CN111233450B - 利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法 - Google Patents

利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法 Download PDF

Info

Publication number
CN111233450B
CN111233450B CN202010140585.2A CN202010140585A CN111233450B CN 111233450 B CN111233450 B CN 111233450B CN 202010140585 A CN202010140585 A CN 202010140585A CN 111233450 B CN111233450 B CN 111233450B
Authority
CN
China
Prior art keywords
ceramic
gypsum
industrial
product
sulfur oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010140585.2A
Other languages
English (en)
Other versions
CN111233450A (zh
Inventor
李宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202010140585.2A priority Critical patent/CN111233450B/zh
Publication of CN111233450A publication Critical patent/CN111233450A/zh
Application granted granted Critical
Publication of CN111233450B publication Critical patent/CN111233450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/745Preparation from sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1328Waste materials; Refuse; Residues without additional clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Treatment Of Sludge (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,属于固废资源综合利用的技术领域。所述方法是将工业副产石膏作为主要陶瓷原料,与其它陶瓷原料和还原剂混合,按照传统陶瓷制备工艺,将原料烧制成陶瓷产品;其中:在空气状态下,通过还原剂调整和氧化钙、氧化铁、氧化钠、氧化钾等溶剂元素调整,在烧成过程中,先在分解温度实现工业副产石膏的还原分解释放出氧化硫气体,而剩余的氧化钙组分同时与其它陶瓷原料反应,在高于分解温度10‑50℃的烧成温度下实现陶瓷矿相和陶瓷产品的烧成,同时产出富氧化硫气体。本发明克服了传统陶瓷中不能掺入高氧化硫成分原料以及工业副产石膏分解率不高或提高分解率需要较高能耗的难题。

Description

利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法
技术领域
本发明涉及利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,属于固废资源综合利用的技术领域。
背景技术
我国每年产生大量的工业副产石膏,包括电厂脱硫石膏、磷化工厂磷石膏、钢铁厂烧结脱硫石膏、钛白粉副产石膏、各类盐石膏、以及电解锰渣、硫酸酸洗污泥等其它含氧化硫的固废。仅中国建筑材料联合会石膏分会的统计数据显示,截止至2013年底,脱硫石膏累计堆存量约为1.3亿吨。而绝大部分含氧化硫的工业副产石膏等固废难以绿色环保的有效利用,只能大量堆存,从而引发严重的环境和安全隐患。
目前,工业副产石膏主要应用于农业、水泥和建筑方面。虽然大宗量利用这些含硫固废的方法主要有生产石膏砌块、石膏板、建筑石膏、粉刷石膏和纸面石膏板等,但是工业副产石膏生产的石膏板、砖、砌块的产品质量并不稳定,且强度低,耐水性差,更主要的是其市场需求量小,经济附加值低,难以消纳如此大量的工业副产石膏。
此外,利用石膏制备硫酸联产水泥是另一个研究热点。水泥和混凝土是现今最大的人工制备材料,市场需求量大。磷石膏制硫酸并联产水泥技术起源于波兰、德国。国内化工企业等将盐石膏或磷石膏等副产石膏与焦炭、黏土等辅料配置成生料,然后送入回转窑内制备水泥熟料,一方面水泥熟料会受到影响,另一方面,水泥烧成温度高达1300-1450℃,不仅热耗高和所需气体量大,而且结果尾气中S02浓度低,加之尾气中粉尘含量高,故而硫酸的生产、净化、干燥、转化、吸收等制酸工艺过程复杂,设备投资大、制酸成本高,不利于工业大规模生产。
目前的新的研究包括将重点放在利用工业副产石膏制备硫酸方面。如专利(申请号为:200910216326.7)公开用硫磺还原分解石膏制备硫化钙;专利(申请号:201210042150.x)还公开一种硫铁矿还原分解石膏制备硫酸的方法,但需要在惰性、弱氧化性或者还原气氛下制备,石膏分解后剩余的产物为氧化钙。
上述这些技术在制备过程中生产条件难以控制,反应温度高,更为重要的是,硫化钙和氧化钙等附加值低,经济性差。
由此可见,对工业副产石膏的绿色环保高效经济处理,需要寻求能耗低、产品附加值高、能够大宗量消纳以及处理后的产物能够得到有效利用的新技术。
众所周知,在陶瓷领域的脱硫石膏的相关应用较少。其中:虽然华南理工大学博士论文“利用石膏废料制备钙长石/莫来石相陶瓷的研究”以高岭石、石英和脱硫石膏为原料制备钙长石/莫来石相陶瓷,探究脱硫石膏掺量及烧结温度对陶瓷样品的力学性能及微观形貌的影响,但是结果表明,在脱硫石膏掺入量仅为5%,对脱硫石膏的利用率低。
从目前的市场来看,建筑领域的陶瓷材料才是另一个大宗消纳固废的途径;仅建筑陶瓷砖的市场就达到3亿吨左右,此外还有大量烧结砖瓦、烧结陶粒等广阔的市场渠道。
然而,现有陶瓷制备过程不能掺入氧化硫组分含量过高的原料,一方面在于氧化硫气体容易导致产品出现气孔、色斑、鼓泡等缺陷,另一方面使得脱硫成本增加。
国内外对硫酸钙分解的研究较深入,硫酸钙的实际分解温度为1097~1497℃。氧化气氛下硫酸钙最难分解,起始分解温度高达1600℃;弱还原及氢气还原气氛下分解反应较易进行,起始分解温度分别为850℃和900℃。还原气氛下硫酸钙分解存在中间产物CaS,氧化气氛下没有CaS生成。本发明真是在前述基数基础上结合普通建筑陶瓷的烧结温度在1050-1250℃之间,从而想到有可能在一个烧结过程中完成氧化硫气体的分解和陶瓷产品的制备,并对此进行了大量的理论研究和实验,从而得出了本发明的利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法。
进一步研究发现,利用工业副产石膏及含硫固废制备陶瓷具有技术和经济性可行。关键在于如何保证氧化硫气体的释放不会对陶瓷产品产生不利影响,同时如何高效绿色环保的实现工业副产石膏的完全分解和陶瓷产品对分解产物的高效利用,形成的富氧化硫气体如何高效绿色环保的实现副产硫酸等产品。
发明内容
本发明所要解决的技术问题是如何克服传统陶瓷中不能掺入高氧化硫成分原料,以及工业副产石膏分解率不高或者提高分解率需要较高能耗的难题;如何经济的利用利用工业副产石膏及含硫固废制备陶瓷,如何保证氧化硫气体的释放不会对陶瓷产品产生不利影响,同时如何高效绿色环保的实现工业副产石膏的完全分解和陶瓷产品对分解产物的高效利用,形成的富氧化硫气体如何高效绿色环保的实现副产硫酸等产品。
本发明提供一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,所述方法是将工业副产石膏作为主要陶瓷原料,与其它陶瓷原料和还原剂混合,按照传统陶瓷制备工艺,将原料烧制成陶瓷产品;
其中:在空气状态下,通过还原剂调整和氧化钙、氧化铁、氧化钠、氧化钾等溶剂元素调整,在烧成过程中,先在分解温度实现工业副产石膏的还原分解释放出氧化硫气体,而剩余的氧化钙组分同时与其它陶瓷原料反应,在高于分解温度10-50℃的烧成温度下实现陶瓷矿相和陶瓷产品的烧成,同时产出富氧化硫气体。
优选地,所述陶瓷原料中的工业副产石膏掺入的质量分数为30-60%;辅助成分中Fe2O3+Na2O+K2O质量和占原料质量分数为0.5%~15%;外掺入还原剂,其中碳元素质量含量为0.1-15%。
优选地,所述分解温度为1030-1240℃,所述烧成温度为1050-1250℃。
优选地,所述陶瓷矿相和陶瓷产品的烧成中的陶瓷高温烧结反应是CaO与SiO2和Al2O3以及Na2O\K2O\Fe2O3之间形成钙长石、辉石、黄长石之间的反应。
优选地,所述富氧化硫气体通过选择陶瓷产品种类或烧成方式,增加工业副产石膏的掺量、增加含硫化物原料的数量、或者采用富氧燃烧的方式来调整气体中氧化硫浓度。
优选地,所述陶瓷产品中的硫元素脱除率为85.0%-99.5%。
优选地,所述工业副产石膏包括磷化工厂磷石膏,火电厂脱硫石膏,钢铁厂烧结脱硫石膏,钛白粉副产石膏,各类盐石膏,以及包含电解锰渣、硫酸酸洗污泥的其它含氧化硫固废,其中的SO3质量百分含量为25~59%。
优选地,所述其它陶瓷原料包括各类石英、粘土、长石、页岩、硅土、陶土等富含氧化硅和氧化铝的含量,还包括各类尾矿、煤矸石、粉煤灰、炉渣、流化床灰、流化床炉渣、渣土、花岗岩锯泥,这些原料的SiO2+Al2O3的质量百分含量为70.0-99.9%。
优选地,所述陶瓷原料中的还原剂,包括含碳等还原性物质中的一种或两种,其中的含碳还原性物质包括各类煤粉、煤矸石、焦炉渣、废焦粉、干化污泥,以及各类含碳含油的原料及固废,包括油泥、油页岩、含油固废。
优选地,所述陶瓷产品包括陶瓷砖、烧结砖、烧结瓦、内燃砖或烧结陶粒中的一种或多种烧制产品,烧制产品的晶相含有钙长石,其它晶相包括辉石、黄长石、石英。
优选地,所述陶瓷产品包括陶瓷砖、烧结砖、烧结瓦、内燃砖或烧结陶粒中的一种或多种烧制产品。
本发明的上述技术方案的有益效果如下:
(1)本发明通过对工业副产石膏的热分解性能研究表明,在空气状态下,在有还原剂存在的条件下,工业副产石膏的热分解温度可以调整,使其能够在1050~1250℃条件下实现很好的分解,而这一温度与通常陶瓷的烧结温度相适应;
(2)陶瓷的烧结温度也可以通过调整氧化钙、氧化铁、氧化钠、氧化钾等溶剂元素调整,可以使得陶瓷烧制过程中,先实现工业副产石膏的还原分解,释放出氧化硫气体;剩余的氧化钙组分同时与其它陶瓷组分反应,在更高10-20℃的温度下形成陶瓷矿相和陶瓷产品的烧成,从而避免气体释放对陶瓷性能的显著影响,以解决传统陶瓷烧制过程中含硫导致的在烧制过程存在气孔、鼓泡等问题;
(3)本发明可以利用不同固废协同制备高附加值陶瓷产品,同时产出富含氧化硫气体,与传统工业副产石膏成本高和经济性差相比,实现了工业副产石膏的高效资源化利用;
(4)本发明通过选择陶瓷产品种类或烧成方式,增加工业副产石膏的掺量、增加含硫化物原料的数量、或者采用富氧燃烧等方式来调整烟气中氧化硫浓度,以达到保障后续氧化硫气体的资源化利用的目的。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
本发明要解决的技术问题是如何克服传统陶瓷中不能掺入高氧化硫成分原料,以及工业副产石膏分解率不高或者提高分解率需要较高能耗的难题;如何经济的利用利用工业副产石膏及含硫固废制备陶瓷,如何保证氧化硫气体的释放不会对陶瓷产品产生不利影响,同时如何高效绿色环保的实现工业副产石膏的完全分解和陶瓷产品对分解产物的高效利用,形成的富氧化硫气体如何高效绿色环保的实现副产硫酸等产品。
为解决上述技术问题,本发明提供一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,所述方法是将工业副产石膏作为主要陶瓷原料,与其它陶瓷原料和还原剂混合,按照传统陶瓷制备工艺,将原料烧制成陶瓷产品;
其中:在空气状态下,通过还原剂调整和氧化钙、氧化铁、氧化钠、氧化钾等溶剂元素调整,在烧成过程中,先在分解温度实现工业副产石膏的还原分解释放出氧化硫气体,而剩余的氧化钙组分同时与其它陶瓷原料反应,在高于分解温度10-50℃的烧成温度下实现陶瓷矿相和陶瓷产品的烧成,同时产出富氧化硫气体。
特别地,所述陶瓷原料中的工业副产石膏掺入的质量分数为30-60%;辅助成分中Fe2O3+Na2O+K2O质量和占原料质量分数为0.5%~15%;外掺入还原剂,其中碳元素质量含量为0.1-15%。
特别地,所述分解温度为1030-1240℃,所述烧成温度为1050-1250℃。
特别地,所述陶瓷矿相和陶瓷产品的烧成中的陶瓷高温烧结反应是CaO与SiO2和Al2O3以及Na2O\K2O\Fe2O3之间形成钙长石、辉石、黄长石之间的反应。
特别地,所述富氧化硫气体通过选择陶瓷产品种类或烧成方式,增加工业副产石膏的掺量、增加含硫化物原料的数量、或者采用富氧燃烧的方式来调整气体中氧化硫浓度。
特别地,所述陶瓷产品中的硫元素脱除率为85.0%-99.5%。
特别地,所述工业副产石膏包括磷化工厂磷石膏,火电厂脱硫石膏,钢铁厂烧结脱硫石膏,钛白粉副产石膏,各类盐石膏,以及包含电解锰渣、硫酸酸洗污泥的其它含氧化硫固废,其中的SO3质量百分含量为25~59%。
特别地,所述其它陶瓷原料包括各类石英、粘土、长石、页岩、硅土、陶土等富含氧化硅和氧化铝的含量,还包括各类尾矿、煤矸石、粉煤灰、炉渣、流化床灰、流化床炉渣、渣土、花岗岩锯泥,这些原料的SiO2+Al2O3的质量百分含量为70.0-99.9%。
特别地,所述陶瓷原料中的还原剂,包括含碳等还原性物质中的一种或两种,其中的含碳还原性物质包括各类煤粉、煤矸石、焦炉渣、废焦粉、干化污泥,以及各类含碳含油的原料及固废,包括油泥、油页岩、含油固废。
特别地,所述陶瓷产品包括陶瓷砖、烧结砖、烧结瓦、内燃砖或烧结陶粒中的一种或多种烧制产品,烧制产品的主晶相含有钙长石。
特别地,所述陶瓷产品包括陶瓷砖、烧结砖、烧结瓦、内燃砖或烧结陶粒中的一种或多种烧制产品。
具体利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法结合以下实施例进行说明:
在以下实施例中,
通过考虑陶瓷制备过程中的重量变化来定义脱硫石膏脱硫率,如下式:
Ds=(1-m/m0)*100%
式中,m0为样品的起始硫含量,kg;m为样品煅烧后的硫含量,kg;Ds为脱硫石膏脱硫率,%。
使用到的原料组分如下表1所示:
表1原料的主要化学成分
Figure GDA0002948104770000071
实施例九:
一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,所述方法是将工业副产石膏作为主要陶瓷原料,与其它陶瓷原料和还原剂混合,按照传统陶瓷制备工艺,将原料烧制成陶瓷产品;
其中:陶瓷原料中,磷石膏质量分数30%,粉煤灰2质量分数70%,外掺碳粉质量含量1.41%。陶瓷生坯中Fe2O3、Na2O和K2O质量含量之和为4.57%。
按照传统陶瓷制备工艺,将原料烧制成烧结陶粒,分解温度1180℃,烧成温度1200℃;烧制过程同步释放出氧化硫气体,陶瓷产品中的脱硫率99.22%。
测得陶瓷产品的主晶相为钙长石,其性能优良,抗折强度22.02MPa,吸水率为9.7%。
实施例十:
一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,所述方法是将工业副产石膏作为主要陶瓷原料,与其它陶瓷原料和还原剂混合,按照传统陶瓷制备工艺,将原料烧制成陶瓷产品;
其中:陶瓷原料中,脱硫石膏质量分数40%,煤矸石1质量分数50%,炉渣10%,煤矸石带入的含碳量质量百分数为2.25%。陶瓷生坯中Fe2O3、Na2O和K2O质量含量之和为6.35%。
按照传统陶瓷制备工艺,将原料烧制成烧结陶粒,分解温度1160℃,烧成温度1180℃;烧制过程同步释放出氧化硫气体,陶瓷产品中的脱硫率97.45%。
测得陶瓷产品的主晶相为钙长石,有少量黄长石和辉石相,其性能优良,抗折强度31.21MPa,吸水率为5.6%。
实施例十一:
一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,所述方法是将工业副产石膏作为主要陶瓷原料,与其它陶瓷原料和还原剂混合,按照传统陶瓷制备工艺,将原料烧制成陶瓷产品;
其中:陶瓷原料中,脱硫石膏质量分数50%,煤矸石1质量分数40%,炉渣10%,煤矸石带入的含碳量质量百分数为2.25%。陶瓷生坯中Fe2O3、Na2O和K2O质量含量之和为5.51%。
按照传统陶瓷制备工艺,将原料烧制成烧结砖和陶瓷砖,分解温度1140℃,烧成温度1180℃;烧制过程同步释放出氧化硫气体,陶瓷产品中的脱硫率92.25%。
测得陶瓷产品的主晶相为钙长石,还有黄长石和辉石相,其性能优良,抗折强度22.50MPa,吸水率为9.7%。
实施例十二:
一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,所述方法是将工业副产石膏作为主要陶瓷原料,与其它陶瓷原料和还原剂混合,按照传统陶瓷制备工艺,将原料烧制成陶瓷产品;
其中:陶瓷原料中,脱硫石膏质量分数60%,煤矸石1质量分数30%,炉渣10%,煤矸石带入的含碳量质量百分数为2.25%。陶瓷生坯中Fe2O3、Na2O和K2O质量含量之和为4.48%。
按照传统陶瓷制备工艺,将原料烧制成陶瓷砖、烧结砖和烧结瓦,分解温度1160℃,烧成温度1180℃;烧制过程同步释放出氧化硫气体,陶瓷产品中的脱硫率86.70%。
测得陶瓷产品的主晶相为钙长石,还有黄长石相,其性能优良,抗折强度16.20MPa,吸水率为15.2%。
综上可见,本发明的上述技术方案的有益效果如下:
(1)本发明通过对工业副产石膏的热分解性能研究表明,在空气状态下,在有还原剂存在的条件下,工业副产石膏的热分解温度可以调整,使其能够在1050~1250℃条件下实现很好的分解,而这一温度与通常陶瓷的烧结温度相适应;
(2)陶瓷的烧结温度也可以通过调整氧化钙、氧化铁、氧化钠、氧化钾等溶剂元素调整,可以使得陶瓷烧制过程中,先实现工业副产石膏的还原分解,释放出氧化硫气体;剩余的氧化钙组分同时与其它陶瓷组分反应,在更高10-20℃的温度下形成陶瓷矿相和陶瓷产品的烧成,从而避免气体释放对陶瓷性能的显著影响,以解决传统陶瓷烧制过程中含硫导致的在烧制过程存在气孔、鼓泡等问题;
(3)本发明可以利用不同固废协同制备高附加值陶瓷产品,同时产出富含氧化硫气体,与传统工业副产石膏成本高和经济性差相比,实现了工业副产石膏的高效资源化利用;
(4)本发明通过选择陶瓷产品种类或烧成方式,增加工业副产石膏的掺量、增加含硫化物原料的数量、或者采用富氧燃烧等方式来调整烟气中氧化硫浓度,以达到保障后续氧化硫气体的资源化利用的目的。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,其特征在于,所述方法是将工业副产石膏作为主要陶瓷原料,与其它陶瓷原料和还原剂混合,按照传统陶瓷制备工艺,将原料烧制成陶瓷产品;
其中:在空气状态下,通过还原剂调整和氧化钙、氧化铁、氧化钠、氧化钾调整,在烧成过程中,先在分解温度实现工业副产石膏的还原分解释放出氧化硫气体,而剩余的氧化钙组分同时与其它陶瓷原料反应,在高于分解温度10-50℃的烧成温度下实现陶瓷矿相和陶瓷产品的烧成,同时产出富氧化硫气体;
所述陶瓷原料中的工业副产石膏掺入的质量分数为30-60%;辅助成分中Fe2O3+Na2O+K2O质量和占原料质量分数为0.5%~15%;外掺入还原剂,其中碳元素质量含量为0.1-15%;
所述分解温度为1030-1240℃,所述烧成温度为1050-1250℃;
所述陶瓷矿相和陶瓷产品的烧成中的陶瓷高温烧结反应是CaO与SiO2和Al2O3以及Na2O\K2O\Fe2O3之间形成钙长石、辉石、黄长石之间的反应;
所述陶瓷产品中的硫元素脱除率为85.0%-99.5%。
2.根据权利要求1所述一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,其特征在于,所述富氧化硫气体通过增加工业副产石膏的掺量、增加含硫化物原料的数量、或者采用富氧燃烧的方式来调整气体中氧化硫浓度。
3.根据权利要求1所述一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,其特征在于,所述工业副产石膏包括磷化工厂磷石膏,火电厂脱硫石膏,钢铁厂烧结脱硫石膏,钛白粉副产石膏,各类盐石膏,其中的SO3质量百分含量为25~59%。
4.根据权利要求1所述一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,其特征在于,所述陶瓷原料中的还原剂,包括以下物质中的一种或两种:各类煤粉、煤矸石、焦炉渣、废焦粉、油泥、油页岩。
5.根据权利要求1所述一种利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法,其特征在于,所述陶瓷产品包括烧结砖、烧结瓦或烧结陶粒中的一种或多种烧制产品,烧制产品的晶相含有钙长石,其它晶相包括辉石、黄长石、石英。
CN202010140585.2A 2020-03-03 2020-03-03 利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法 Active CN111233450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010140585.2A CN111233450B (zh) 2020-03-03 2020-03-03 利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010140585.2A CN111233450B (zh) 2020-03-03 2020-03-03 利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法

Publications (2)

Publication Number Publication Date
CN111233450A CN111233450A (zh) 2020-06-05
CN111233450B true CN111233450B (zh) 2021-05-14

Family

ID=70876634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010140585.2A Active CN111233450B (zh) 2020-03-03 2020-03-03 利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法

Country Status (1)

Country Link
CN (1) CN111233450B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177990A (zh) * 2023-02-13 2023-05-30 中国恩菲工程技术有限公司 煤矸石协同石膏渣生产陶粒轻骨料的方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024932A (en) * 1993-05-11 2000-02-15 Gas Research Institute Method for the conversion of gypsum to elemental sulfur
CN101323436B (zh) * 2008-07-21 2012-05-30 昆明理工大学 一种采用复合还原剂还原分解磷石膏的方法
CN103482584B (zh) * 2012-06-15 2015-09-30 南京理工大学 利用脱硫石膏制备氧化钙和二氧化硫的生产工艺
CN110483011A (zh) * 2019-08-26 2019-11-22 山东义科节能科技股份有限公司 以油泥为主要原料的陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN111233450A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN101003422B (zh) 一种用磷石膏生产硫酸和水泥的新方法
CN101337684B (zh) 一种脱硫石膏回收硫联产碳酸钙的方法
CN100415679C (zh) 电熔莫来石的制造方法
CN104529196A (zh) 一种电解锰渣提氨改质的方法
CN115180846B (zh) 一种磷石膏脱硫制备硫铝酸钙改性硅酸盐水泥熟料的工艺
CN108654339B (zh) 一种利用废弃混凝土中水泥硬化浆体制备的烟气脱硫剂及方法
CN111704375A (zh) 改性煤矸石替代硅铝质原料配料生产硅酸盐熟料的方法
CN113354311A (zh) 一种资源节约型低碳水泥熟料及其制备方法
CN110950626A (zh) 蒸压灰砂砖及其制备方法
CN101698577A (zh) 利用多种工业废渣生产的水泥熟料
CN111233450B (zh) 利用工业副产石膏制备陶瓷并副产富氧化硫气体的方法
CN111233353A (zh) 一种采用氧化铁渣部分替代铁质校正原料生产通用水泥熟料的方法
Castaldelli et al. Preliminary studies on the use of sugar cane bagasse ash (SCBA) in the manufacture of alkali activated binders
CN105601134A (zh) 一种全利用煤矸石制备水泥的方法
CN101003365A (zh) 一种用磷石膏生产硫化钙的新方法
CN114230259A (zh) 一种粉煤灰基土壤固化剂及其制备方法
CN104861406B (zh) 一种粉煤灰的接枝改性方法
CN1016598B (zh) 一种由石膏生产硫酸的方法
CN101357773B (zh) 一种降低磷石膏分解温度的方法
CN115073030B (zh) 一种磷石膏脱硫联产水泥工艺
CN101239706A (zh) 一种硫酸钙生产硫化钙的方法
CN1696073A (zh) 利用硬石膏生产硫酸联产高贝利特水泥的方法
CN106495173B (zh) 一种用硅质废弃物和电石渣微波加热生产雪硅钙石的方法
CN113511881A (zh) 一种利用大修渣制备发泡陶瓷的配方及方法
CN102923978B (zh) 一种利用焚烧飞灰制备硫铝酸盐水泥原料的方法及硫铝酸盐水泥的配方

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant