CN111333215A - 一种垃圾渗滤液化学需氧量的去除方法 - Google Patents

一种垃圾渗滤液化学需氧量的去除方法 Download PDF

Info

Publication number
CN111333215A
CN111333215A CN202010148548.6A CN202010148548A CN111333215A CN 111333215 A CN111333215 A CN 111333215A CN 202010148548 A CN202010148548 A CN 202010148548A CN 111333215 A CN111333215 A CN 111333215A
Authority
CN
China
Prior art keywords
oxygen demand
chemical oxygen
landfill leachate
leachate
sodium chlorate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010148548.6A
Other languages
English (en)
Inventor
李晨
杨佳妮
周小峰
梁燕婷
黄冰冰
董林辉
蔡振山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Huixin Environment Technology Co ltd
Shenzhen Changlong Technology Co ltd
Original Assignee
Shenzhen Huixin Environment Technology Co ltd
Shenzhen Changlong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Huixin Environment Technology Co ltd, Shenzhen Changlong Technology Co ltd filed Critical Shenzhen Huixin Environment Technology Co ltd
Priority to CN202010148548.6A priority Critical patent/CN111333215A/zh
Publication of CN111333215A publication Critical patent/CN111333215A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种垃圾渗滤液化学需氧量的去除方法,并应用于污水处理。可通过氧化作用和聚合硫酸铁的絮凝作用有效去除水中的化学需氧量。其实施步骤如下:1)测定污水的化学需氧量值,按照化学需氧量与次氯酸钠的比例关系,投加次氯酸钠和氯酸钠到污水之中。2)加入碱性物质固体或饱和溶液,调节至pH值在10以上。3)根据渗滤液的化学需氧量加入氯化铁,快速搅拌几分钟完全混合,沉淀半小时。4)加入少量的聚合氯化铝,慢速搅拌十分钟,沉淀1小时。本发明公开一种垃圾渗滤液化学需氧量的去除办法,具有成本低,速度快的特点具有较高的应用价值。可有效去除污水如垃圾渗滤液的化学需氧量指标。

Description

一种垃圾渗滤液化学需氧量的去除方法
技术领域
本发明涉及一种化学需氧量的去除办法,具体地说,是一种快速降低垃圾渗滤液化学需氧量的方法。
背景技术
随着城市化进度的加快和人民生活水平的提高,城市生活垃圾的产生量也日益增加,2000年我国生活垃圾清运量为1.18亿吨,2008年达到1.54 亿吨,至2017年底,全国生活垃圾处理量达到2.15亿吨。
垃圾渗滤液是垃圾在填埋和堆放过程中由于垃圾中有机物的分解产生的水和垃圾中的游离水、降水以及入渗的地下水,通过淋溶作用形成的污水。2017 年全国垃圾渗滤液产生量约为9716万吨,日均产生量约为26.62万吨,如何高效的处理垃圾渗滤液是亟需的问题。
垃圾渗滤液具有水质变化大,污染物浓度高,盐分多,重金属含量高,营养比例失调,难于生物降解等特点,而且垃圾渗滤液的排放要求日趋严格。目前已有生化处理,物化处理,如:厌氧生化处理、好氧生化处理、电絮凝、膜过滤等技术,往往不能达到理想的处理效果或处理成本较高。
次氯酸和氯酸氧化体系氧化能力较弱,难以应用于垃圾渗滤液的处理,高铁酸盐是一种氧化性极强的氧化剂,在水处理方面具有重要的潜在应用价值。溶融法、次氯酸盐氧化法和电化学氧化法是高铁酸盐制备最为常用的三种方法。溶融法制备高铁酸盐其产品批量可能较大,但反应温度较高,反应容器腐蚀严重,化学试剂消耗量大,后续提纯工序烦琐。电化学氧化法主要问题是在高电流密度下的电流效率较低,所用全氟离子膜和铁丝网的价格较高,这些方面有待于改进。次氯酸盐氧化法1948年该方法首先由Schreyer提出,其基本合成步骤为:在浓碱液(NaOH)中使氯化铁或者硝酸铁与NaClO首先反应生成Na2FeO4,而后加入饱和KOH溶液使之发生置换反应并析出固态K2FeO4;对粗产品进行溶解和再结晶提纯,并依次用苯、乙醇和乙醚等进行脱水、脱碱和干燥处理,可获得纯度为96.9%的K2FeO4。该工艺表面看起来比较简单,而实际操作程序烦琐,需要再结晶提纯工序;制备过程涉及有毒性Cl2的使用,有可能使工作环境恶化,因此该工艺虽然比较成熟,但其生产成本昂贵,大规模工业化生产难度大。
利用本方法处理垃圾渗滤液,以次氯酸和氯酸作为第一步氧化体系,加入氯化铁后形成第二步氧化体系,产生高铁酸盐提高次氯酸氯酸体系的氧化效果,直接应用于垃圾渗滤液的处理,配合后续的氯化铝的混凝作用,提高了COD的去除效果,制作简单,成本低廉。
发明内容
本发明需要解决的首要技术问题在于提供一种有效去除垃圾渗滤液的化学需氧量的方法,并且生产成本低,去除效果高,具有极高的应用价值。
为解决上述问题,本发明采用如下技术方案:
应用步骤如下:
1)在垃圾渗滤液同时投加工业纯氯酸钠和氯酸钠固体,次氯酸投加质量为渗滤液化学需氧量的0.5~1.5倍,氯酸钠的质量为渗滤液的0.5~0.7倍。
2)将步骤(1)中的混合液体,均匀搅拌3~5分钟,使其完全溶解混合均匀。
3)将工业级氨水快速加入到混合液中,提高溶液pH到10以上,低于11。
4)水浴控制体系温度为50~55℃,反应半小时。
5)根据渗滤液的化学需氧量确定氯化铁加入量,氯化铁投加质量为渗滤液 COD的2.5倍左右,快速搅拌约5分钟,沉淀半小时。
6)利用离心分离机,快速分离体系中的固体和液体成分。
7)采集上清液,加入少量聚合氯化铝,浓度为20ppm,慢速搅拌5分钟,沉淀1小时。
本发明所述的方法用于处理垃圾渗滤液时,所述的工艺条件具体按照如下进行:1.测定垃圾渗滤液的化学需氧量含量,根据化学需氧量值计算次氯酸钠、氯酸钠和氯化铁的加入量。2.测定垃圾渗滤液的pH,计算加入的氨水的量。3. 准备如下反应系统:水浴系统最高控温在60℃以上,搅拌系统可提供800转/分钟转速,离心系统可提供2000转/分钟转速,药剂计入系统。4.按照上述步骤完成反应。
本发明的有益效果:
(1)本发明所述的新型氧化絮凝体系在垃圾渗滤液处理中应用,可有效的降低垃圾渗滤液的化学需氧量40%~70%,提高垃圾渗滤液B/C比10%以上。
(2)本法发明可以一个半小时内完成垃圾渗滤液的氧化絮凝过程,高效快速完成化学需氧量的去除。
(3)本发明的处理过程,仅有搅拌沉淀工艺,可以有效节约设备投资。
(4)与现有技术相比,本发明在处理过程中产生高铁酸盐,与现有的制备和应用高铁酸盐的方法,其具有如下优点:(1)制备工艺简单,免去高铁酸盐提纯的过程,不需要复杂的设备,成本低,应用前景极佳。(2)本发明产生的高铁酸盐直接用于垃圾渗滤液的处理,制备高铁酸盐产生的副产物直接被垃圾渗滤液消耗,且有良好的化学需氧量去除效果。
具体实施
为了更清楚地说明本发明实施例的技术方案,下面结合两个具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1
将上述方法用于降低垃圾渗滤液的化学需氧量值,具体操作步骤如下:
1.采集长期储存、性质稳定的深圳某垃圾填埋场调节池垃圾渗滤液,外观为深褐色,有臭味。
2.采用国标方法,检测渗滤液样品指标如下表所示。
深圳某垃圾填埋场渗滤液水质指标
Figure BDA0002401630080000031
Figure BDA0002401630080000041
3.按照如下步骤对垃圾渗滤液进行处理。
1)在垃圾渗滤液中同时投加工业纯氯酸钠和氯酸钠固体,次氯酸钠的投加量为垃圾渗滤液质量的2%,氯酸钠投加量为垃圾渗滤液质量的1.5%。
2)投加垃圾渗滤液质量0.05%BET比表面约为2000m2/L椰壳活性炭,提高氧化效果。
3)控制搅拌速度为600转每分钟,水浴控制体系温度为50~55℃,搅拌5分钟,使固体完全溶解。
4)加入氨水至体系中,水浴控制体系温度为50~55℃,至体系的pH为10.5,控制搅拌速度为600转每分钟,反应时间半小时。
5)投加入氯化铁固体,其质量为垃圾渗滤液质量的6%,快速搅拌约5分钟,转速为600转每分钟,沉淀半小时。
6)采用离心分离机,分离出上部处理后液体。
7)在上清液中加入氯化铝,浓度为20ppm,慢速搅拌5分钟,控制搅拌速度为60转每分钟,沉淀小时。
8)收集上清液。
4.采用国标方法,检测渗滤液样品指标如下表所示。
深圳某垃圾填埋场渗滤液水质指标
Figure BDA0002401630080000042
Figure BDA0002401630080000051
5.对比处理前后的垃圾渗滤液指标,可以发现本处理方法对各种污染指标化学需氧量(COD)、5日生化需氧量(BOD5)、总碳(TC)、总有机碳(TOC)、氨氮(NH4-N)、总氮(TN)、硫酸盐都有不同程度的去除,其中化学需氧量去除效果最佳,可达68%。
6.利用芬顿氧化垃圾渗滤液作为对比实验,其步骤如下:(1)利用硫酸调节溶液pH到3.5;(2)投加质量浓度为27%双氧水,投加浓度为2.4g/L;
(3)投加烘干硫酸亚铁投加浓度7.2g/L;(4)快速搅拌1小时,搅拌速度为800 转/分钟;(5)加入氢氧化钙调节pH为5;(6)沉淀半个小时;(7)收集上清液,作为反应出水;(8)分析出水水质指标。
芬顿氧化与本发明处理效果对比
Figure BDA0002401630080000052
经对比可以发现,本发明的处理效果明显好于芬顿氧化。本发明的化学需氧量去除率可达68%,芬顿氧化仅有32%。
案例二
将上述方法用于降低垃圾渗滤液的化学需氧量值,具体操作步骤如下:
1.采集长期储存、性质稳定的杭州某垃圾填埋场调节池垃圾渗滤液,外观为深褐色,有轻微臭味。
2.采用国标方法,检测渗滤液样品指标如下表所示。
杭州某垃圾填埋场渗滤液水质指标
编号 名称 数值 单位 方法名称
1 pH 7.2 GB6920
2 总酸度 452 mg CaCO<sub>3</sub>/L APHA 2310B
3 总碱度 3252 mg/L APHA 2320B
4 甲酸 ND(<10.0) mg/L AEPA 2003
5 乙酸 ND(<10.0) mg/L AEPA 2003
6 化学需氧量 5400 mg/L HJ828
7 5日生化需氧量 546 mg/L HJ505
8 总碳 7340 mg/L HJ501
9 总有机碳 2035 mg/L HJ501
10 氨氮 1880 mg/L HJ535
11 氯化物 2389 mg/L HJ84
12 总氮 1930 mg/L HJ636
13 硫酸盐 28.1 mg/L HJ84
7.按照如下步骤对垃圾渗滤液进行处理。
1)在垃圾渗滤液中同时投加工业纯氯酸钠和氯酸钠固体,次氯酸钠的投加量为垃圾渗滤液质量的5%,氯酸钠投加量为垃圾渗滤液质量的3%。
2)投加垃圾渗滤液质量0.05%BET比表面约为2000m2/L椰壳活性炭,提高氧化效果。
3)控制搅拌速度为600转每分钟,水浴控制体系温度为50~55℃,搅拌5分钟,使固体完全溶解。
4)加入氨水至体系中,水浴控制体系温度为50~55℃,至体系的pH为10,控制搅拌速度为600转每分钟,反应时间半小时。
5)投加入氯化铁固体,其质量为垃圾渗滤液质量的10%,快速搅拌约5分钟,转速为600转每分钟,沉淀半小时。
6)采用离心分离机,分离出上部处理后液体。
7)在上清液中加入氯化铝,浓度为20ppm,慢速搅拌5分钟,控制搅拌速度为60转每分钟,沉淀小时。
8)收集上清液。
8.采用国标方法,检测渗滤液样品指标如下表所示。
杭州某垃圾填埋场渗滤液水质指标
编号 名称 数值 单位 方法名称
1 pH 6.8 GB6920
4 甲酸 ND(<10.0) mg/L AEPA 2003
5 乙酸 ND(<10.0) mg/L AEPA 2003
6 化学需氧量 1890 mg/L HJ828
7 5日生化需氧量 430 mg/L HJ505
8 总碳 2310 mg/L HJ501
9 总有机碳 860 mg/L HJ501
10 氨氮 1580 mg/L HJ535
11 氯化物 2889 mg/L HJ84
12 总氮 1790 mg/L HJ636
13 硫酸盐 29.1 mg/L HJ84
9.对比处理前后的垃圾渗滤液指标,可以发现本处理方法对各种污染指标化学需氧量(COD)、5日生化需氧量(BOD5)、总碳(TC)、总有机碳(TOC)、氨氮(NH4-N)、总氮(TN)、硫酸盐都有不同程度的去除,其中化学需氧量去除效果最佳,可达65%。
10.利用芬顿氧化垃圾渗滤液作为对比实验,其步骤如下:(1)利用硫酸调节溶液pH到3.5;(2)投加质量浓度为27%双氧水,投加浓度为5g/L;(3)投加烘干硫酸亚铁投加浓度12g/L;(4)快速搅拌1小时,搅拌速度为800转/分钟; (5)加入氢氧化钙调节pH为5.5;(6)沉淀半个小时;(7)收集上清液,作为反应出水;(8)分析出水水质指标。
芬顿氧化与本发明处理效果对比
Figure BDA0002401630080000081
11.经对比可以发现,本发明的处理效果明显好于芬顿氧化。本发明的COD 去除率可达65%,高过芬顿氧化14%个百分点。
案例三
将上述方法用于降低垃圾渗滤液的化学需氧量值,具体操作步骤如下:
1.采集长期储存、性质稳定的广州某垃圾填埋场调节池垃圾渗滤液,外观为深褐色,有轻微臭味。
2.采用国标方法,检测渗滤液样品指标如下表所示。
广州某垃圾填埋场渗滤液水质指标
编号 名称 数值 单位 方法名称
1 pH 7.9 GB6920
2 总酸度 669 mg CaCO<sub>3</sub>/L APHA 2310B
3 总碱度 2251 mg/L APHA 2320B
4 甲酸 ND(<10.0) mg/L AEPA 2003
5 乙酸 ND(<10.0) mg/L AEPA 2003
6 化学需氧量 3400 mg/L HJ828
7 5日生化需氧量 216 mg/L HJ505
8 总碳 5320 mg/L HJ501
9 总有机碳 1035 mg/L HJ501
10 氨氮 1380 mg/L HJ535
11 氯化物 2189 mg/L HJ84
12 总氮 1530 mg/L HJ636
13 硫酸盐 16.1 mg/L HJ84
3.按照如下步骤对垃圾渗滤液进行处理。
1)在垃圾渗滤液中同时投加工业纯氯酸钠和氯酸钠固体,次氯酸钠的投加量为垃圾渗滤液质量的3%,氯酸钠投加量为垃圾渗滤液质量的2%。
2)投加垃圾渗滤液质量0.05%BET比表面约为2000m2/L椰壳活性炭,提高氧化效果。
3)控制搅拌速度为600转每分钟,水浴控制体系温度为50~55℃,搅拌5分钟,使固体完全溶解。
4)加入氨水至体系中,水浴控制体系温度为50~55℃,至体系的pH为10,控制搅拌速度为600转每分钟,反应时间半小时。
5)投加入氯化铁固体,其质量为垃圾渗滤液质量的10%,快速搅拌约5分钟,转速为600转每分钟,沉淀半小时。
6)采用离心分离机,分离出上部处理后液体。
7)在上清液中加入氯化铝,浓度为20ppm,慢速搅拌5分钟,控制搅拌速度为60转每分钟,沉淀小时。
8)收集上清液。
4.采用国标方法,检测渗滤液样品指标如下表所示。
广圳某垃圾填埋场渗滤液利用本发明处理后水质指标
编号 名称 数值 单位 方法名称
1 pH 7.3 GB6920
4 甲酸 ND(<10.0) mg/L AEPA 2003
5 乙酸 ND(<10.0) mg/L AEPA 2003
6 化学需氧量 1570 mg/L HJ828
7 5日生化需氧量 189 mg/L HJ505
8 总碳 2110 mg/L HJ501
9 总有机碳 760 mg/L HJ501
10 氨氮 1280 mg/L HJ535
11 氯化物 2789 mg/L HJ84
12 总氮 1390 mg/L HJ636
13 硫酸盐 15.1 mg/L HJ84
5.对比处理前后的垃圾渗滤液指标,可以发现本处理方法对各种污染指标化学需氧量(COD)、5日生化需氧量(BOD5)、总碳(TC)、总有机碳(TOC)、氨氮(NH4-N)、总氮(TN)、硫酸盐都有不同程度的去除,其中化学需氧量去除效果最佳,可达65%,B/C比有一定的提高。
6.利用芬顿氧化垃圾渗滤液作为对比实验,其步骤如下:(1)利用硫酸调节溶液pH到3.5;(2)投加质量浓度为27%双氧水,投加浓度为5g/L;(3)投加烘干硫酸亚铁投加浓度12g/L;(4)快速搅拌1小时,搅拌速度为800转/分钟; (5)加入氢氧化钙调节pH为5.5;(6)沉淀半个小时;(7)收集上清液,作为反应出水;(8)分析出水水质指标。
芬顿氧化与本发明处理效果对比
Figure BDA0002401630080000101
7.经对比可以发现,本发明的处理效果明显好于芬顿氧化。本发明的化学需氧量去除率可达54%,高过芬顿氧化14%个百分点。
通过实施案例可以发现,本发明对垃圾渗滤液化学需氧量处理效果稳定,在 50%~70%之间,且优于芬顿氧化处理14个百分点以上。

Claims (8)

1.本发明公开一种垃圾渗滤液化学需氧量的去除方法,其特征在于其具体步骤如下:
1)在污水中同时添加次氯酸钠和氯酸钠固体,次氯酸和氯酸钠的的投加量根据渗滤液的化学需氧量而定。
2)将步骤(1)中的混合液体,均匀搅拌2分钟,使其完全混合。
3)将氨水匀速加入到混合液中,提高溶液pH至10以上。
4)水浴控制体系温度为50~55℃。
5)根据渗滤液的化学需氧量确定氯化铁加入量,快速搅拌,沉淀半小时。
6)离心分析分离体系中的固体和液体成分。
7)加入少量聚合氯化铝,慢速搅拌,沉淀半小时。
2.如权利要求1所述的垃圾渗滤液化学需氧量的去除方法,其特征在于所述的步骤1中,根据垃圾渗滤液的化学需氧量的值确定氯酸钠和次氯酸钠的用量,其特征在于选择氯酸钠和次氯酸为垃圾渗滤液的氧化物质,次氯酸钠与化学需氧量质量比为1:1,氯酸钠与化学需氧量质量比为0.7:1。
3.如权利要求1所述垃圾渗滤液化学需氧量的去除方法,其特征在于所述的步骤3中,氨水可以作为调节碱性的物质,且pH调节为10以上。
4.如权利要求1所述的垃圾渗滤液化学需氧量的去除方法,其特征在于所述的步骤4中控制体系温度为50℃~55℃。
5.如权利要求1所述的垃圾渗滤液化学需氧量的去除方法,其特征在于所述的步骤5中的氯化铁为第一步混凝絮凝剂,且具体投加量根据化学需氧量的值而定,化学需氧量与氯化铁投加质量比为2:1~3:1。
6.如权利要求1所述的垃圾渗滤液化学需氧量的去除方法,其特征在于步骤6中,离心法分离体系中的固体与液体物质。
7.如权利要求1所述的垃圾渗滤液化学需氧量的去除方法,其特征在于步骤7中,离心法分离体系中的固体与液体物质。
8.如权利要求1所述的垃圾渗滤液化学需氧量的去除方法,其特征在于同时利用氯酸钠和次氯酸作为氧化剂,并加入氯化铁快速生成高铁酸根,利用氯化铝作为第二步混凝药剂。
CN202010148548.6A 2020-03-05 2020-03-05 一种垃圾渗滤液化学需氧量的去除方法 Pending CN111333215A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010148548.6A CN111333215A (zh) 2020-03-05 2020-03-05 一种垃圾渗滤液化学需氧量的去除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010148548.6A CN111333215A (zh) 2020-03-05 2020-03-05 一种垃圾渗滤液化学需氧量的去除方法

Publications (1)

Publication Number Publication Date
CN111333215A true CN111333215A (zh) 2020-06-26

Family

ID=71176035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010148548.6A Pending CN111333215A (zh) 2020-03-05 2020-03-05 一种垃圾渗滤液化学需氧量的去除方法

Country Status (1)

Country Link
CN (1) CN111333215A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111939866A (zh) * 2020-09-04 2020-11-17 常熟理工学院 一种高效处置生活垃圾渗滤液并制备改性铝铁基吸附剂的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140871A1 (en) * 2008-05-22 2009-11-26 Cofco Limited A method for treating waste liquid in preparation of ethanol by fermenting cassava
CN102329023A (zh) * 2011-09-02 2012-01-25 中国科学院生态环境研究中心 一种垃圾渗滤液的处理方法
CN105923735A (zh) * 2016-06-02 2016-09-07 南京大学 一种基于高铁酸盐的复合水处理药剂及其制备方法
US20180282193A1 (en) * 2017-04-04 2018-10-04 Vladimir Kudrjawzew Sanitary landfill leachate treatment process by oxyammonolysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140871A1 (en) * 2008-05-22 2009-11-26 Cofco Limited A method for treating waste liquid in preparation of ethanol by fermenting cassava
CN102329023A (zh) * 2011-09-02 2012-01-25 中国科学院生态环境研究中心 一种垃圾渗滤液的处理方法
CN105923735A (zh) * 2016-06-02 2016-09-07 南京大学 一种基于高铁酸盐的复合水处理药剂及其制备方法
US20180282193A1 (en) * 2017-04-04 2018-10-04 Vladimir Kudrjawzew Sanitary landfill leachate treatment process by oxyammonolysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘旭东等: "《高铁酸盐去除炼油废水中COD的研究》", 《沈阳建筑大学学报(自然科学版)》 *
王春霄: "《油田压裂废液绿色氧化处理及促进技术研究》", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111939866A (zh) * 2020-09-04 2020-11-17 常熟理工学院 一种高效处置生活垃圾渗滤液并制备改性铝铁基吸附剂的方法
CN111939866B (zh) * 2020-09-04 2022-11-25 常熟理工学院 一种高效处置生活垃圾渗滤液并制备改性铝铁基吸附剂的方法

Similar Documents

Publication Publication Date Title
CN101781066B (zh) 咖啡因生产废水的处理方法
CN104961304B (zh) 一种高浓度氟化工废水处理工艺
CN107032580A (zh) 一种污泥脱水药剂及其使用方法
CN110255728A (zh) 一种垃圾渗滤液处理的新型组合工艺方法及系统
CN103274564A (zh) 一种橡胶促进剂生产废水的处理工艺
CN104671613B (zh) 一种垃圾填埋场渗滤液的处理工艺
CN110877956A (zh) 处理芬顿铁泥的装置和方法
CN101428933B (zh) 镍氨废水生物制剂配合水解—吹脱处理方法
CN106277480B (zh) 一种高浓度氨氮废水的处理工艺
CN101979350A (zh) 物化污泥资源化及减量处理方法
CN103408201A (zh) 晶硅片砂浆回收中工业废水的处理方法
CN211471183U (zh) 处理芬顿铁泥的装置
CN109320017B (zh) 一种垃圾渗滤液的处理方法
CN107381892A (zh) 一种高浓度氨氮废水的处理工艺
CN113461284A (zh) 一种硝酸盐强化热水解的市政污泥处理方法
CN111333215A (zh) 一种垃圾渗滤液化学需氧量的去除方法
CN110615501B (zh) 一种垃圾渗滤液的处理方法
CN104787933A (zh) 黄金冶炼含氰废水的处理方法
CN112551744A (zh) 一种利用酸性混凝的芬顿氧化处理废水的方法
CN111333222A (zh) 一种垃圾渗滤液中cod的去除方法
CN1958462A (zh) 一种利用钢铁酸洗废液制备高铁酸钾的方法
CN217780902U (zh) 一种高盐废水处理系统
CN102502883A (zh) 从造纸污泥中回收铁并生产液体聚合硫酸铁的方法
CN215559585U (zh) 一种垃圾渗滤液处理的mbr出水的净化系统
CN215559684U (zh) 一种垃圾渗滤液的新型处理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200626

WD01 Invention patent application deemed withdrawn after publication