氧化石墨烯复合型聚羧酸减水剂及其制备方法
CN107628788B (zh) 用于修复混凝土裂缝的水泥基防水材料及其制备方法
CN107118650B (zh) 硅溶胶/含羟基聚丙烯酸酯乳液-氨基树脂烤漆及其制备方法
CN114426408B (zh) 一种油井水泥分散剂及其制备方法和应用
CN104761173A (zh) 一种减缩性能好的聚羧酸系减水剂及其制备方法
CN112851850B (zh) 一种可用于制备聚合物水泥基防水涂料的硅-丙乳液制备方法
CN104628972A (zh) 一种抗裂减缩型聚羧酸系减水剂的制备方法
CN111138600A (zh) 一种丁苯改性的零氨丙烯酸防水砂浆乳液及其制备方法和防水砂浆
CN115197610A (zh) 一种高耐水高粘结强度的防水涂料及其制备方法
CN114044847B (zh) 一种高耐水耐脏污的丙烯酸酯乳液及制备方法
CN111377660B (zh) 一种用于混凝土裂缝修复的聚合物材料及其制备方法
CN110615875A (zh) 一种速干型抗起鼓外墙涂料用羟基乳液及其制备方法
CN110330592B (zh) 一种制香粘合剂用聚丙烯酰胺的制备方法
CN108864383A (zh) 混凝土减缩增强型高性能减水剂及其合成工艺
CN113773457B (zh) 一种低徐变型高效聚羧酸减水剂及其制备方法
CN109942742A (zh) 一种水分散玻纤涂层聚合物及其制备方法
CN108219079B (zh) 一种聚羧酸系减水剂及其制备方法和使用方法
CN111732367B (zh) 一种预应力孔道灌浆剂及其制备方法
CN101177717A (zh) 一种新型皮革复鞣剂
CN107033291A (zh) 混凝土减缩剂及其制备方法与应用
CN116835913B (zh) 一种轻质高强度软石砖及其制备方法
CN110627952A (zh) 一种高附着力羟基烷基类无皂乳液聚合物的制备方法
JPS6172662A (ja) セメント用組成物
CN116333522B (zh) 一种高粘结性能的聚合物水泥防水涂料及其制备方法
CN109280140A (zh) 抗裂增强型聚羧酸减水剂及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 833, Baiyun Avenue North, Baiyun District, Guangzhou, Guangdong 510420

Applicant after: Guangzhou Academy of Building Sciences Group Co.,Ltd.

Address before: 510440 building building, No. 833, Baiyun Avenue, Baiyun District, Guangdong, Guangzhou

Applicant before: GUANGZHOU INSTITUTE OF BUILDING SCIENCE Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant