CN111257995A - 一种高折射率差yag单晶异质结构薄膜波导及其制备方法 - Google Patents

一种高折射率差yag单晶异质结构薄膜波导及其制备方法 Download PDF

Info

Publication number
CN111257995A
CN111257995A CN202010089291.1A CN202010089291A CN111257995A CN 111257995 A CN111257995 A CN 111257995A CN 202010089291 A CN202010089291 A CN 202010089291A CN 111257995 A CN111257995 A CN 111257995A
Authority
CN
China
Prior art keywords
yag
deposition layer
crystal
yag crystal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010089291.1A
Other languages
English (en)
Inventor
项炳锡
阮双琛
柴广跃
马钰洁
王萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Technology University
Original Assignee
Shenzhen Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Technology University filed Critical Shenzhen Technology University
Priority to CN202010089291.1A priority Critical patent/CN111257995A/zh
Publication of CN111257995A publication Critical patent/CN111257995A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1347Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种高折射率差YAG单晶异质结构薄膜波导及其制备方法,包括有He离子注入的YAG晶体(1)和YAG晶体衬底(2),其特征在于,在所述He离子注入的YAG晶体(1)的注入面之下依次具有SiO2薄膜(3)、第一钛沉积层(41)、第一铜沉积层(51);所述衬底YAG晶体表面之上依次具有第二钛沉积层(42)、第二铜沉积层(52),所述第一铜沉积层(51)和所述第二铜沉积层(52)之间具有Cu‑Sn键合层(7);采用He离子注入结合Cu‑Sn键合法即Smart‑cut法制备具有高折射率差的YAG单晶异质结构薄膜。与现有技术相比,本发明能够均匀地从衬底上“切”下单晶薄膜,并且键合到其他的低折射率材料上形成较为稳定的光波导结构。

Description

一种高折射率差YAG单晶异质结构薄膜波导及其制备方法
技术领域
本发明涉及YAG单晶薄膜技术领域,特别涉及一种高折射率差单晶异质结构及制备方法。
背景技术
基于晶体单晶薄膜制备新型、高集成度、高效率、低功耗的集成光电子器件,是近年国际新兴的热点研究领域。钇铝石榴石(YAG)晶体属立方晶系的特性是各向同性、并且具有优良的光学、热力学性能,其机械性能和化学稳定性与蓝宝石晶体接近,却无蓝宝石晶体的双折射效应。纯YAG晶体在0.25~5μm区域具有较高透过率,在2-3μm区域无任何吸收。同时YAG晶体优良的物化性能和光学性使其成为高温和高能物理环境中具有重要应用的光学晶体材料。稀土掺杂YAG晶体是当前及近年内最重要、应用最广泛的固态激光器工作物质。
波导与周围环境之间的折射率差值越大,对光的限制作用就越强,所以具有高折射率差的薄膜材料是高密度集成光学器件的重要基础。光波导是集成光学最基本的组成结构,由一定厚度的高折射率介质及低折射率的包覆层构成。如果薄膜波导与周围环境之间的折射率差值越大,那么它对光的限制作用就越强,所以具有高折射率差的光学异质结构是高密度集成光学器件的重要基础。薄膜材料的界面越清晰、单晶程度越高,就越能避免在界面上的光散射,减少光的传输损耗,所以薄膜的界面清晰程度和单晶程度成为薄膜品质的重要指标。有关光学异质结构单晶薄膜的技术由于光子晶体和微机电系统(MEMS)等几项重要新技术的产生而引起人们的重视。由多层氧化物光学晶体形成的光学异质结构是光电集成和许多高性能光学器件的最佳选择。研究人员尝试了很多种技术例如化学气相沉积技术、分子束外延技术、脉冲激光沉积技术和溶胶凝胶技术等来制作平面光学异质结构。这些方法制作的薄膜在单晶程度上都有一定的局限性,而且分子束外延生长技术还由于晶格匹配的限制对衬底材料的特性有严格的要求,制作出的薄膜在单晶程度上不够理想。
Smart-cut技术为光学异质结构薄膜的制备提供了新的途径,这是一种用于从外延层/衬底或块状晶体上分离单晶薄膜的方法。迄今为止有两种方式可以实现单晶薄膜的剥离:湿法腐蚀的方法和热处理的方法。由于形成的单晶薄膜具有厚度精确可控、折射率差大、单晶度高的特点,因此可以在上面制备一系列的光子器件,从而实现光学器件的小型化和集成化,例如可以利用稀土掺杂YAG单晶薄膜实现光子晶体激光器等微腔激光器。迄今为止,还没有用Smart-cut法实现YAG单晶异质结构薄膜制备的相关记载。
发明内容
本发明的目的是克服现有技术不足而提供一种高折射率差YAG单晶异质结构薄膜波导及其制备方法,采用He离子注入结合Cu-Sn键合法即Smart-cut法制备具有高折射率差的YAG单晶异质结构薄膜。
本发明的一种高折射率差YAG单晶异质结构薄膜波导,包括有He离子注入的YAG晶体1和YAG晶体衬底2,在所述He离子注入的YAG晶体1的注入面之下依次具有SiO2薄膜3、第一钛沉积层41、第一铜沉积层51;所述衬底YAG晶体表面之上具有依次具有第二钛沉积层42、第二铜沉积层52,所述第一铜沉积层51和所述第二铜沉积层52之间具有Cu-Sn键合层7。
本发明的一种高折射率差YAG单晶异质结构薄膜波导及其制备方法,包括以下步骤:
步骤1、采用<111>切向YAG晶体材料(8)作为样品,通过注入过程将能量为200keV、剂量为8×1016ions/cm2的He离子注入样品的表面;
步骤2、对有He离子注入的YAG晶体进行标准RCA配方清洗后,在注入面采用等离子体增强化学气相沉积方法制备一层厚度1.6微米的SiO2薄膜,沉积条件包括沉积环境温度为250℃、沉积时间为60min;
步骤3、分别在有He离子注入的YAG晶体的注入面和YAG晶体衬底的表面进行沉积,依次得到厚度为100nm、5μm和1μm的钛沉积层、铜沉积层和锡薄膜沉积层;
步骤4、将有He离子注入的YAG晶体和YAG晶体衬底贴合在一起并加热到270℃保持10min,确保有He离子注入的YAG晶体和YAG晶体衬底通过Cu-Sn键合的方式结合到一起,Cu-Sn键合条件包括键合环境温度为270℃、键合时间为10min;
步骤5、完成键合的样品在退火炉中加热到600℃并保持2h,退火完成后,将YAG薄膜完整地从YAG晶体材料上剥离下来。
与现有技术相比,本发明能够均匀地从衬底上“切”下单晶薄膜,并且键合到其他的低折射率材料上形成较为稳定的光波导结构。
附图说明
图1为本发明的一种高折射率差YAG单晶异质结构薄膜波导制备方法各实现过程示意图,依序为(a)离子注入过程,(b)SiO2和金属沉积过程,(c)键合过程,(d)退火剥离过程;
图2为扫描电镜下的利用本发明的一种高折射率差YAG单晶异质结构薄膜制备方法所制备的YAG薄膜的端面图;
图3为透射电镜下的利用本发明的一种高折射率差YAG单晶异质结构薄膜制备方法所制备的YAG薄膜的区域图;
图4为YAG平面波导横电场偏振暗模特性图;
附图标记:
1、有离子注入的YAG晶体,2、YAG晶体衬底,3、SiO2薄膜,41、第一钛沉积层,42、第二钛沉积层,51、第一铜沉积层,52、第二铜沉积层,61、第一锡薄膜沉积层,62、第二锡薄膜沉积层,7、Cu-Sn键合层,8、YAG晶体材料。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
如图1所示,为本发明的一种高折射率差YAG单晶异质结构薄膜制备方法各实现过程示意图,本发明的一种高折射率差YAG单晶异质结构薄膜波导,包括有He离子注入的YAG晶体1和YAG晶体衬底2,在所述He离子注入的YAG晶体1的注入面之下依次具有SiO2薄膜3、第一钛沉积层41、第一铜沉积层51;所述衬底YAG晶体表面之上具有依次具有第二钛沉积层42、第二铜沉积层52,所述第一铜沉积层51和所述第二铜沉积层52之间具有Cu-Sn键合层7。
该制备方法依序包括(a)离子注入过程、(b)SiO2和金属沉积过程、(c)键合过程、(d)退火剥离过程。其中,YAG a和YAG b分别为He离子注入的YAG晶体和未注入的衬底YAG,该方法的具体制备过程如下:
步骤1、采用<111>切向YAG晶体作为样品,样品的尺寸为6×5×1mm3,将能量为200keV、剂量为8×1016ions/cm2的He离子注入<111>切向YAG样品表面,在注入过程中束流小于1μA/cm2
步骤2、注入完的样品经过标准RCA配方清洗后,在注入面采用等离子体增强化学气相沉积(PECVD)方法制备一层厚度1.6微米的SiO2薄膜,PECVD沉积条件包括沉积环境温度为250℃,沉积时间为60min;所沉积的SiO2薄膜不均匀会造成干涉条纹;
步骤3、样品的注入面和YAG晶体衬底表面依次沉积钛、铜、锡薄膜,厚度分别是100nm、5μm和1μm;
步骤4、将注入样品和YAG晶体衬底贴合在一起并加热到270℃保持10min(分钟),确保两块样品通过Cu-Sn键合的方式结合到一起,Cu-Sn键合条件包括键合环境温度为270℃,键合时间为10min;
键合过程中,PECVD沉积时间(60min)和Cu-Sn键合时间(10min)都比注入剂量为8×1016ions/cm2的样品在相同温度下的表面起泡时间短;
步骤5、完成键合的样品在退火炉中加热到600℃并保持2h(小时),退火完成后能够将YAG薄膜从YAG体材料上完整地剥离下来。
通过上述过程所制备的YAG薄膜整体较为完整,表面肉眼可见的缺陷很少。
为了避免沟道效应,在注入过程中离子束方向与样品表面法线方向成7°角,注入离子的束流小于1μA/cm2,注入之后,样品放在温度控制台中,根据剂量情况选择退火处理,在不同的温度下原位观察YAG表面的起泡和剥离现象;退火前所有样品表面都没有发现起泡现象。剂量为2×1016ions/cm2,4×1016ions/cm2和6×1016ions/cm2的样品在500℃、550℃、600℃、800℃这四个温度退火1h(小时)后表面都没有出现起泡和剥离。剂量为8×1016ions/cm2的样品在500℃温度退火1h(小时)后表面没有任何变化。在550℃、600℃、800℃三个温度退火1h(小时)后表面都能产生起泡现象。这说明剂量为8×1016ions/cm2的样品在退火温度高于550℃时会出现明显的表面起泡和剥离现象(本发明优选其中剂量8×1016ions/cm2样品表面起泡时间点在温度为600° C时约为50分钟);不同剂量样品详细的起泡现象和退火温度之间的关系已经在表1中列出;
如表1所示,为不同剂量离子注入样品表面起泡现象和退火温度之间的关系。N表示表面没有变化,BU表示在表面下形成气泡,BL表示表面形成破裂气泡。
Figure BDA0002383176070000061
如图2所示,扫描电镜下的利用本发明的一种高折射率差YAG单晶异质结构薄膜制备方法所制备的YAG薄膜的端面图。在SiO2薄膜和Cu-Sn键合三明治结构之上获得了亚微米厚度的YAG薄膜,YAG薄膜的厚度大约是765nm。金属化合物是由Cu3Sn组成的,Cu3Sn的熔点是676℃,这意味着Cu-Sn键合的结构在退火温度为600℃时是稳定的。
如图3所示,透射电镜下的利用本发明的一种高折射率差YAG单晶异质结构薄膜制备方法所制备的YAG薄膜的区域图。在该注入条件下,离子注入后YAG薄膜仍然保持了较好晶体结构,通过透射电子显微镜可以观察离子注入后YAG薄膜结构特性。采用棱镜耦合方法测试了632.8nm下YAG薄膜波导的暗模特性谱。由于YAG薄膜结构的包覆层为空气和二氧化硅,且二氧化硅折射率(n=1.45)比YAG低,所以YAG薄膜可以形成波导结构。

Claims (3)

1.一种高折射率差YAG单晶异质结构薄膜波导,包括有He离子注入的YAG晶体(1)和YAG晶体衬底(2),其特征在于,在所述He离子注入的YAG晶体(1)的注入面之下依次具有SiO2薄膜(3)、第一钛沉积层(41)、第一铜沉积层(51);所述衬底YAG晶体表面之上依次具有第二钛沉积层(42)、第二铜沉积层(52),所述第一铜沉积层(51)和所述第二铜沉积层(52)之间具有Cu-Sn键合层(7)。
2.一种高折射率差YAG单晶异质结构薄膜波导及其制备方法,其特征在于,该方法包括以下步骤:
步骤1、采用<111>切向YAG晶体材料(8)作为样品,通过注入过程将能量为200keV、剂量为8×1016ions/cm2的He离子注入样品的表面;
步骤2、对有He离子注入的YAG晶体进行标准RCA配方清洗后,在注入面采用等离子体增强化学气相沉积方法制备一层厚度1.6微米的SiO2薄膜,沉积条件包括沉积环境温度为250℃、沉积时间为60min;
步骤3、分别在有He离子注入的YAG晶体的注入面和YAG晶体衬底的表面进行沉积,依次得到厚度为100nm、5μm和1μm的钛沉积层、铜沉积层和锡薄膜沉积层;
步骤4、将有He离子注入的YAG晶体和YAG晶体衬底贴合在一起并加热到270℃保持10min,确保有He离子注入的YAG晶体和YAG晶体衬底通过Cu-Sn键合的方式结合到一起,Cu-Sn键合条件包括键合环境温度为270℃、键合时间为10min;
步骤5、完成键合的样品在退火炉中加热到600℃并保持2h,退火完成后,将YAG薄膜完整地从YAG晶体材料上剥离下来。
3.如权利要求2所述的一种高折射率差YAG单晶异质结构薄膜波导制备方法,其特征在于,所述步骤1的注入过程中,离子束方向与样品表面法线方向成7°角,注入离子的束流小于1μA/cm2
CN202010089291.1A 2020-02-12 2020-02-12 一种高折射率差yag单晶异质结构薄膜波导及其制备方法 Pending CN111257995A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010089291.1A CN111257995A (zh) 2020-02-12 2020-02-12 一种高折射率差yag单晶异质结构薄膜波导及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010089291.1A CN111257995A (zh) 2020-02-12 2020-02-12 一种高折射率差yag单晶异质结构薄膜波导及其制备方法

Publications (1)

Publication Number Publication Date
CN111257995A true CN111257995A (zh) 2020-06-09

Family

ID=70949469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010089291.1A Pending CN111257995A (zh) 2020-02-12 2020-02-12 一种高折射率差yag单晶异质结构薄膜波导及其制备方法

Country Status (1)

Country Link
CN (1) CN111257995A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725298A (zh) * 2020-06-16 2020-09-29 深圳技术大学 金红石二氧化钛单晶薄膜-衬底材料异质结构及其制备方法
CN113372116A (zh) * 2021-07-27 2021-09-10 深圳技术大学 一种双层稀土离子掺杂yag陶瓷及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747881A (en) * 1995-02-01 1998-05-05 Kabushiki Kaisha Toshiba Semiconductor device, method of fabricating the same and copper leads
US20020074902A1 (en) * 2000-11-02 2002-06-20 Fujitsu Limited Method of bonding piezoelectric element and electrode, and piezoelectric microactuator using the bonding method
CN1371434A (zh) * 1999-04-09 2002-09-25 纽约市哥伦比亚大学托管会 采用离子注入法切割单晶膜
CN101097867A (zh) * 2001-07-16 2008-01-02 株式会社半导体能源研究所 半导体器件及剥离方法以及半导体器件的制造方法
CN102392305A (zh) * 2011-11-12 2012-03-28 华南师范大学 一种金属离子掺杂的钇铝石榴石晶体薄膜的制备方法
CN103696022A (zh) * 2013-12-27 2014-04-02 贵州蓝科睿思技术研发中心 一种离子注入分离蓝宝石的方法
CN109468683A (zh) * 2018-12-19 2019-03-15 山东建筑大学 一种基于He离子辐照的石榴石晶体薄膜的制备方法
CN109671618A (zh) * 2018-11-13 2019-04-23 中国科学院上海微系统与信息技术研究所 一种高平坦度异质集成薄膜结构的制备方法
CN110223912A (zh) * 2019-06-20 2019-09-10 中国科学院上海微系统与信息技术研究所 含氧单晶薄膜的制备方法
CN110670133A (zh) * 2019-09-30 2020-01-10 深圳技术大学 利用离子注入技术制备的二氧化钛晶相异质结构及其方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747881A (en) * 1995-02-01 1998-05-05 Kabushiki Kaisha Toshiba Semiconductor device, method of fabricating the same and copper leads
CN1371434A (zh) * 1999-04-09 2002-09-25 纽约市哥伦比亚大学托管会 采用离子注入法切割单晶膜
US20020074902A1 (en) * 2000-11-02 2002-06-20 Fujitsu Limited Method of bonding piezoelectric element and electrode, and piezoelectric microactuator using the bonding method
CN101097867A (zh) * 2001-07-16 2008-01-02 株式会社半导体能源研究所 半导体器件及剥离方法以及半导体器件的制造方法
CN102392305A (zh) * 2011-11-12 2012-03-28 华南师范大学 一种金属离子掺杂的钇铝石榴石晶体薄膜的制备方法
CN103696022A (zh) * 2013-12-27 2014-04-02 贵州蓝科睿思技术研发中心 一种离子注入分离蓝宝石的方法
CN109671618A (zh) * 2018-11-13 2019-04-23 中国科学院上海微系统与信息技术研究所 一种高平坦度异质集成薄膜结构的制备方法
CN109468683A (zh) * 2018-12-19 2019-03-15 山东建筑大学 一种基于He离子辐照的石榴石晶体薄膜的制备方法
CN110223912A (zh) * 2019-06-20 2019-09-10 中国科学院上海微系统与信息技术研究所 含氧单晶薄膜的制备方法
CN110670133A (zh) * 2019-09-30 2020-01-10 深圳技术大学 利用离子注入技术制备的二氧化钛晶相异质结构及其方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BING-XI XIANG: "Fabrication of ion-sliced lithium niobate slabs using helium ion implantation and Cu–Sn bonding", 《PHYS. STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE》 *
P.SIFFERT,E.KRIMMEL: "《硅技术的发展和未来》", 28 February 2009 *
郑成法等: "《核化学及核技术应用 初版》", 30 June 1990 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725298A (zh) * 2020-06-16 2020-09-29 深圳技术大学 金红石二氧化钛单晶薄膜-衬底材料异质结构及其制备方法
CN111725298B (zh) * 2020-06-16 2022-02-18 深圳技术大学 金红石二氧化钛单晶薄膜-衬底材料异质结构及其制备方法
CN113372116A (zh) * 2021-07-27 2021-09-10 深圳技术大学 一种双层稀土离子掺杂yag陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
US7304799B2 (en) Tunable optical filter with heater on a CTE-matched transparent substrate
US7691730B2 (en) Large area semiconductor on glass insulator
US7410883B2 (en) Glass-based semiconductor on insulator structures and methods of making same
US20010032977A1 (en) Optical function device with photonic band gap and/or filtering characteristics
EP1922752B1 (fr) Procede de report d&#39;une couche mince sur un support
WO2018006883A1 (zh) 利用薄膜转移技术制备薄膜体声波器件的方法
CN109671618B (zh) 一种高平坦度异质集成薄膜结构的制备方法
WO2004044976A1 (fr) Procede de formation d&#39;une zone fragile dans un substrat par co-implantation
JPH05175469A (ja) 半導体基材の作製方法
TWI470743B (zh) 玻璃陶瓷為主半導體在絕緣體上結構及其製造方法
CN111257995A (zh) 一种高折射率差yag单晶异质结构薄膜波导及其制备方法
CN208298788U (zh) 复合单晶薄膜
KR20100039216A (ko) 보강재가 적용된 변형된 물질층의 완화
CN1170175C (zh) 双绝缘埋层绝缘体上硅基二维光子晶体波导及制备方法
JP4514964B2 (ja) 光学用シリコン層を基板上に形成する方法および該方法による光学素材の製造方法
CN111477543A (zh) 一种键合衬底晶圆与单晶压电晶圆的方法及复合单晶压电晶圆基板
CN112490349B (zh) 一种电光晶体薄膜、制备方法及电子元器件
US8303745B2 (en) Process for transferring films
CN113541626A (zh) 一种复合单晶压电基板及制备方法
WO2007126544A1 (en) Method for fabricating and using a light waveguide
CN111983750B (zh) 一种二氧化硅加载条型光波导集成结构及其制备方法
KR102449216B1 (ko) 복합 단결정 필름
CN111965755B (zh) 一种加载条型光波导集成结构及其制备方法
CN111725298B (zh) 金红石二氧化钛单晶薄膜-衬底材料异质结构及其制备方法
CN116819805B (zh) 一种基于碳化硅载流子的光调制器制备方法及光调制器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination