CN111233504A - 一种陶瓷/金属钎焊结构及陶瓷金属化方法 - Google Patents

一种陶瓷/金属钎焊结构及陶瓷金属化方法 Download PDF

Info

Publication number
CN111233504A
CN111233504A CN202010161547.5A CN202010161547A CN111233504A CN 111233504 A CN111233504 A CN 111233504A CN 202010161547 A CN202010161547 A CN 202010161547A CN 111233504 A CN111233504 A CN 111233504A
Authority
CN
China
Prior art keywords
layer
metal
ceramic
metallized
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010161547.5A
Other languages
English (en)
Inventor
孙向明
于凯凯
陈英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mokos New Material Technology Suzhou Co Ltd
Original Assignee
Mokos New Material Technology Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mokos New Material Technology Suzhou Co Ltd filed Critical Mokos New Material Technology Suzhou Co Ltd
Priority to CN202010161547.5A priority Critical patent/CN111233504A/zh
Publication of CN111233504A publication Critical patent/CN111233504A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Prostheses (AREA)

Abstract

本发明提供一种陶瓷/金属钎焊结构及陶瓷金属化方法,陶瓷/金属钎焊结构包括陶瓷基底,还包括:金属化底层,通过生物相容性金属I沉积在陶瓷基底表面形成;金属化顶层,通过生物相容性金属II沉积在金属化底层表面形成;所述生物相容性金属I的沉积扩散速度大于生物相容性金属II的沉积扩散速度。本发明在陶瓷基底表面通过生物相容性金属I沉积形成金属化底层,生物相容性金属I的沉积扩散速度大,结合力高,能够使金属化底层与陶瓷基底可靠结合;生物相容性金属II的沉积扩散速度小,能够实现钎焊过程中贵金属钎料在金属膜层上的有效铺展润湿,在保证膜层与陶瓷基体紧密结合的同时保障了后续钎焊的可靠性。

Description

一种陶瓷/金属钎焊结构及陶瓷金属化方法
技术领域
本发明属于钎焊技术领域,具体涉及一种陶瓷/金属钎焊结构,另外,本发明还涉及一种陶瓷金属化方法。
背景技术
在三类植入式医疗器械中,很多地方都需要将陶瓷/金属钎焊连接,而由于这类部件往往需要植入到人体中,因此在满足钎焊接头的必须性能外,整个陶瓷/金属结构还需具备良好的生物相容性,为此,在植入式医疗器械中常采用具备生物相容性的陶瓷和金属材料(Ti、Pt、Ir等),钎料也是选用具备生物相容性的贵金属钎料(Au、Co、Ti等)。
但是由于陶瓷表面是离子-共价键的复合价键结构,而具备生物相容性的贵金属钎料往往是金属键的结构,二者的价键结构不同导致了贵金属钎料往往很难在生物相容性陶瓷表面铺展润湿形成连接。目前解决贵金属钎料与陶瓷之间润湿的问题常采用在陶瓷表面进行金属化处理的方法,具体是在陶瓷表面沉积单一的金属镀层。
但是如果金属镀层的成分选择与陶瓷热膨胀系数相近、且结合力较高的生物相容性金属元素(Ti、Zr等),虽然能够实现膜层和陶瓷间的有效连接,但是由于该类元素的活性很强,会在钎焊过程中迅速扩散从而在界面处形成柯肯达尔空洞而影响其密封性能。而若是选择扩散速度适中的生物相容性金属元素(Pd、Co、Nb等)作为膜层成分,又很难保证膜层与陶瓷之间的结合强度,得到的钎焊接头在强度、密封性上都有局限性,而且为了减小金属膜层中的残余应力,避免钎焊过程中的膜层开裂,往往使用较慢的沉积速度,效率极低。
发明内容
基于上述背景问题,本发明旨在提供一种陶瓷金属钎焊结构,通过在陶瓷基底表面依次沉积金属化底层和金属化顶层形成复合金属化膜层,避免了现有单一成分金属化膜层不能兼顾膜层与陶瓷基体和贵金属钎料结合力的问题,在保证金属膜层与陶瓷基体紧密结合的同时保障了后续钎焊的可靠性;本发明的另一目的是提供一种陶瓷金属化方法。
为了实现上述目的,本发明实施例提供的技术方案是:
一方面,本发明实施例提供一种陶瓷/金属钎焊结构,包括陶瓷基底,还包括:金属化底层,通过生物相容性金属I沉积在陶瓷基底表面形成;金属化顶层,通过生物相容性金属II沉积在金属化底层表面形成;所述生物相容性金属I的沉积扩散速度大于生物相容性金属II的沉积扩散速度。
在一个实施例中,所述金属化底层与陶瓷基底之间还存在陶瓷/金属界面结合层,所述金属化顶层与金属化底层之间还存在金属化顶层/镀层界面结合层。
优选地,所述生物相容性金属I选自Ti、Zr、Cr、Ta中的一种或多种。
更优选地,所述金属化底层的厚度为0.4-0.6μm。
优选地,所述生物相容性金属II选自Pd、Co、Nb中的一种或多种。
更优选地,所述金属化顶层的厚度为1.5-2μm。
另一方面,本发明实施例中还提供一种陶瓷金属化方法,在陶瓷基底表面沉积生物相容性金属I形成金属化底层;在金属化底层上沉积生物相容性金属II形成金属化顶层;生物相容性金属I的沉积扩散速度大于生物相容性金属II的沉积扩散速度,以使陶瓷基底与金属化底层牢固结合,金属化顶层与贵金属钎料有效结合。
在一个实施例中,将沉积有金属化底层和金属化顶层的陶瓷基底置入真空环境中加热至900-1000℃,并保温20-40min,以在金属化底层与陶瓷基底之间生成致密的陶瓷/金属界面结合层,在金属化顶层与金属化底层之间生成致密的金属化顶层/镀层界面结合层。
优选地,沉积方法选自磁控溅射或化学气相沉积方法,且沉积方法为先快后慢的两段式沉积。
优选地,陶瓷基底在沉积金属化底层前先进行预处理,预处理包括高温烧结工序和射频清洗工序。
与现有技术相比,本发明具有以下效果:
1、本发明在陶瓷基底表面通过生物相容性金属I沉积形成金属化底层,生物相容性金属I的沉积扩散速度大,结合力高,且与陶瓷基底的热膨胀系数相近,能够使金属化底层与陶瓷基底可靠结合;在金属化底层表面通过生物相容性金属II沉积形成金属化顶层,生物相容性金属II的沉积扩散速度小,能够实现钎焊过程中贵金属钎料在金属膜层上的有效铺展润湿,避免了现有单一成分金属化膜层不能兼顾膜层与陶瓷基体和贵金属钎料结合力的问题,在保证膜层与陶瓷基体紧密结合的同时保障了后续钎焊的可靠性。
2、本发明选用生物相容性金属形成金属膜层,得到的金属化陶瓷部件可以应用于植入人体的三类医疗器械,避免了传统陶瓷金属化工艺引入镍(Ni)、钼(Mo)、锰(Mn)等不具备生物相容性的元素而导致毒性的产生。
3、本发明的将沉积有金属化底层和金属化顶层的陶瓷基底置入真空环境中加热,可以在消除膜层沉积过程中产生的应力集中,同时完成金属化膜层由非晶态向晶态的转变,有利于提高膜层的致密性;而且热处理过程中陶瓷/金属化底层,金属化底层/金属化顶层之间会发生扩散反应,生成相应的界面结合层,进一步提高其结合强度和可靠性;同时真空环境下进行热处理可以避免金属化膜层被氧化,影响后续贵金属钎料的铺展润湿。
4、本发明在陶瓷基底沉积金属化底层先进行预处理,先对陶瓷基底进行高温烧结,再进行射频清洗;高温烧结可以消除陶基底瓷表面的结构缺陷,释放陶瓷基底表面的残余应力的同时清洁陶瓷表面,避免了陶瓷基底表面杂质、微观缺陷造成膜层界面处的应力集中和结合不良;通过射频清洗可以进一步活化陶瓷基底表面,得到金属膜层与陶瓷基底结合紧密的界面。
5、本发明的金属化底层和金属化顶层均分为两步进行沉积,先快后慢,首先通过高能量的金属粒子沉积保证其与陶瓷或上一金属层的结合,然后使用较慢的沉积速度得到平整的金属化表面,便于下一膜层的附着和后续使用过程中贵金属钎料的铺展润湿。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将实施例描述中所需要使用的附图作简单地介绍。
图1为本发明实施例1中陶瓷/金属钎焊结构的示意图。
图2为本发明实施例2中陶瓷/金属钎焊结构的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种陶瓷/金属钎焊结构,如图1所示,包括陶瓷基底1、金属化底层2、金属化顶层3,所述金属化底层2通过生物相容性金属I沉积在陶瓷基底1表面形成,所述金属化顶层3通过生物相容性金属II沉积在金属化底层2表面形成。
在本实施例中,所述陶瓷基底1为具有生物相容性的氧化铝陶瓷基底,生物相容性金属I选用金属元素Cr,Cr与氧化铝陶瓷的热膨胀系数相近,结合力较高,能够保证金属化底层1与陶瓷基底1牢固结合;生物相容性金属II选用金属元素Pd,其沉积扩散速度适中,能够实现钎焊过程中金属化膜层与贵金属钎料之间的有效结合。即在本实施例中,所述生物相容性金属I的沉积扩散速度大于生物相容性金属II的沉积扩散速度。
具体的,所述金属化底层2的厚度较薄,在0.4-0.6μm之间,所述金属化顶层3的厚度较厚,在1.5-2μm之间,但是并不局限于此,金属化底层2和金属化顶层3形成的复合金属化膜层的厚度控制在2-4μm之间即可,以避免复合金属化膜层过厚造成膜基结合力降低。
实施例2
一种陶瓷/金属钎焊结构,如图2所示,包括陶瓷基底1、金属化底层2、金属化顶层3,所述金属化底层2通过生物相容性金属I沉积在陶瓷基底1表面形成,所述金属化顶层3通过生物相容性金属II沉积在金属化底层2表面形成。
在本实施例中,所述陶瓷基底1为具有生物相容性的氧化铝陶瓷基底,生物相容性金属I选用Ti,生物相容性金属II选用金属元素Pd,所述金属化底层2的厚度较薄,在0.4-0.6μm之间,所述金属化顶层3的厚度较厚,在1.5-2μm之间,但是并不局限于此。
在本实施例中,所述金属化底层2与陶瓷基底1之间还存在陶瓷/金属界面结合层4,所述金属化顶层3与金属化底层2之间还存在金属化顶层/镀层界面结合层5,陶瓷/金属界面结合层4和金属化顶层/镀层界面结合层5为较为致密的界面结合层,有利于提高复合金属化膜层的致密性,并且能够进一步提高结合强度和可靠性。
为了测试复合金属化膜层与陶瓷基底1之间的结合力,采用99.99%的纯金钎料钎焊连接金属化陶瓷与TA2纯钛,得到钎焊接头的抗拉强度介于150-180MPa之间,接头的氦泄露率低于5×10-9ATM·CC/SEC。
实施例3
一种陶瓷/金属钎焊结构,包括陶瓷基底1、金属化底层2、金属化顶层3,所述金属化底层2通过生物相容性金属I沉积在陶瓷基底1表面形成,所述金属化顶层3通过生物相容性金属II沉积在金属化底层2表面形成。
在本实施例中,所述陶瓷基底1为氧化锆陶瓷基底,生物相容性金属I选用金属元素Zr,生物相容性金属II选用金属元素Co。
实施例4
一种陶瓷/金属钎焊结构,包括陶瓷基底1、金属化底层2、金属化顶层3,所述金属化底层2通过生物相容性金属I沉积在陶瓷基底1表面形成,所述金属化顶层3通过生物相容性金属II沉积在金属化底层2表面形成。
在本实施例中,所述陶瓷基底1为氧化铝陶瓷基底,生物相容性金属I选用金属元素Ta,生物相容性金属II选用金属元素Nb。
实施例5
一种陶瓷金属化方法,包括以下步骤:
(1)陶瓷基底1的预处理:将待金属化的生物相容性的氧化铝陶瓷基底1在空气马弗炉中加热,加热温度900-1100℃,时间20-30min,然后冷却到室温;将冷却后的陶瓷基底1进行脱脂蒸汽清洗,清洗时间10-20min,然后在烘箱中空气氛围下烘干20-30min,烘干温度150-200℃,得到清洁后的陶瓷基底1;最后将陶瓷基底1在射频电源下进行射频清洁处理,同时活化陶瓷基底1的表面,已达到更好的膜层结合效果,射频清洗功率100W,时间3-5min。
本步骤通过空气中的高温烧结能够消除陶瓷基底1表面的结构缺陷,释放陶瓷基底1表面的残余应力的同时清洁陶瓷基底1表面,避免了陶瓷基底1表面杂质、微观缺陷造成膜层界面处的应力集中和结合不良;通过射频清洗进一步活化陶瓷基底1表面,得到金属膜层与陶瓷基底1结合紧密的界面。
(2)使用直流磁控溅射方法在陶瓷基底1上溅射沉积金属化底层2,金属化底层2的成分选用与陶瓷热膨胀系数相近,结合力较高的生物相容性金属元素(Ti、Zr等),溅射分为2个阶段,第一阶段溅射功率100-200W,溅射时间0.5h,氩分压0.1-0.5Pa;第二阶段溅射功率100W以下,溅射时间0.5h,氩分压0.5-0.8Pa,得到金属化底层2的厚度在0.4-0.6μm之间。
金属化底层2分两步进行沉积,先快后慢,首先通过高能量的金属粒子沉积保证其与陶瓷基底1的结合,然后使用较慢的沉积速度得到平整的金属化表面,便于金属化顶层3的附着。
(3)使用直流溅射方法在金属化底层2上溅射沉积金属化顶层3,金属化顶层3的成分选用扩散速度适中的生物相容性金属元素(Pd、Co、Nb等),溅射分为2个阶段,第一阶段溅射功率150-250W,溅射时间1-1.5h,氩分压0.1-0.5Pa;第二阶段溅射功率150W以下,溅射时间0.5h,氩分压0.5-0.8Pa,得到金属化顶层3的厚度在1.5-2.0μm之间。
金属化顶层3分两步进行沉积,先快后慢,首先通过高能量的金属粒子沉积保证其与金属化底层2的结合,然后使用较慢的沉积速度得到平整的金属化表面,便于后续使用过程中贵金属钎料的铺展润湿。
实施例6
实施例6与实施例5不同的是,在复合金属化膜沉积成形后,将溅射沉积有复合金属化膜层的陶瓷基底1放置在真空环境下进行热处理,热处理温度900-1000℃,保温时间20-40min,真空度1×10-3Pa。
热处理可以在消除膜层沉积过程中产生的应力集中,同时完成复合金属化膜层由非晶态向晶态的转变,有利于提高膜层的致密性;而且热处理过程中陶瓷基底/金属化底层,金属化底层/金属化顶层之间会发生扩散反应,生成相应的界面结合层,进一步提高其结合强度和可靠性;同时真空环境下进行热处理可以避免古河金属化膜层被氧化,影响后续贵金属钎料的铺展润湿。
将热处理后的产品超声清洗10-20min,在150-200℃的空气烘箱中烘干得到具备生物相容性的金属化陶瓷组件。
应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种陶瓷/金属钎焊结构,包括陶瓷基底,其特征在于,还包括:
金属化底层,通过生物相容性金属I沉积在陶瓷基底表面形成;
金属化顶层,通过生物相容性金属II沉积在金属化底层表面形成;
所述生物相容性金属I的沉积扩散速度大于生物相容性金属II的沉积扩散速度。
2.根据权利要求1所述的陶瓷/金属钎焊结构,其特征在于,所述金属化底层与陶瓷基底之间还存在陶瓷/金属界面结合层,所述金属化顶层与金属化底层之间还存在金属化顶层/镀层界面结合层。
3.根据权利要求1所述的陶瓷/金属钎焊结构,其特征在于,所述生物相容性金属I选自Ti、Zr、Cr、Ta中的一种或多种。
4.根据权利要求3所述的陶瓷/金属钎焊结构,其特征在于,所述金属化底层的厚度为0.4-0.6μm。
5.根据权利要求1所述的陶瓷/金属钎焊结构,其特征在于,所述生物相容性金属II选自Pd、Co、Nb中的一种或多种。
6.根据权利要求5所述的陶瓷/金属钎焊结构,其特征在于,所述金属化顶层的厚度为1.5-2μm。
7.一种陶瓷金属化方法,其特征在于,
在陶瓷基底表面沉积生物相容性金属I形成金属化底层;
在金属化底层表面沉积生物相容性金属II形成金属化顶层;
生物相容性金属I的沉积扩散速度大于生物相容性金属II的沉积扩散速度,以使陶瓷基底与金属化底层牢固结合,金属化顶层与贵金属钎料有效结合。
8.根据权利要求7所述的陶瓷金属化方法,其特征在于,将沉积有金属化底层和金属化顶层的陶瓷基底置入真空环境中加热至900-1000℃,并保温20-40min,以在金属化底层与陶瓷基底之间生成致密的陶瓷/金属界面结合层,在金属化顶层与金属化底层之间生成致密的金属化顶层/镀层界面结合层。
9.根据权利要求8所述的陶瓷金属化方法,其特征在于,沉积方法选自磁控溅射或化学气相沉积方法,且沉积方法为先快后慢的两段式沉积。
10.根据权利要求7所述的陶瓷金属化方法,其特征在于,陶瓷基底在沉积金属化底层前先进行预处理,预处理包括高温烧结工序和射频清洗工序。
CN202010161547.5A 2020-03-10 2020-03-10 一种陶瓷/金属钎焊结构及陶瓷金属化方法 Pending CN111233504A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010161547.5A CN111233504A (zh) 2020-03-10 2020-03-10 一种陶瓷/金属钎焊结构及陶瓷金属化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010161547.5A CN111233504A (zh) 2020-03-10 2020-03-10 一种陶瓷/金属钎焊结构及陶瓷金属化方法

Publications (1)

Publication Number Publication Date
CN111233504A true CN111233504A (zh) 2020-06-05

Family

ID=70862563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010161547.5A Pending CN111233504A (zh) 2020-03-10 2020-03-10 一种陶瓷/金属钎焊结构及陶瓷金属化方法

Country Status (1)

Country Link
CN (1) CN111233504A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943725A (zh) * 2020-07-29 2020-11-17 沈阳中钛装备制造有限公司 钛改性陶瓷及制备方法和陶瓷基金属复合物及复合方法
CN113814608A (zh) * 2021-09-28 2021-12-21 中国原子能科学研究院 一种钎料、制备方法、传感器及钎焊方法
CN114634369A (zh) * 2020-12-15 2022-06-17 中国科学院大连化学物理研究所 一种可在高温氧化和还原气氛下长期使用的陶瓷密封方法
CN114956850A (zh) * 2022-04-14 2022-08-30 天诺光电材料股份有限公司 一种利用金属线纳米薄膜制备覆铜氮化物陶瓷板的方法
CN115124374A (zh) * 2022-06-15 2022-09-30 深圳元点真空装备有限公司 一种sbc陶瓷表面覆厚金属层技术及其陶瓷封装基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203224D0 (sv) * 2002-10-31 2002-10-31 Cerbio Tech Ab Method of making structured ceramic coatings and coated devices prepared with the method
US20050095442A1 (en) * 2003-10-30 2005-05-05 Byers Charles L. Ceramic to noble metal braze and method of manufacture
US20060105297A1 (en) * 2002-12-23 2006-05-18 Nano-Write Corporation Vapor deposited multilayer dental devices
US7738362B2 (en) * 2006-03-31 2010-06-15 Nec Infrontia Corporation System and method for address notification in a network
CN105330340A (zh) * 2015-12-01 2016-02-17 成都科宁达材料有限公司 一种用于钎焊的氧化铝陶瓷金属化方法
CN105771089A (zh) * 2016-02-04 2016-07-20 中国科学院深圳先进技术研究院 可植入式的人造视网膜陶瓷封装体的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203224D0 (sv) * 2002-10-31 2002-10-31 Cerbio Tech Ab Method of making structured ceramic coatings and coated devices prepared with the method
US20060105297A1 (en) * 2002-12-23 2006-05-18 Nano-Write Corporation Vapor deposited multilayer dental devices
US20050095442A1 (en) * 2003-10-30 2005-05-05 Byers Charles L. Ceramic to noble metal braze and method of manufacture
US7738362B2 (en) * 2006-03-31 2010-06-15 Nec Infrontia Corporation System and method for address notification in a network
CN105330340A (zh) * 2015-12-01 2016-02-17 成都科宁达材料有限公司 一种用于钎焊的氧化铝陶瓷金属化方法
CN105771089A (zh) * 2016-02-04 2016-07-20 中国科学院深圳先进技术研究院 可植入式的人造视网膜陶瓷封装体的制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943725A (zh) * 2020-07-29 2020-11-17 沈阳中钛装备制造有限公司 钛改性陶瓷及制备方法和陶瓷基金属复合物及复合方法
CN114634369A (zh) * 2020-12-15 2022-06-17 中国科学院大连化学物理研究所 一种可在高温氧化和还原气氛下长期使用的陶瓷密封方法
CN113814608A (zh) * 2021-09-28 2021-12-21 中国原子能科学研究院 一种钎料、制备方法、传感器及钎焊方法
CN114956850A (zh) * 2022-04-14 2022-08-30 天诺光电材料股份有限公司 一种利用金属线纳米薄膜制备覆铜氮化物陶瓷板的方法
CN114956850B (zh) * 2022-04-14 2023-05-02 天诺光电材料股份有限公司 一种利用金属线纳米薄膜制备覆铜氮化物陶瓷板的方法
CN115124374A (zh) * 2022-06-15 2022-09-30 深圳元点真空装备有限公司 一种sbc陶瓷表面覆厚金属层技术及其陶瓷封装基板

Similar Documents

Publication Publication Date Title
CN111233504A (zh) 一种陶瓷/金属钎焊结构及陶瓷金属化方法
CA1259780A (en) Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do not exceed 750.sup.oc
CN108033810A (zh) 一种氮化铝陶瓷覆铜板的制备方法
CN101333116B (zh) 陶瓷及陶瓷基复合材料与钛合金的钎焊焊接方法
CN109136848B (zh) 一种基于pvd沉积方法的氮化铝陶瓷板和金属的连接方法
JPH0367985B2 (zh)
CN106944698A (zh) 基于热氧化表面改性的SiC陶瓷及SiC陶瓷增强铝基复合材料超声低温直接钎焊方法
CN108658627A (zh) 一种氮化铝陶瓷的金属化方法
CN115626835A (zh) 一种陶瓷基覆铜板的制造方法及其产品
CN112975032B (zh) 一种碳化硅陶瓷的钎焊方法
CN109759665A (zh) 一种具有三维网状分布的TiB晶须增强的陶瓷/金属接头制备方法
CN105436643A (zh) 一种氧化铝陶瓷的铝或铝合金直接钎焊方法
CN116420927B (zh) 一种陶瓷发热片及其制备方法
JPH0229634B2 (zh)
CN102390132A (zh) 一种连接Si3N4陶瓷的复合中间层组件及方法
JP2004142971A (ja) セラミック材料とステンレス鋼の接合方法
CN114685178A (zh) 一种基于pvd沉积方法的陶瓷板和金属薄膜连接方法
CN116354740B (zh) 一种氧化铝陶瓷-钢材复合结构及其制备方法
CN110683855A (zh) 一种具有生物相容性的Al2O3/Ti扩散连接方法
CN114905106B (zh) 一种基于Cu6Sn5取向复合涂层制备的Cu/SnAgCu/Cu钎焊方法
CN113957439B (zh) 一种钛合金用Al2O3_莫来石梯度防氧化涂层及其制备方法
CN115537764B (zh) 金刚石与金属的连接方法、焊接接头及微波窗
JP3505212B2 (ja) 接合体および接合体の製造方法
JPH024956A (ja) メタライズ膜とその製造方法
JP3641500B2 (ja) ガスタービン高温部品とその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200605

RJ01 Rejection of invention patent application after publication