CN111314068A - 基于非最大纠缠Bell态制备GHZ态的优化方法 - Google Patents
基于非最大纠缠Bell态制备GHZ态的优化方法 Download PDFInfo
- Publication number
- CN111314068A CN111314068A CN202010087053.7A CN202010087053A CN111314068A CN 111314068 A CN111314068 A CN 111314068A CN 202010087053 A CN202010087053 A CN 202010087053A CN 111314068 A CN111314068 A CN 111314068A
- Authority
- CN
- China
- Prior art keywords
- alice
- state
- bob
- measurement
- ghz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0852—Quantum cryptography
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种基于非最大纠缠Bell态制备GHZ态的优化方法。该方法中Alice和Bob共享一个非最大纠缠Bell信道,Alice根据待制备GHZ态的形式给Bob制备一个n比特的GHZ态,Alice通过引入辅助粒子并执行CNOT操作后分别进行幅度测量和相位测量,Bob根据测量结果执行相应的操作恢复目标等价态,Bob引入(n‑1)个辅助粒子并执行CNOT操作获得目标等价态。本发明的有益效果:1、发送方和接收方之间仅用一个非最大纠缠Bell信道完成了目标GHZ态的制备,不仅提高了制备效率,也大大减少了资源的消耗。2、本发明采用的所有测量方式为单比特测量,极大地减少了具体操作难度。3、本发明可以针对非最大纠缠Bell信道,使制备任意比特的GHZ态更一般化。
Description
技术领域
本发明涉及量子通讯领域,具体涉及一种基于非最大纠缠Bell态制备GHZ态的优化方法。
背景技术
量子通信是量子信息学的一个重要分支,是量子信息中研究较早的领域。量子通信是以量子态作为信息单元来实现信息的有效传送。在量子通信中,除了需要传统的经典信道外,更为主要的还需建立通信各方之间的量子信道。所谓量子信道实际上就是通信各方之间的量子纠缠。量子纠缠在通信中的应用,创造出了用量子信道传送经典比特的“量子密集编码”、用经典辅助的办法传送量子态的“量子隐形传态”以及信息保密传送所需的“绝对安全的量子密码”等经典信息理论不可思议的奇迹[1]。
量子纠缠态是在量子力学多粒子体系或者多自由度体系中最普遍存在、但又是很特殊的一种量子态。它是量子力学的其妙特性之一,即对一个子系统的测量结果无法独立于对其他子系统的测量参数。1935年Einstein、Podolsky、Rosen发表了一篇简短而又很重要的文章[2]首先涉及到了纠缠态,后来被称为EPR佯谬。同年Schrodinger在他的的著名文章[3]中定义了纠缠态概念。纠缠态的提出促使了人们对正统量子力学更深刻的探讨,与纠缠态相关的理论和誓言是近几十年来量子力学进展的主要方向。纠缠态对人们认识量子力学的基本概念起着重要的作用。但它的功能不仅如此,随着量子信息科学这一新兴领域的蓬勃发展,量子纠缠态逐渐登上了量子信息领域的舞台并确立了其优势地位。量子纠缠态作为量子通信和量子计算的载体,广泛的被用于量子隐形传态、量子秘钥分发、量子密集编码、量子计算等领域。
量子态远程制备(remote state preparation)是在经典信息和纠缠态的基础上成功地实现传送一个已知的量子态。RSP用于在发送方Alice和接收方Bob之间传输一个已知状态。Bob通过执行适当的单一操作来获得目标状态。2000年,Lo[4],Pati[5]和Bennett[6]等人提出了远程制备已知量子态的方案。隐形传输方案和远程制备方案有很多相似之处,但是前者所要传输的量子态的信息是未知的,这与后者是完全不同的。远程态制备方案中,先决条件是发送方知道所要传输的量子态的信息,所以又被称为“对已知态的量子隐形传输”。远程态制备的基本思想:首先发送者Alice和接受者Bob分享纠缠资源,Alice再进行一些经典信息和局域操作,以达到传输一个她完全已知但Bob未知的量子态。七比特量子信道也常被用于量子传送。例如,杨等人提出了一种基于受控隐形传态的改进量子代理盲签名方案[7]。李敏提出了一种改进的量子隐形传态方案,该方案用于具有七量子位量子信道的一个五量子位未知状态[8]。远程态制备是一个新兴的课题,一开始引起了各国学者的重视,如今在理论和实验上都取得了很大的进展。理论上,许多方案被提出。到目前为止,由于量子比特资源的消耗较低,RSP已经获得了越来越多的兴趣。已经提出了各种RSP协议,例如确定性RSP[9],联合RSP(JRSP)[10,11],受控RSP(CRSP)[12]-[17],遗忘RSP[18],低纠缠RSP[19]和连续变量RSP[20]。
目前有许多关于JRSP方案。在JRSP中,几个发件人分享了准备状态的知识。每个发送者保存部分信息,接收者没有关于状态的信息。当所有发送者协作时,接收者可以通过对他自己的粒子的某些操作来重建期望的状态。例如,在2015年,李提出了一个两量子比特赤道状态的JRSP[21]。2016年,王等人。提出了一种DJRSP方案,其中通过两个GHZ状态作为量子信道准备了四量子位状态[22]。2017年,傅等人。通过两个三量子比特GHZ状态作为量子信道[23],扩展了这个想法以实现任意四量子比特W型纠缠态的JRSP方案。2017年,Wang通过七量子比特纠缠态提出了双向控制关节远程状态准备[24]。在2018年,肖等人。提出了一种JRSP方案,其中通过三原子纠缠GHZ型状态制备单量子位状态[25]。2018年,廖等人。通过簇状态提出了一个任意两量子位状态的JRSP方案[26]。
参考文献:
【1】苏晓琴,郭光灿.量子通信与量子计算[J].量子电子学报,2004,21(6):706-718.
【2】Einstein A,PodolskyB,Rosen N.Can Description of Physical Realitybe Considered Complete?[J].Phys.Rev.,1935,47:777—780.
【3】Schrodinger E.Die Gegenwartige Situation in derQuantenmechanik[J].NaturwissenSchaften,1935,23:807~812;823—828:844—849.
【4】Pati A K.Minimum classical bit for remote preparation andmeasurement of a qubit[J].Physical Review A,2000,63(63):94-98.
【5】Li X and Ghose S 2017Int.J.Theor.Phys.56667–77
【6】J.-F.Li,J.-M.Liu,X.-L.Feng,and C.H.Oh,“Deterministic remote two-qubit state preparation in dissipative environments,”Quantum Inf.Process.,vol.15,no.5,pp.2155-2168,2016.
【7】Yang Y Y,Xie S C,Zhang J Z.An Improved Quantum Proxy BlindSignature Scheme Based on Genuine Seven-Qubit Entangled State[J].International Journal of Theoretical Physics,2017,56(7):2293-2302.
【8】Yang Y,Jiang M,Zhou L L.Improving the Teleportation Scheme ofFive-Qubit State with a Seven-Qubit Quantum Channel[J].International Journalof Theoretical Physics,2018,57(11):3485-3491.
【9】B.An Nguyen,T.B.Cao,V.Don Nung,and J.Kim,“Remote state preparationwith unit success probability,”Adv.Natural Sci.,Nanosci.Nanotechnol.,vol.2,p.035009,Jul.2011.
【10】Choudhury B S,Dhara A.Joint remote state preparation for two-qubit equatorial states.[J].Quantum Information Processing,2015,14(1):373-379.[11]Nguyen B A 2010 Opt.Commun.2834113-17
【11】Zhang C Y,Bai M Q,Zhou S Q.Cyclic joint remote state preparationin noisy environment[J].Quantum Information Processing,2018,17(6):146.
【12】L.Huang and H.-X.Zhao,“Controlled remote state preparation of anarbitrary two-qubit state by using GHZ states,”Int.J.Theor.Phys.,vol.56,no.3,pp.678-682,2017.
【13】Chen X B,Ma S Y,Su Y,et al.Controlled remote state preparation ofarbitrary two and three qubit states via the Brown state[J].QuantumInformation Processing,2012,11(6):1653-1667.
【14】Kiktenko E O,Popov A A,Fedorov A K.Bidirectional imperfectquantum teleportation with a single Bell state[J].Physical Review A,2016,93(6):062305.
【15】Da Z,Zha X W,Duan Y J,et al.Deterministic ControlledBidirectional Remote State Preparation Via a Six-qubit Maximally EntangledState[J].International Journal of Theoretical Physics,2016,55(1):440-446.
【16】Da Z,Zha X W,Duan Y J,et al.Deterministic ControlledBidirectional Remote State Preparation Via a Six-qubit Maximally EntangledState[J].International Journal of Theoretical Physics,2016,55(1):440-446.
【17】Chen X B,Sun Y R,Xu G,et al.Controlled bidirectional remotepreparation of three-qubit state[J].Quantum Information Processing,2017,16(10):244.
【18】Leung,D.W.,Show,P.W,“Oblivious remote state preparation,”Phys.Rev.Lett.,90,127905,2003.
【19】Devetak I,Berger T.Low-entanglement remote state preparation.[J].Physical Review Letters,2001,87(19):197901.
【20】Paris,M.G.A,Cola,M.,Bonifacio,R,“Remote state preparation andteleportation in phase space”J.Opt.B.5(3),247-50,2003.
【21】X.Li,S.Ghose,“Optimal joint remote state preparation ofequatorial states,”Quantum Information Processing,14(12):4585-4592,2015.
【22】Wang H B,Zhou X Y and An X X,2016 International Journal ofTheoretical Physics 553588-96
【23】Fu H,Ma P C,Chen G B,et al.Efficient schemes for deterministicjoint remote preparation of an arbitrary four-qubit W-type entangled state[J].Pramana,2017,88(6):92.
【24】X.Y.Wang,Z.W.Mo,“Bidirectional Controlled Joint Remote StatePreparation via a Seven-Qubit Entangled State,”International Journal ofTheoretical Physics,56(4):1052-1058,2017.
【25】Xiao X Q,Yao F,L2in X,et al.Joint Remote State Preparation of aSingle-Atom Qubit State via a GHZ Entangled State[J].International Journal ofTheoretical Physics,2018,57(4):1132-1140.
【26】Liao Y M,Zhou P,Qin X C,et al.Efficient joint remote preparationof an arbitrary two-qubit state via cluster and cluster-type states[J].Quantum Information Processing,2014,13(3):615-627.
发明内容
本发明要解决的技术问题是提供一种基于非最大纠缠Bell态制备GHZ态的优化方法。
为了解决上述技术问题,本发明提供了一种基于非最大纠缠Bell态制备GHZ态的优化方案,我们的方案仅用了一个非最大纠缠Bell信道就制备了一个任意比特的GHZ态,具体如下:
发送方Alice和接收方Bob之间共享一个非最大纠缠Bell信道,Alice根据待制备GHZ态的形式制备一个n比特的GHZ态。Alice引入一个辅助粒子后执行CNOT操作,此时Alice对粒子分别执行幅度测量和相位测量。Bob根据Alice的测量结果执行相应的幺正操作恢复目标等价态。Bob在引入(n-1)个辅助粒子并执行CNOT操作得到目标GHZ态。采用这种制备方案可以有效的减少资源的消耗,完整过程包括以下步骤:
步骤一:信道形成
Alice和Bob共享一个非最大纠缠Bell信道,形式如下:
其中a2+b2=1,Alice拥有粒子1,Bob拥有粒子2.
Alice引入辅助粒子|0>d,并对粒子对(1,d)执行CNOT操作,整个系统的形式如下:
步骤二:幅度和相位测量
Alice分别对粒子1,d执行幅度和相位测量,具体操作如下:
Alice先选取一组正交测量基{|Pi>;i∈{0,1}}:
整个系统可以分解成如下形式:
根据相位测量基的形式,系统又可以分解为:
步骤三:恢复目标GHZ态
Alice把测量结果发送给Bob,Bob根据测量结果执行幺正操作恢复目标态。
例如测量结果为Bob对粒子2执行操作恢复目标等价态为c|0>+deiθ|1>。Bob引入(n-1)个辅助粒子以粒子2为控制量子比特,粒子A1A2…An-1为目标量子比特执行CNOT操作制备得到目标GHZ态
本发明的有益效果:
1、发送方和接收方之间仅用一个非最大纠缠Bell信道完成了GHZ态的制备,不仅提高了制备效率,也大大减少了资源的消耗。
2、本发明采用的所有测量方式为单比特测量,极大地减少了具体操作难度。
3、本发明可以针对非最大纠缠Bell信道,使制备GHZ态更一般化。
附图说明
图1是本发明基于非最大纠缠Bell态制备GHZ态的优化方法的工作流程图。
图2是本发明基于非最大纠缠Bell态制备GHZ态的优化方法的信道示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
本发明技术名词说明:
1、Pauli阵
本发明中还会用到一些幺正矩阵,也即Pauli阵。具体形式如下:
2、CNOT操作
CNOT操作即为非门操作,两个量子比特分别为控制比特和目标比特。当控制比特是|0>时,目标比特不变;当控制比特是|1>时,目标比特发生反转。CNOT操作对量子比特对作用的矩阵形式如下:
实施例一:如图1所示,一种基于非最大纠缠Bell态实现GHZ态制备,以一个非最大纠缠信道为例,具体包括:
步骤一:信道形成
Alice和Bob共享一个非最大纠缠Bell信道,形式如下:
Alice拥有粒子1,Bob拥有粒子2.
Alice引入辅助粒子|0>d,并对粒子对(1,d)执行CNOT操作,整个系统的形式如下:
步骤二:幅度和相位测量
Alice分别对粒子1,d执行幅度和相位测量,具体操作如下:
Alice先选取一组正交测量基{|Pi>;i∈{0,1}}:
系统可以分解成如下形式:
根据相位测量基的形式,整个系统可以分解成如下形式:
步骤三:恢复目标GHZ态
Alice把测量结果发送给Bob,Bob根据测量结果执行幺正操作恢复目标态。
例如测量结果为Bob对粒子2执行操作恢复目标等价态为c|0>+deiθ|1>。Bob引入(n-1)个辅助粒子以粒子2为控制量子比特,粒子A1A2…An-1为目标量子比特执行CNOT操作制备得到目标GHZ态
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
Claims (8)
1.一种基于非最大纠缠Bell态制备GHZ态的优化方法,其特征在于,包括:
发送方Alice和接收方Bob之间共享一个非最大纠缠Bell信道,Alice根据待制备GHZ态的形式制备一个n比特的GHZ态;Alice引入一个辅助粒子后执行CNOT操作,此时Alice对粒子分别执行幅度测量和相位测量。Bob根据Alice的测量结果执行相应的幺正操作恢复目标等价态;Bob在引入(n-1)个辅助粒子并执行CNOT操作得到目标GHZ态。
2.如权利要求1所述的基于非最大纠缠Bell态制备GHZ态的优化方法,其特征在于,完整过程包括以下步骤:
步骤一:信道形成
Alice和Bob共享一个非最大纠缠Bell信道;
Alice引入辅助粒子|0>d,并对粒子对(1,d)执行CNOT操作,
步骤二:幅度和相位测量
Alice分别对粒子1,d执行幅度和相位测量;
Alice先选取一组正交测量基{|Pi>;i∈{0,1}}:
整个系统可以分解成如下形式:
Alice共有{|P0>,|P1>}2种测量结果;Alice把测量结果发送给Bob,根据幅度测量的结果,Alice选取相对应的相位测量基;
步骤三:恢复目标GHZ态:
Alice把测量结果发送给Bob,Bob根据测量结果执行幺正操作恢复目标态。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010087053.7A CN111314068B (zh) | 2020-02-11 | 2020-02-11 | 基于非最大纠缠Bell态制备GHZ态的优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010087053.7A CN111314068B (zh) | 2020-02-11 | 2020-02-11 | 基于非最大纠缠Bell态制备GHZ态的优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111314068A true CN111314068A (zh) | 2020-06-19 |
CN111314068B CN111314068B (zh) | 2022-09-23 |
Family
ID=71161750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010087053.7A Active CN111314068B (zh) | 2020-02-11 | 2020-02-11 | 基于非最大纠缠Bell态制备GHZ态的优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111314068B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112202502A (zh) * | 2020-09-29 | 2021-01-08 | 苏州大学 | 一种基于非最大纠缠ghz信道的单粒子态远程制备方法 |
CN114422128A (zh) * | 2021-12-30 | 2022-04-29 | 苏州大学 | 基于链式网络联合远程制备任意高维单粒子量子态方法 |
CN114422120A (zh) * | 2021-12-21 | 2022-04-29 | 苏州大学 | 信道调制权转移的高维多跳无损隐形传送方法 |
CN114978351A (zh) * | 2022-05-09 | 2022-08-30 | 苏州大学 | 一种基于非最大纠缠图态的联合远程量子态制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106789021A (zh) * | 2016-12-29 | 2017-05-31 | 苏州大学 | 基于五粒子Brown态的量子分组多用户秘密比较方法 |
CN110505060A (zh) * | 2019-09-02 | 2019-11-26 | 苏州大学 | 非最大纠缠两能级bell态的量子对话方法 |
CN110572219A (zh) * | 2019-09-02 | 2019-12-13 | 苏州大学 | 基于非最大纠缠团簇态的四粒子团簇态多跳隐形传态方法 |
-
2020
- 2020-02-11 CN CN202010087053.7A patent/CN111314068B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106789021A (zh) * | 2016-12-29 | 2017-05-31 | 苏州大学 | 基于五粒子Brown态的量子分组多用户秘密比较方法 |
CN110505060A (zh) * | 2019-09-02 | 2019-11-26 | 苏州大学 | 非最大纠缠两能级bell态的量子对话方法 |
CN110572219A (zh) * | 2019-09-02 | 2019-12-13 | 苏州大学 | 基于非最大纠缠团簇态的四粒子团簇态多跳隐形传态方法 |
Non-Patent Citations (3)
Title |
---|
廖婷等: "基于非最大纠缠GHZ态的一种量子信息集中方案", 《计算机应用研究》 * |
王纯: "量子态远程制备及纠缠态区分", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
钱盈家: "噪声环境中比特分发对远程制备量子态的影响", 《万方学术期刊数据库》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112202502A (zh) * | 2020-09-29 | 2021-01-08 | 苏州大学 | 一种基于非最大纠缠ghz信道的单粒子态远程制备方法 |
CN114422120A (zh) * | 2021-12-21 | 2022-04-29 | 苏州大学 | 信道调制权转移的高维多跳无损隐形传送方法 |
CN114422128A (zh) * | 2021-12-30 | 2022-04-29 | 苏州大学 | 基于链式网络联合远程制备任意高维单粒子量子态方法 |
CN114422128B (zh) * | 2021-12-30 | 2023-01-06 | 苏州大学 | 基于链式网络联合远程制备任意高维单粒子量子态方法 |
CN114978351A (zh) * | 2022-05-09 | 2022-08-30 | 苏州大学 | 一种基于非最大纠缠图态的联合远程量子态制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111314068B (zh) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111314068B (zh) | 基于非最大纠缠Bell态制备GHZ态的优化方法 | |
CN110808831B (zh) | 基于七比特量子信道的联合远程态制备方法 | |
Yan et al. | Probabilistic teleportation via a non-maximally entangled GHZ state | |
CN110572219B (zh) | 基于非最大纠缠团簇态的四粒子团簇态多跳隐形传态方法 | |
Jiang et al. | Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments | |
Li et al. | Fault tolerant quantum key distribution based on quantum dense coding with collective noise | |
Chau | Quantum key distribution using qudits that each encode one bit of raw key | |
Joy et al. | Efficient deterministic secure quantum communication protocols using multipartite entangled states | |
Zhang-Yin et al. | Controlled remote state preparation | |
CN109714156A (zh) | 一种量子操控远程联合实现方法 | |
Qian et al. | Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment | |
Yang et al. | Threshold multiparty quantum-information splitting via quantum channel encryption | |
Liao et al. | Controlled remote preparing of an arbitrary 2-qudit state with two-particle entanglements and positive operator-valued measure | |
Man et al. | Economical and feasible controlled teleportation of an arbitrary unknown N-qubit entangled state | |
Yan et al. | Remote preparation of the two-particle state | |
CN112953648A (zh) | 基于双向混合量子信息交流的蝶形网络编码方法 | |
CN111294204B (zh) | 基于五比特brown态制备团簇态的方法 | |
CN112202502B (zh) | 一种基于GHZ态和Bell态的长距离远程量子态制备方法 | |
CN111555876B (zh) | 基于非最大纠缠信道n方控制的联合循环远程态制备方法 | |
Wei-Xing et al. | Controlled teleportation of an unknown n-qubit entangled GHZ state | |
Zha et al. | Four-directional quantum controlled teleportation using a single quantum resource | |
Kui et al. | Classical communication cost and probabilistic remote preparation of four-particle entangled W state | |
Li et al. | Probabilistic multiparty-controlled teleportation of an arbitrary m-qubit state with a pure entangled quantum channel against collective noise | |
CN110932848A (zh) | 基于参数已知的非最大纠缠Bell态的多方量子密钥协商方法 | |
Wang et al. | An efficient scheme for generalized tripartite controlled teleportation of a two-quNit entangled state |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |