CN111320153B - 一种二维层状GeP材料及其制备方法和应用 - Google Patents

一种二维层状GeP材料及其制备方法和应用 Download PDF

Info

Publication number
CN111320153B
CN111320153B CN202010154342.4A CN202010154342A CN111320153B CN 111320153 B CN111320153 B CN 111320153B CN 202010154342 A CN202010154342 A CN 202010154342A CN 111320153 B CN111320153 B CN 111320153B
Authority
CN
China
Prior art keywords
gep
electrode
dimensional
single crystal
dimensional layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010154342.4A
Other languages
English (en)
Other versions
CN111320153A (zh
Inventor
夏芳芳
翟天佑
张悦
王发坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010154342.4A priority Critical patent/CN111320153B/zh
Publication of CN111320153A publication Critical patent/CN111320153A/zh
Application granted granted Critical
Publication of CN111320153B publication Critical patent/CN111320153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明属于二维材料领域,并具体公开了一种二维层状GeP材料及其制备方法和应用,制备方法包括如下步骤:S1采用锗单质和红磷制备GeP单晶块体;S2对GeP单晶块体进行电化学剥离得到二维层状GeP材料,电化学剥离时采用0.3mol/L~0.8mol/L的四丁基氨离子液体作为电解液。本发明通过电化学剥离的方法制备出不同厚度的二维层状GeP纳米薄片,从而解决传统制备方法效率低、不易控制的问题,进一步提高制备二维材料制备的均匀性和可控性,制备出的二维材料在储能、生物载药、催化、非线性光学等方面有良好的应用前景。

Description

一种二维层状GeP材料及其制备方法和应用
技术领域
本发明属于二维材料领域,更具体地,涉及一种二维层状GeP材料及其制备方法和应用。
背景技术
自2004年石墨烯单原子层二维材料发现以来,打破了长期以来二维晶体是否存在的争论,随后,一系列关于二维材料的研究掀起热潮。由于石墨烯的零带隙特点,对光的吸收能力差且开关比低,限制了石墨烯在电子学和光电子学领域的应用。近年来,一些具有非零带隙的组多单层或者少层过渡金属硫化物和黑磷等的发现,为光电子学和光电子学领域打开了新的方向。另外,与IV族单质材料不同,V族元素二维半导体如BP(黑磷)具有从0.35至1.73eV的连续可调带隙,与其固有的高空穴迁移率相结合,使其在高性能场效应晶体管(FET)、光电检测器和太阳能电池等领域具有潜在应用。尽管有许多优异的特征,但是BP在空气中欠稳定性在一定程度上限制了其应用。而将其与IV族元素,如C,Si,Ge等进行结合,可以整合IV和V族元素的优势,例如高的稳定性、高空穴迁移率、宽的可调带隙以及面内各向异性。而IV族元素的磷化物,如就Ge的磷化物的化学稳定性来说,GeP(磷化锗晶体)的稳定性高于GeP3,且均比BP具有更好地稳定性。
GeP具有低对称的单斜晶体结构,属于C2/m(No.12)空间群,这种低对称结构确保了GeP的平面各向异性。要得到少层甚至单层的GeP,需要对GeP单晶块体进行剥离,现有的剥离方式通常为机械剥离,通过胶带反复粘贴,但是这样得到的GeP二维材料厚度和层数控制困难,且大小不均匀,较薄处通常散落在较厚的材料周围,制备效率低,不利于收集,且在储能、催化、非线性光学以及药物传递系统应用中存在较大的困难。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种二维层状GeP材料及其制备方法和应用,其目的在于,对GeP单晶块体进行电化学剥离方法以制备二维层状材料,从而解决传统制备方法效率低、不易控制的问题,进一步提高制备二维材料制备的均匀性和可控性。
为实现上述目的,按照本发明的第一方面,提出了一种二维层状GeP材料的制备方法,包括如下步骤:
S1采用锗单质和红磷制备GeP单晶块体;
S2对GeP单晶块体进行电化学剥离得到二维层状GeP材料,电化学剥离时采用0.3mol/L~0.8mol/L的四丁基氨离子液体作为电解液。
作为进一步优选的,采用二电极法或三电极法对GeP单晶块体进行电化学剥离。
作为进一步优选的,采用二电极法时,以GeP单晶块体为工作电极,Pt电极为对电极,且该工作电极与对电极之间的距离为1cm~1.5cm;采用三电极法时,以GeP单晶块体为工作电极,Pt电极为对电极,甘汞电极为参比电极。
作为进一步优选的,进行电化学剥离时,电压为2V~5V,电化学剥离时间为0.5h~96h。
作为进一步优选的,所述四丁基氨离子液体由六氟磷酸四丁基氨或四丁基碘化铵溶于N,N-二甲基甲酰胺溶液制成。
作为进一步优选的,所述S1中制备GeP单晶块体,具体包括如下步骤:
S11将锗单质、红磷和助熔剂加入瓷舟内混匀,将该瓷舟放入石英管内,并将石英管抽真空后高温封管,所述锗单质和红磷的摩尔比为1:2;
S12将石英管加热至900℃~960℃并保温,再以2℃/min的速度降温至600℃得到GeP单晶块体,然后高温离心,将GeP单晶块体与助熔剂分离,完成GeP单晶块体的制备。
作为进一步优选的,所述助熔剂为Bi或Sn,且助熔剂与锗单质的摩尔比为1:8~1:12。
作为进一步优选的,所述GeP单晶块体的尺寸为:长3mm~10mm,宽1mm~2mm,高0.1mm~0.5mm。
按照本发明的第二方面,提供了一种采用上述方法制备而成的二维层状GeP材料。
作为进一步优选的,该二维层状GeP材料的尺寸为:长50nm~10μm,宽10nm~2μm,厚度4nm~15nm。
按照本发明的第三方面,提供了一种上述二维层状GeP材料在制备电极片或药物传递系统的应用。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明采用的电化学剥离方法,相比于传统机械剥离,一方面可以抑制/缓解剥离过程中单晶块体的粉化和破碎,通过调节电化学参数可以剥离出不同层数、对应于不同厚度的二维层状晶体,提高制备二维材料制备的均匀性和可控性;另一方面电化学剥离可以批量制备二维层状材料,且剥离效率更高。
2.本发明通过对各种晶体生长参数的控制,制得了长3mm~10mm,宽1mm~2mm,高0.1mm~0.5mm的高质量GeP单晶块体,进而通过电化学剥离得到二维层状GeP材料,其在储能、生物载药、催化、非线性光学等方面有良好的应用前景。
附图说明
图1是本发明实施例二维层状GeP材料制备流程图;
图2是本发明实施例电化学剥离的二维层状GeP的光学显微镜(OM)图;
图3是本发明实施例电化学剥离的二维层状GeP的原子力显微镜图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例提供的一种二维层状GeP材料制备方法,如图1所示,包括如下步骤:
S1制备GeP单晶块体:
S11将摩尔比为1:2的锗单质和红磷在研钵中研磨混匀,并放入圆柱形的Al2O3瓷舟内,然后向Al2O3瓷舟内加入助熔剂并混匀;将该瓷舟放入石英管内,并将石英管抽真空后高温封管;优选的,所述助熔剂为Bi或Sn,且助熔剂与锗单质的摩尔比为1:8~1:12;
S12将石英管置于马弗炉中,加热至900℃~960℃,并保温24h,再以2℃/min的速度降温至600℃得到GeP单晶块体,然后高温离心,将GeP单晶块体与助熔剂分离,完成GeP单晶块体的制备;得到的GeP单晶块体的尺寸为:长3mm~10mm,宽1mm~2mm,高0.1mm~0.5mm。
S2剥离二维层状GeP:
S21采用二电极法或三电极法对GeP单晶块体进行电化学剥离得到二维层状GeP,电化学剥离时采用0.3mol/L~0.8mol/L的四丁基氨离子液体作为电解液;优选的,进行电化学剥离时,电压为2V~5V,电化学剥离时间为0.5h~96h;所述四丁基氨离子液体由六氟磷酸四丁基氨或四丁基碘化铵溶于N,N-二甲基甲酰胺溶液制成;
进一步的,采用二电极法时,以GeP单晶块体为工作电极,Pt电极为对电极,且该工作电极与对电极之间的距离为1cm~1.5cm;采用三电极法时,以GeP单晶块体为工作电极,Pt电极为对电极,甘汞电极为参比电极。
S22将剥离下的二维层状GeP依次用所述四丁基氨离子液体和乙醇清洗,得到二维层状GeP材料。
制备得到的二维层状GeP材料的尺寸为:长50nm~10μm,宽10nm~2μm,厚度4nm~15nm,如图2和图3所示,分别为二维层状GeP材料的光学显微镜图和原子力显微镜图。
上述二维层状GeP材料可应用于制备电极片或载药,具体的:
(1)将二维层状GeP与Super P以及CMC粘结剂以质量比75:10:15混合,均匀涂布在集流体上,制备成电极片,对电极采用锂/钠金属,隔膜为celgard2300隔膜,电解液为商业化锂/钠离子电池电解液。
(2)将二维层状GeP用分子量为2000Da的氨基聚乙二醇(PEG-NH2)修饰,通过静电吸附作用进一步提高二维层状GeP的稳定性、生物相容性以及分散性;接着,将PEG修饰的二维层状GeP分散在磷酸盐缓冲液(PBS)中,然后与浓度为1mg/ml的DOX混合搅拌24h,并离心去除多余的DOX,得到载有DOX的二维层状GeP溶液。
以下为具体实施例:
实施例1
S1制备GeP单晶块体:
S11将摩尔比为1:2的锗单质和红磷在研钵中研磨混匀,并放入圆柱形的Al2O3瓷舟内,然后向瓷舟内加入助熔剂Bi并混匀(Bi与锗单质的摩尔比为1:10),锗采用高纯度Ge粉,P为红磷,Ge、P、Bi混合物的总重量为4g;再将该瓷舟放入石英管内,并将石英管抽真空后高温封管;
S12将石英管置于马弗炉中,加热至900℃并保温24h,再以2℃/min的速度降温至600℃得到GeP单晶块体,然后高温离心,将GeP单晶块体与助熔剂分离,完成GeP单晶块体的制备。
S2剥离二维层状GeP:
S21将六氟磷酸四丁基氨溶于N,N-二甲基甲酰胺溶液,配制成0.5mol/L的四丁基氨离子液体作为电解液;采用二电极法对GeP单晶块体进行电化学剥离得到二维层状GeP,具体以GeP单晶块体为工作电极,Pt电极为对电极,工作电极与对电极之间的距离为1.5cm,电化学剥离电压为3V,电化学剥离时间为10h;
S22将剥离下的二维层状GeP依次用所述四丁基氨离子液体和乙醇清洗各三次,超声分散10min,得到均匀的二维层状GeP材料。
实施例2
S1制备GeP单晶块体:
S11将摩尔比为1:2的锗单质和红磷在研钵中研磨混匀,并放入圆柱形的Al2O3瓷舟内,然后向瓷舟内加入助熔剂Sn并混匀,Ge、P、Sn混合物的总重量为4g;再将该瓷舟放入石英管内,并将石英管抽真空后高温封管;
S12将石英管置于马弗炉中,加热至900℃并保温24h,再以2℃/min的速度降温至600℃得到GeP单晶块体,然后高温离心,将GeP单晶块体与助熔剂分离,完成GeP单晶块体的制备。
S2剥离二维层状GeP:
S21将四丁基碘化铵溶于N,N-二甲基甲酰胺溶液,配制成0.8mol/L的四丁基氨离子液体作为电解液;采用三电极法对GeP单晶块体进行电化学剥离得到二维层状GeP,具体以GeP单晶块体为工作电极,Pt电极为对电极,以甘汞电极作为参比电极,电化学剥离电压为2V,电化学剥离时间为96h;
S22将剥离下的二维层状GeP依次用所述四丁基氨离子液体和乙醇清洗各三次,超声分散10min,得到均匀的二维层状GeP材料。
实施例3
S1制备GeP单晶块体:
S11将摩尔比为1:2的锗单质和红磷在研钵中研磨混匀,并放入圆柱形的Al2O3瓷舟内,然后向瓷舟内加入助熔剂Sn并混匀,Ge、P、Sn混合物的总重量为4g;再将该瓷舟放入石英管内,并将石英管抽真空后高温封管;
S12将石英管置于马弗炉中,加热至900℃并保温24h,再以2℃/min的速度降温至600℃得到GeP单晶块体,然后高温离心,将GeP单晶块体与助熔剂分离,完成GeP单晶块体的制备。
S2剥离二维层状GeP:
S21将四丁基碘化铵溶于N,N-二甲基甲酰胺溶液,配制成0.3mol/L的四丁基氨离子液体作为电解液;采用三电极法对GeP单晶块体进行电化学剥离得到二维层状GeP,具体以GeP单晶块体为工作电极,Pt电极为对电极,以甘汞电极作为参比电极,电化学剥离电压为5V,电化学剥离时间为0.5h;
S22将剥离下的二维层状GeP依次用所述四丁基氨离子液体和乙醇清洗各三次,超声分散10min,得到均匀的二维层状GeP材料。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种二维层状GeP材料在药物传递系统中的应用,其特征在于,包括如下步骤:
S1 采用锗单质和红磷制备GeP单晶块体;该GeP单晶块体的尺寸为:长3 mm~10mm,宽1mm~2mm,高0.1 mm~0.5mm;
S2 对GeP单晶块体进行电化学剥离得到二维层状GeP材料,电化学剥离时采用0.3mol/L~0.8mol/L的四丁基氨离子液体作为电解液,电化学剥离电压为5V,时间为0.5h;
S3 将二维层状GeP用分子量为2000 Da的氨基聚乙二醇修饰,通过静电吸附作用提高二维层状GeP的稳定性、生物相容性以及分散性;将氨基聚乙二醇修饰的二维层状GeP分散在磷酸盐缓冲液中,然后与浓度为1mg/ml的DOX混合搅拌24h,并离心去除多余的DOX,得到载有DOX的二维层状GeP溶液。
2.如权利要求1所述的二维层状GeP材料在药物传递系统中的应用,其特征在于,采用二电极法或三电极法对GeP单晶块体进行电化学剥离。
3.如权利要求2所述的二维层状GeP材料在药物传递系统中的应用,其特征在于,采用二电极法时,以GeP单晶块体为工作电极,Pt电极为对电极,且该工作电极与对电极之间的距离为1cm~1.5cm;采用三电极法时,以GeP单晶块体为工作电极,Pt电极为对电极,甘汞电极为参比电极。
4.如权利要求1所述的二维层状GeP材料在药物传递系统中的应用,其特征在于,所述四丁基氨离子液体由六氟磷酸四丁基氨或四丁基碘化铵溶于N,N-二甲基甲酰胺溶液制成。
5.如权利要求1所述的二维层状GeP材料在药物传递系统中的应用,其特征在于,所述S1中制备GeP单晶块体,具体包括如下步骤:
S11 将锗单质、红磷和助熔剂加入瓷舟内混匀,将该瓷舟放入石英管内,并将石英管抽真空后高温封管,所述锗单质和红磷的摩尔比为1:2;
S12 将石英管加热至900℃~960℃并保温,再以2℃/min的速度降温至600℃得到GeP单晶块体,然后高温离心,将GeP单晶块体与助熔剂分离,完成GeP单晶块体的制备。
6.如权利要求5所述的二维层状GeP材料在药物传递系统中的应用,其特征在于,所述助熔剂为Bi或Sn,且助熔剂与锗单质的摩尔比为1:8~1:12。
CN202010154342.4A 2020-03-07 2020-03-07 一种二维层状GeP材料及其制备方法和应用 Active CN111320153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010154342.4A CN111320153B (zh) 2020-03-07 2020-03-07 一种二维层状GeP材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010154342.4A CN111320153B (zh) 2020-03-07 2020-03-07 一种二维层状GeP材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111320153A CN111320153A (zh) 2020-06-23
CN111320153B true CN111320153B (zh) 2022-03-29

Family

ID=71171431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010154342.4A Active CN111320153B (zh) 2020-03-07 2020-03-07 一种二维层状GeP材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111320153B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112064114A (zh) * 2020-09-15 2020-12-11 燕山大学 一种层状金属磷化物GePx单晶的制备方法
CN113753870B (zh) * 2021-09-30 2023-05-26 海南大学 一种锂离子电池用GeP纳米片负极及其超声波辅助快速剥离制备方法
CN115924928B (zh) * 2022-11-18 2024-08-13 杭州电子科技大学 具有反铁磁和半导体特性的二维硼化铁的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110817816A (zh) * 2019-11-25 2020-02-21 中国科学院苏州纳米技术与纳米仿生研究所 大面积薄层高质量黑磷纳米片及其电化学剥离制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201521056D0 (en) * 2015-11-30 2016-01-13 Univ Manchester Method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110817816A (zh) * 2019-11-25 2020-02-21 中国科学院苏州纳米技术与纳米仿生研究所 大面积薄层高质量黑磷纳米片及其电化学剥离制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy;Wenwu Li et al.;《Nano Energy》;20190731;第61卷;第594-603页 *
Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics;Wei Tao等;《Advance Materials》;20161031;第29卷;第1页倒数第2段和第2页第1段 *
Ultrathin Few-Layer GeP Nanosheets via Lithiation-Assisted Chemical Exfoliation and Their Application in Sodium Storage;Yang Fuhua et al.;《Advanced Energ Materials》;20200301;第10卷(第14期);第1-8页 *
磷烯的制备、性质及应用研究进展;李成印等;《深圳大学学报理工版》;20180531;第35卷(第3期);第234-256页 *

Also Published As

Publication number Publication date
CN111320153A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN111320153B (zh) 一种二维层状GeP材料及其制备方法和应用
Liu et al. Nanomaterials for electrochemical energy storage
Kato et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films
Xia et al. Simple sol-gel method synthesis of 3-dimension Li4Ti5O12-TiO2 nanostructures using butterfly wings as biotemplates for high rate performance lithium-ion batteries
CN108899550B (zh) 复合包覆正极活性材料及其制备方法、锂离子电池正极材料和固态锂离子电池
CN102456869B (zh) 通过用氧化石墨烯形成复合材料而增强电极(阳极和阴极)性能
CN106887639B (zh) 一种开框架氟基固态电解质材料及其制备方法
Teshima et al. Growth of well-developed Li4Ti5O12 crystals by the cooling of a sodium chloride flux
Yang et al. Advances in materials design for all-solid-state batteries: from bulk to thin films
Ujiie et al. Preparation and electrochemical characterization of (100− x)(0.7 Li 2 S· 0.3 P 2 S 5)· x LiBr glass–ceramic electrolytes
He et al. Preparation and electrochemical performance of monodisperse Li 4 Ti 5 O 12 hollow spheres
CN107039646A (zh) 一种锂离子电池柔性负极材料及其制备方法
Mizuno et al. Fabrication of LiCoO2 crystal layers using a flux method and their application for additive-free lithium-ion rechargeable battery cathodes
CN114335681B (zh) 无机卤化物固态电解质、其制备方法、锂离子电池及应用
CN111525090A (zh) 负极层和全固体电池
Yao et al. Co-precipitation synthesis and electrochemical properties of NASICON-type Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes
CN114792839A (zh) 无定形固态电解质材料及其制备方法和应用
CN112768672A (zh) 一种以微硅粉为Si源制备石墨基Si@C负极材料的方法
Feng et al. NASICON-structured LiGe2 (PO4) 3 with improved cyclability for high-performance lithium batteries
CN111115618A (zh) 一种石墨烯/碳/氧化锡纳米复合材料及其制备方法和应用
CN108808075B (zh) 一种柔性无机固态电解质薄膜及其制备和应用
CN108493397B (zh) 一种石墨烯正极极片、其制备方法及铝-石墨烯电池
Cheng et al. Coatings on Lithium Battery Separators: A Strategy to Inhibit Lithium Dendrites Growth
CN117497835A (zh) 固态电芯及其制备方法与固态电池
CN117410463A (zh) 一种硫化物固态电池用复合正极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Xia Fangfang

Inventor after: Zhang Yue

Inventor after: Wang Fakun

Inventor before: Xia Fangfang

Inventor before: Zhai Tianyou

Inventor before: Zhang Yue

Inventor before: Wang Fakun

CB03 Change of inventor or designer information