CN111235570A - 在基体表面制备含Si/SixNy梯度的改性膜及方法 - Google Patents
在基体表面制备含Si/SixNy梯度的改性膜及方法 Download PDFInfo
- Publication number
- CN111235570A CN111235570A CN202010155421.7A CN202010155421A CN111235570A CN 111235570 A CN111235570 A CN 111235570A CN 202010155421 A CN202010155421 A CN 202010155421A CN 111235570 A CN111235570 A CN 111235570A
- Authority
- CN
- China
- Prior art keywords
- gradient
- substrate
- layer
- membrane
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/048—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
- C23C16/0245—Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明属于表面改性领域,具体的说是涉及一种Si/SixNy梯度改性膜及其在基体表面沉积梯度改性膜的方法。采用磁控溅射技术,在处理后的基体表面上沉积硅过渡层;然后利用磁控溅射和化学气相沉积相结合于过渡层表面沉积Si/Si3N4梯度层,即于基体表面形成含Si/SixNy梯度的改性膜。本发明改性膜可以应用于铜、铝等软质金属,所制备的含Si/SixNy梯度的改性膜均匀、致密,能够显著提高金属基体的硬度、耐磨损以及耐腐蚀性能。
Description
技术领域
本发明属于表面改性领域,具体的说是涉及一种在基体表面制备含Si/SixNy梯度的改性膜及方法。
背景技术
随着电子科技的进步,电子产品越来越向轻、薄、小方向发展,这就对散热材料提出更高要求。铜、铝是常用的散热材料,都存在硬度低、不耐腐蚀、不耐磨损等缺陷。氮化硅是一种重要的陶瓷材料,它具有硬度高、抗腐蚀、耐高温、导热性与绝缘性好、光电性能优良等优点,因而在微电子、微机械、材料表面改性等诸多领域都得到广泛的应用。通过在铜、铝等软质金属基底上制备氮化硅改性膜,能够借助其高硬度、耐腐蚀、良好的导热性等,提高基底的物化性能。
发明内容
本发明提供了一种利用微波等离子体增强化学气相沉积技术,在铜、铝等软质金属基底上,制备Si/SixNy梯度改性膜及其在基体表面沉积梯度改性膜的方法。
为实现上述目的,本发明的目的由以下技术方案实现:
一种在基体表面制备含Si/SixNy梯度的改性膜的方法,采用磁控溅射技术,在处理后的基体表面上沉积硅过渡层;然后利用磁控溅射和化学气相沉积相结合于过渡层表面沉积Si/Si3N4梯度层,即于基体表面形成含Si/SixNy梯度的改性膜。
进一步的说,在真空条件下,利用Si靶磁控溅射物理气相沉积(MS-PVD)于处理后的基体表面形成Si过渡层;而后,在此条件下通入氮气,在磁控溅射与化学气相沉积(MS-PVD+PECVD)的共同作用下,利用Si和氮气反应,随着氮气的通入逐步形成稳定的产物,进而于过渡层表面沉积Si/Si3N4梯度层,即于基体表面形成含Si/SixNy梯度的改性膜;其中,磁控溅射与化学气相沉积共同作用下氩气与氮气的流量比为6-3:1。
所述磁控溅射与化学气相沉积共同作用沉积后,以氩气为保护气体于真空室中冷却30min,冷却后经He等离子体轰击表面,去除表层不稳定结构,形成稳定的SixNy层;而后于稳定的SixNy层表面再通过磁控溅射与化学气相沉积(MS-PVD+PECVD)的共同作用修饰,即形成含Si/SixNy梯度的改性膜。
所述处理后的基体为首先采用砂纸对金属基体进行水磨、抛光;而后依次经丙酮、无水乙醇、去离子水对抛光后金属基体进行超声波清洗,清洗后经惰性气体吹干,吹干后放入真空室中,经氩等离子体溅射清洗基底,待用。
所述基体为软质金属的铜或铝。
具体为:
(1)采用不同型号的砂纸对金属基体进行水磨,然后采用砂磨膏抛光到镜面效果。
(2)分别采用丙酮、无水乙醇、去离子水对金属基体进行超声波清洗,惰性气体吹干后,放入真空室中。
(3)打开机械泵预抽,当真空计真空度达到1~10Pa时,开启分子泵,这样两泵进行接力式抽气,真空被抽至衬底真空3.0×10-3Pa后采用氩等离子体溅射清洗基底,偏压250-400V,流量20sccm,清洗时间10-20min。
(4)利用Si靶磁控溅射物理气相沉积(MS-PVD)Si过渡层。Si靶功率250-350W,偏压100-150V,氩气流量20-30sccm,溅射时间10-15min。
(5)然后保持Si靶溅射功率不变,在Si靶磁控溅射的同时,在真空室内通入氮气,氩气与氮气流量比R=6-3,在磁控溅射与化学气相沉积(MS-PVD+PECVD)的共同作用下,通过控制氮气与氩气的流量比来控制SixNy层的成分比,保持Si靶溅射的同时,通入氮气,N2在等离子中逐步分解成N离子和N原子,然后与Si发生反应,初期等离子中N离子和N原子含量较少,Si含量较多,沉积的膜层中Si与Si3N4共同存在,为Si掺杂的Si3N4层;随着等离子中N离子和N原子含量的增多,Si与N发生充分反应,沉积的膜层中,Si的含量逐渐减少。因此此过程中形成的是一个Si含量逐渐减少,Si3N4含量逐渐增多的,成分梯度渐变的Si/Si3N4梯度过渡层。
(6)停止Si/Si3N4梯度层的沉积,保持氩气流量不变,在真空室中冷却30min。
(7)采用He等离子体轰击表面,偏压150-200V,流量20sccm,清洗时间5min,刻蚀表层不稳定键结构。
(8)重复步骤(5)一次,即于基体表面形成含Si/SixNy梯度的改性膜。
一种含Si/SixNy梯度的改性膜,按所述方法于基体表面沉积含Si/SixNy梯度的改性膜均匀、致密、耐磨、耐蚀、硬度高、与基体结合良好的改性膜。
所述Si过渡层与稳定的SixNy层之间形成10~50纳米的成份渐变的梯度过渡层,进而形成含成份渐变的梯度(Si/Si3N4梯度)的界面互锁效应,来提高层间结合力的改性膜。
所述的Si过渡层的厚度为10~50纳米;所述的Si/Si3N4梯度过渡层和SixNy层的总厚度为450~500纳米。
一种含Si/SixNy梯度的改性膜的应用,所述含Si/SixNy梯度的改性膜在作为电子原器件表面膜中的应用。
本发明的有益效果在于:
本发明采用磁控溅射加化学气相沉积技术相结合,保持Si靶溅射的同时,通入氮气,N2在等离子中逐步分解成N离子和N原子,然后与Si发生反应,初期等离子中N离子和N原子含量较少,Si含量较多,沉积的膜层中Si与Si3N4共同存在,为Si掺杂的Si3N4层;随着等离子中N离子和N原子含量的增多,Si与N发生充分反应,沉积的膜层中,Si的含量逐渐减少。因此此过程中形成的是一个Si含量逐渐减少,Si3N4含量逐渐增多的,成分梯度渐变的Si/Si3N4梯度过渡层。本发明改性膜中选取Si为过渡层元素,在金属基底表面形成薄膜生长点,有利于后续Si/SixNy梯度改性膜附着,改性膜均匀、致密,提高膜基之间的结合力。本发明保护膜可以应用于铜、铝等软质金属表面对其进行耐磨、耐蚀、耐划伤的保护,所制备的含Si/SixNy梯度的改性膜均匀、致密,能够显著提高金属基体的硬度、耐磨损以及耐腐蚀性能。
附图说明
图1为本发明实施例提供的附着于基体上的改性膜的剖面结构示意图。
图2为本发明实施例提供的附着于基体上的改性膜的界面高分辨透射电镜照片。
图3为本发明实施例制备的Si/SixNy梯度改性膜结构表征图。
图4为本发明实施例提供的不同氩气与氮气流量比制备的Si/SixNy梯度改性膜的原子百分比效果图。
图5为本发明实施例制备获得的Si/SixNy梯度改性膜与未镀膜基底的交流阻抗谱图。
具体实施方式
以下结合实例对本发明的具体实施方式做进一步说明,应当指出的是,此处所描述的具体实施方式只是为了说明和解释本发明,并不局限于本发明。
实施例1:
Si/SixNy梯度改性膜的方法步骤如下:
(1)将铜基体分别依次采用800、1000、2000号的砂纸对基底进行水磨,然后采用W3.5的金刚石砂磨膏抛光到镜面效果;
(2)抛光后分别采用丙酮、无水乙醇、去离子水对基底进行超声波清洗,清洗时间5min,清洗完惰性气体吹干后,放入真空室中。
(3)真空室抽真空至3×10-3Pa,微波功率850W。
(4)通入氩气采用氩等离子体溅射清洗基底,偏压400V,流量20sccm,清洗时间10min。
(5)打开Si靶磁控溅射沉积Si过渡层,靶功率350W,偏压150V,氩气流量30sccm,溅射时间10min。
(6)在Si靶磁控溅射的同时,在真空室内通入氮气,氩气与氮气流量比R=5,沉积时间60min,随着氮气的不断通入制备Si/Si3N4梯度过渡层。当氩气与氮气流量比R=5时,Si与N2充分反应,得到的最终产物中无多余的Si原子,其x:y约为3:4,即为Si3N4层。
(7)停止Si靶溅射,关闭偏压,氮气流量30sccm,冷却30min。
(8)采用He等离子体轰击表面,偏压150V,流量20sccm,清洗时间5min。
(9)重复步骤(6)一次,即于基体表面形成Si/Si3N4梯度过渡层+SixNy改性膜层(参见图1和图2)。
由图1、图2可见,本发明所制备的改性膜,在Si层与SixNy层之间,有一个成分渐变的Si/Si3N4梯度过渡层,过渡层的存在,提高了层与层之间的结合强度,提高改性膜制备的成功率。
对上述基体制备的改性膜进行表层结构表征(参见图3),图3的薄膜的XPS谱可见,薄膜主要由Si,N两种元素构成,薄膜中还含有一定量的O元素;薄膜沉积过程是在高的(10-3)本底真空下进行的,在XPS实验时并没有对薄膜表面进行溅射处理,因此O元素主要是吸附在样品表面的,可忽略不计;在对基体表面分别对Si,N两种元素信号峰解谱,通过计算积分面积,结果表明N/Si的原子百分比为1.33,近似为Si3N4的理想化学配比,即最终形成的稳定产物中仅有Si3N4,无富裕的Si。
实施例2
与实施例1不同之处在于按照上述记载的方法,将步骤6)中氩气与氮气流量比R控制在6时,即N2的流量低,与Si发生反应的N减少,生成的最终产物为Si与Si3N4共存膜层。膜层中各元素含量见图4所示。
由图4膜层中各元素含量可见R逐渐增大时,膜层中Si的含量逐渐减低,N含量逐渐上升。当R=5是,Si/N含量比接近3/4,Si与N发生充分反应,产物为Si3N4。
实施例3
与实施例1不同之处在于按照上述记载的方法,将步骤6)中氩气与氮气流量比R控制在3时,此时氮气流量增大,但膜层中N含量并没有太大变化;但随着N2流量增大,Si靶出现中毒现象,最终制备的Si/SixNy梯度的改性膜厚度明显降低。膜层中各元素含量见图4所示。
并且按照上述各实施例采用不同的基体金属,即可在基体表面形成含Si/SixNy梯度的改性膜;且沉积的梯度改性膜均与上述改性膜结构一致,XPS谱检测结果N/Si的原子百分比根据不同氩气与氮气流量比所一致。
应用例1
对上述实施例1制备的改性膜,进行硬度测量:
使用Nano-indentation XP型纳米压痕仪,美国MTS公司生产,测试薄膜的硬度和弹性模量等力学参数。测试时采用连续度模式,能够给出硬度和弹性模量随压入深度的连续变化趋势,可分辨出基体对薄膜力学性能的影响范围,得出薄膜材料力学性能的准确值。系统工作时,载荷分辨率60nN;接触载荷<1.0μN,行程1nm;压痕深度500~800nm。
将上述实施例1获得沉积基体样品进行测量,同时作为3组平行试验获得平均值,结果表明,样品改性膜,平均硬度为18.8GPa,平均弹性模量为135.5GPa,远高于铜基体的硬度。
应用例2:
对上述实施例1制备的改性膜,进行耐腐蚀性能测量:
采用极化曲线及交流阻抗对改性膜的耐腐蚀性能进行表征。采用三电极体系,以上述实施例1制备的改性膜的基底(实验组)为工作电极,0.5mol/L的H2SO4溶液为电解液,辅助电极为铂电极,参比电极为饱和甘汞电极;同时以上述未沉积改性膜的基底作为对照,分别进行耐腐蚀性能测量数据采集应用PARSTAT2273电化学工作站(参见图3)。
由图5的交流阻抗谱可见对照组阻抗模值明显小于实验组试样,由此可见沉积Si/SixNy梯度改性膜的铜基体提高了铜基体的耐腐蚀性。
Claims (9)
1.一种在基体表面制备含Si/SixNy梯度的改性膜的方法,其特征在于:采用磁控溅射技术,在处理后的基体表面上沉积硅过渡层;然后利用磁控溅射和化学气相沉积相结合于过渡层表面沉积Si/Si3N4梯度层,即于基体表面形成含Si/SixNy梯度的改性膜。
2.按权利要求1或2所述的在基体表面制备含Si/SixNy梯度的改性膜的方法,其特征在于:在真空条件下,利用Si靶磁控溅射物理气相沉积(MS-PVD)于处理后的基体表面形成Si过渡层;而后,在此条件下通入氮气,在磁控溅射与化学气相沉积(MS-PVD+PECVD)的共同作用下,利用Si和氮气反应,随着氮气的通入逐步形成稳定的产物,进而于过渡层表面沉积Si/Si3N4梯度层,即于基体表面形成含Si/SixNy梯度的改性膜;其中,磁控溅射与化学气相沉积共同作用下氩气与氮气的流量比为6-3:1。
3.按权利要求2所述的在基体表面制备含Si/SixNy梯度的改性膜的方法,其特征在于:所述磁控溅射与化学气相沉积共同作用沉积后,以氩气为保护气体于真空室中冷却30min,冷却后经He等离子体轰击表面,去除表层不稳定结构,形成稳定的SixNy层;而后于稳定的SixNy层表面再通过磁控溅射与化学气相沉积(MS-PVD+PECVD)的共同作用修饰,即形成含Si/SixNy梯度的改性膜。
4.按权利要求1或2所述在基体表面制备含Si/SixNy梯度的改性膜的方法,其特征在于:所述处理后的基体为首先采用砂纸对金属基体进行水磨、抛光;而后依次经丙酮、无水乙醇、去离子水对抛光后金属基体进行超声波清洗,清洗后经惰性气体吹干,吹干后放入真空室中,经氩等离子体溅射清洗基底,待用。
5.按权利要求4所述在基体表面制备含Si/SixNy梯度的改性膜的方法,其特征在于:所述基体为软质金属的铜或铝。
6.一种权利要求1所述方法在基体表面制备的含Si/SixNy梯度的改性膜,其特征在于:按权利要求1所述方法于基体表面沉积含Si/SixNy梯度的改性膜均匀、致密、耐磨、耐蚀、硬度高、与基体结合良好的改性膜。
7.按权利要求6所述的含Si/SixNy梯度的改性膜,其特征在于:所述Si过渡层与稳定的SixNy层之间形成10~50纳米的成份渐变的梯度过渡层,进而形成含成份渐变的梯度(Si/Si3N4梯度)的界面互锁效应,来提高层间结合力的改性膜。
8.按权利要求6或7所述的含Si/SixNy梯度的改性膜,其特征在于:所述的Si过渡层的厚度为10~50纳米;所述的Si/Si3N4梯度过渡层和SixNy层的总厚度为450~500纳米。
9.一种权利要求6所述的含Si/SixNy梯度的改性膜的应用,其特征在于:所述含Si/SixNy梯度的改性膜在作为电子原器件表面膜中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010155421.7A CN111235570B (zh) | 2020-03-09 | 2020-03-09 | 在基体表面制备含Si/SixNy梯度的改性膜及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010155421.7A CN111235570B (zh) | 2020-03-09 | 2020-03-09 | 在基体表面制备含Si/SixNy梯度的改性膜及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111235570A true CN111235570A (zh) | 2020-06-05 |
CN111235570B CN111235570B (zh) | 2022-11-08 |
Family
ID=70864318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010155421.7A Active CN111235570B (zh) | 2020-03-09 | 2020-03-09 | 在基体表面制备含Si/SixNy梯度的改性膜及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111235570B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109136924A (zh) * | 2018-08-29 | 2019-01-04 | 首都航天机械有限公司 | 航天火工分离用石墨烯二硫化钼多层耐磨涂层及制备方法 |
-
2020
- 2020-03-09 CN CN202010155421.7A patent/CN111235570B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109136924A (zh) * | 2018-08-29 | 2019-01-04 | 首都航天机械有限公司 | 航天火工分离用石墨烯二硫化钼多层耐磨涂层及制备方法 |
Non-Patent Citations (3)
Title |
---|
王宁: "生物医用镁 基类金刚石复合材料的研究", 《中国优秀博硕士学位论文全文数据库(硕士)》 * |
王静: "铜基体上Ti/TixCy/DLC功能梯度材料的制备及性能的研究", 《中国博士学位论文全文数据库》 * |
王静等: "通过制备Ti/TiC和Si/SixNy过渡层在铜基体上沉积类金刚石膜的研究", 《真空科学与技术学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111235570B (zh) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3708564B2 (ja) | 低イオンビームを用いた金属酸化物等の薄層の改質処理方法 | |
US20060165994A1 (en) | Protective coating on a substrate and method of making thereof | |
Barshilia et al. | Reactive sputtering of hard nitride coatings using asymmetric-bipolar pulsed DC generator | |
JP2022547793A (ja) | 燃料電池スタックの1つまたは複数の金属コンポーネントをコーティングする方法、燃料電池スタックのコンポーネント、および燃料電池スタックの1つまたは複数のコンポーネントをコーティングする装置 | |
JPH01294867A (ja) | 炭素または炭素を主成分とする被膜を形成する方法 | |
US20070042609A1 (en) | Molecular caulk: a pore sealant for ultra-low k dielectrics | |
CN111334794B (zh) | 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法 | |
US20040137158A1 (en) | Method for preparing a noble metal surface | |
TWI398924B (zh) | Manufacturing method and manufacturing apparatus, semiconductor device, and manufacturing method thereof for insulating film for semiconductor device and insulating film for semiconductor device | |
CN113249683A (zh) | 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用 | |
JP2007016272A (ja) | 基板上に被覆形成される保護膜及びその製造方法 | |
WO1993007306A1 (en) | Adherent metal coating for aluminum nitride surfaces | |
CN113621926A (zh) | 一种低应力类金刚石耐磨涂层及其制备方法 | |
CN111235570B (zh) | 在基体表面制备含Si/SixNy梯度的改性膜及方法 | |
Bhuvaneswari et al. | Studies on zirconium nitride films deposited by reactive magnetron sputtering | |
JP7350480B2 (ja) | 成膜方法、成膜製品及び表面プラズモンセンサ、バイオ計測機器用部品の製造方法 | |
CN105970170A (zh) | 镁合金上制备铪/氮化硅导电且耐蚀多层结构涂层的方法 | |
Wan-Yu et al. | Deposition of hydrogen-free silicon nitride thin films by microwave ECR plasma enhanced magnetron sputtering at room temperature | |
JPH0283816A (ja) | 磁気記録媒体 | |
Ahern | The deposition of TiN at less than 150° C by reactive magnetron sputter ion plating | |
Yu et al. | dc cathodic polymerization of trimethylsilane in a closed reactor system | |
CN114150281B (zh) | 一种氮化钽薄膜及其制备方法 | |
Chua et al. | Microstructural and surface properties of cobalt containing amorphous carbon thin film deposited by a filtered cathodic vacuum arc | |
CN113224200B (zh) | 一种氮化镓半导体辐射探测器及其制备方法和检测设备 | |
Tao et al. | Anode magnetron enhanced DC glow discharge processes for plasma surface cleaning and polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |