CN111225679B - 新型基于肽的癌症显像剂 - Google Patents

新型基于肽的癌症显像剂 Download PDF

Info

Publication number
CN111225679B
CN111225679B CN201880067686.2A CN201880067686A CN111225679B CN 111225679 B CN111225679 B CN 111225679B CN 201880067686 A CN201880067686 A CN 201880067686A CN 111225679 B CN111225679 B CN 111225679B
Authority
CN
China
Prior art keywords
seq
peptide
cancer
tumor
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880067686.2A
Other languages
English (en)
Other versions
CN111225679A (zh
Inventor
迈克尔·F·特维德勒
沙恩卡兰·科赞达拉曼
查德威克·路易斯·莱特
巩丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohio State Innovation Foundation
Original Assignee
Ohio State Innovation Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohio State Innovation Foundation filed Critical Ohio State Innovation Foundation
Publication of CN111225679A publication Critical patent/CN111225679A/zh
Application granted granted Critical
Publication of CN111225679B publication Critical patent/CN111225679B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • A61K49/0043Fluorescein, used in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了涉及新型肿瘤靶向肽的组合物和方法。

Description

新型基于肽的癌症显像剂
I.致谢政府支持
本发明是在美国国立卫生研究院(National Institutes of Health)授予的政府资助号CA168505和P30CA016058下进行的。美国政府在本发明中享有部分权利。
II.相关申请的交叉引用
本申请要求2017年8月19日提交的美国临时申请No.62/547,821的权益,该美国临时申请据此全文以引用方式并入本文。
III.背景技术
对于头颈鳞状细胞癌(HNSCC)、乳腺癌和其他包括甲状腺髓样癌(MTC)的癌症,当外科在一些癌症中不再是选项时,可采用外照射进行局部控制。传统的化学疗法通常无效,靶向激酶的抑制剂由于与这些治疗相关联的高毒性而取得的成功有限。
为了获得最佳的外科效果,需要移除所有目标组织,并且将外科时间和对其他组织的风险降至最低。为实现这一点,在外科之前进行成像是必要的。当前的成像方式已经取得了令人瞩目的进展,但是每种方式都有其局限性。超声(US)、MRI和CT可以有效地用于识别原发性肿瘤,并且用于确定总体淋巴结受累,尽管有效性可以是主观的并且可以基于用户体验。例如,对于MTC,使用18F-Dopa-PET和18F-FDG-PET进行的代谢性成像仅能识别进行性MTC病变的35%至45%。使用99mTc sestamibi可以使用以进行核成像,但是灵敏度不高,并且由于摄取各种组织而缺乏特异性。FDG通常仅对高葡萄糖代谢具有特异性,而不对癌症具有特异性。
完全移除患病组织取决于外科医生区分正常组织与患病组织的能力。术中评估主要基于外科医生的经验和已移除的组织(通常为淋巴结和外科切缘)的病理冰冻切片分析(FSA)。FSA非常耗时,因为外科医生要等待样品制备、H&E染色和病理学家检查。FSA还仅检查移除的组织的一小部分。FSA的另一个重要局限性是它不能评估原位(在患者体内)的组织。组织移除的程度基于外科医生的判断。外科期间病理组织识别的这种局限性表明需要更好的术中评估方法。术中成像已成功地应用于其他类型的癌症。使用近红外荧光(NIRF)造影剂进行的荧光图像引导外科已显示出可减少残留肿瘤并且改善黑素瘤和乳腺腺癌小鼠模型的存活率。当由外科医生操作时,NIRF试剂可实时可见。如果肿瘤特异性显像剂可以提高所有恶性组织的精确外科移除率,则可以改善患者的预后。因此,需要新的NIRF显像剂,其可以更容易和大量地吸收到患病细胞中并且允许更好的病理组织识别。
IV.发明内容
本发明人在本文中描述了化学修饰的肽(HN17和HN18)的分离,这些化学修饰的肽被人头颈部鳞状癌(HNSCC)细胞特异性内在化。在某些实施方案中,HN17和/或HN18肽还对实体瘤组织细胞诸如乳腺癌和MTC以及其他癌症具有特异性。本发明人还描述了允许将抗癌药物包括基于蛋白质的药物诸如抗体和抗体片段、亲和体、肽、激素、脂质以及与HN17和/或HN18(及其衍生物)缀合的碳水化合物特异性递送至肿瘤组织的方法。另外,本发明人描述了通过使HN17和/或HN18与可检测到的标记物缀合并且将缀合物递送至患者或通过使缀合物与肿瘤组织在体外接触而对癌细胞进行成像和诊断的方法。本发明人还提供了分离肿瘤内在化肽的方法。另外,本发明人还描述了通过分离内在化肽并且缀合至药物或基因治疗组合物以给药于患者来检测癌细胞的方法。
本发明人已经分离的HN17和HIN18肽与Arap等人(1998年)研究中描述的肽的不同之处在于它对肿瘤细胞而不是与肿瘤相关的内皮细胞具有特异性。本发明人设想将任何种类的抗癌药物缀合至该肽,以实现肿瘤细胞的直接和特异性杀伤。肽进入肿瘤细胞的天然能力在机械水平上有利于该过程。
在本公开的一个实施方案中,存在靶向肿瘤细胞的肽,其中该肽被肿瘤细胞内在化。在一个具体的实施方案中,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ IDNO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ ID NO:9。在附加的实施方案中,该肽由SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ ID NO:9组成。在本公开的另一个实施方案中,存在编码SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ IDNO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ ID NO:9的DNA片段。在一个具体的实施方案中,DNA片段包含编码SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQID NO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ ID NO:9的核酸。在附加的具体实施方案中,DNA片段还被限定为重组载体。
在本公开的另一个实施方案中,提供了一种包含药物的组合物;以及靶向肿瘤细胞的肽,其中该肽被所述肿瘤细胞内在化。在一个具体的实施方案中,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQID NO:8或SEQ ID NO:9。在一个具体的实施方案中,该肽由SEQ ID NO:1、SEQ ID NO:2、SEQID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ IDNO:9组成。在其他具体的实施方案中,药物为化学治疗剂。在另一个具体的实施方案中,药物为细胞毒性剂。在附加的具体实施方案中,药物为凋亡剂。在其他具体的实施方案中,药物为DNA损伤剂。在另一个具体的实施方案中,药物是阿霉素、博莱霉素、(或其类似物诸如,例如多西他赛)、氨甲蝶呤或西妥昔单抗。在附加的具体实施方案中,药物是顺铂(CDDP)、卡铂、丙卡巴肼、双氯乙基甲胺、环磷酰胺、异环磷酰胺、美法仑、苯丁酸氮芥、白消安(bisulfan)、亚硝基脲(nitrosurea)、更生霉素、柔红霉素、普卡霉素(plicomycin)、丝裂霉素、依托泊苷(VP16)、他莫昔芬、跨铂、5-氟尿嘧啶、长春新碱或长春碱或本文公开的任何其他抗癌剂。
根据本公开的目的,提供了一种杀死肿瘤细胞的方法,该方法包括使肿瘤细胞与包含药物的药学上可接受的组合物接触;以及靶向肿瘤细胞的肽,其中该肽被肿瘤细胞内在化。在一个具体的实施方案中,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ ID NO:9。在另一个具体的实施方案中,将药物缀合至肽。在其他具体的实施方案中,肿瘤细胞选自由以下项构成的组:鳞状细胞癌、头颈癌、乳腺癌、成胶质细胞瘤和星形细胞瘤。在一个具体的实施方案中,肿瘤细胞是人头颈部癌细胞。在一个具体的实施方案中,人头颈部癌细胞是口腔细胞、咽细胞、咽喉细胞、鼻旁窦细胞、鼻腔细胞、喉细胞、甲状腺细胞、甲状旁腺细胞、唾液腺细胞、面部皮肤细胞、颈部皮肤细胞或宫颈淋巴结细胞。在另一个具体的实施方案中,肿瘤细胞是固体肿瘤细胞。在其他具体的实施方案中,固体肿瘤细胞包含乳腺癌细胞。在一个具体的实施方案中,接触是通过静脉内给药、肿瘤内给药、皮下给药、特别是对于前列腺癌和肝癌的动脉内给药、腹膜内给药或局部给药。在附加的具体实施方案中,接触是通过局部、区域或系统给药来进行。在另一个具体的实施方案中,肿瘤细胞在患者体内。
根据本公开的另一个方面,提供了一种用于在受试者中检测癌症或癌细胞的方法,该方法包括获得包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ IDNO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQ ID NO:9的肽,其中肽靶向肿瘤细胞;将可检测到的标记物缀合至肽;将缀合肽和标记物施用给患者;以及通过合适的检测装置检测缀合物与肿瘤细胞的结合。在一个具体的实施方案中,该结合还包括由所述肿瘤细胞摄取。在另一个具体的实施方案中,该标记物是用于MRI的放射荧光标记物或顺磁性标记物或超顺磁性标记物。在附加的具体实施方案中,给药是通过静脉内注射、动脉内注射、肿瘤内注射、皮下注射、腹膜内注射或局部给药。在一个具体的实施方案中,施用通过局部、区域或系统施用来进行。在附加的实施方案中,检测通过磁共振成像、光学成像或计算机化发射断层摄影术进行。在另一个实施方案中,通过缀合任何两种不同的标记物来制备双探针,并且通过对应的两种检测技术中的两种进行检测,诸如光学成像和正电子发射断层摄影术。
根据本公开的其他目的,提供了一种体外检测肿瘤的方法,该方法包括获得包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQID NO:7、SEQ ID NO:8和/或SEQ ID NO:9的肽,其中所述肽靶向肿瘤;将可检测到的标记物缀合至肽;将缀合肽和标记物与含肿瘤样品接触;以及通过合适的检测装置检测缀合物与肿瘤的结合。在一个具体的实施方案中,该结合还包括肿瘤细胞的摄取。在一个具体的实施方案中,该标记物是放射性核素、荧光或顺磁性或超顺磁性或铁磁性(即自旋)标记物。在另一个实施方案中,检测通过核磁共振成像、计算机化发射断层摄影术或正电子发射断层摄影术进行。
根据本公开的另一个目的,提供了一种肿瘤检测试剂盒,该肿瘤检测试剂盒在合适的容器装置中包含肽的药物组合物,该肽的药物组合物包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQ ID NO:9。在其他具体的实施方案中,存在一种肿瘤检测试剂盒,该肿瘤检测试剂盒在合适的容器装置中包含肽的药物组合物,该肽的药物组合物包含与可检测到的标记物结合的SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQID NO:7、SEQ ID NO:8和/或SEQ ID NO:9,其中所述肽靶向肿瘤细胞。在另一个具体的实施方案中,存在一种肿瘤检测试剂盒,该肿瘤检测试剂盒在合适的容器装置中包含肽的药物组合物,该肽的药物组合物包含与可检测到的标记物结合的SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQ ID NO:9,其中肽靶向肿瘤细胞;以及用于检测的合适的装置。在一个具体的实施方案中,可检测到的标记物可通过非侵入性装置检测到,包括外部成像和腹腔镜成像,以及腹腔镜荧光显微镜法。在另一个具体的实施方案中,可检测到的标记物为自旋标记的分子。在附加的具体实施方案中,可检测到的标记物为放射性同位素。在附加的具体实施方案中,检测装置通过核磁共振成像、计算机化发射断层摄影术或正电子发射断层摄影术进行。
根据本公开的另一个方面,提供了一种肿瘤成像试剂盒,该肿瘤成像试剂盒在合适的容器装置中包含有效量的药学上可接受的制剂,该制剂包含肽,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQID NO:8和/或SEQ ID NO:9,其中所述肽靶向肿瘤细胞。在一个具体的实施方案中,肿瘤成像试剂盒在合适的容器装置中包含有效量的药学上可接受的制剂,该制剂包含肽,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQID NO:7、SEQ ID NO:8和/或SEQ ID NO:9,其中所述肽靶向肿瘤细胞,并且其中所述肽结合到可检测到的标记物。在其他具体的实施方案中,肿瘤成像试剂盒在合适的容器装置中包含有效量的药学上可接受的制剂,该制剂包含肽,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQID NO:9,其中肽靶向肿瘤细胞,并且其中肽还结合到可检测到的标记物;以及用于检测所述可检测到的标记物的合适装置。在一个具体的实施方案中,可检测到的标记物通过非侵入性装置成像。在另一个具体的实施方案中,可检测到的标记物为MRI自旋标记的分子。在其他具体的实施方案中,可检测到的标记物为放射性同位素。在一个具体的实施方案中,检测装置通过核磁共振成像、光学成像、计算机化发射断层摄影术或正电子发射断层摄影术进行。
根据本公开的目的,存在一种杀死肿瘤细胞的方法,该方法包括对患者施用放射治疗;以及药学上可接受的组合物,该药学上可接受的组合物包含与靶向所述肿瘤细胞的肽缀合的抗肿瘤化合物,其中所述肽被所述肿瘤细胞内在化。在一个具体的实施方案中,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQ ID NO:9。在附加的实施方案中,放射疗法以全身、局部或区域方式施用。在附加的具体实施方案中,放射疗法是放射性同位素辐照、γ辐照、X射线辐照、UV辐照、微波辐照或电子辐照。在一个具体的实施方案中,向患者施用约40至约100Gy辐射至肿瘤。在另一个具体的实施方案中,向患者施用约55至约65Gy辐射至肿瘤。在附加具体的实施方案中,向患者施用62Gy辐射至肿瘤。在一个具体的实施方案中,肿瘤细胞选自由以下项构成的组:鳞状细胞癌、头颈癌和乳腺癌。在其他具体的实施方案中,肿瘤细胞为前列腺癌,并且通过动脉内注射到前列腺动脉而给药到前列腺。
根据本公开的目的,提供了一种杀死肿瘤细胞的方法,该方法包括对患者施用化学疗法;以及药学上可接受的组合物,该药学上可接受的组合物包含与靶向所述肿瘤细胞的肽缀合的抗肿瘤化合物,其中所述肽被所述肿瘤细胞内在化。
根据本公开的目的,提供了一种杀死肿瘤细胞的方法,该方法包括对患者施用化学疗法;以及药学上可接受的组合物,该药学上可接受的组合物包含与靶向所述肿瘤细胞的肽联结的脂质体或胶束,其中所述脂质体或胶束包含抗肿瘤化合物,并且其中所述肽被所述肿瘤细胞内在化。
根据本公开的目的,提供了一种杀死肿瘤细胞的方法,该方法包括对患者施用化学疗法;以及药学上可接受的组合物,该药学上可接受的组合物包含与靶向所述肿瘤细胞的肽联结的抗体或抗体片段,其中所述抗体或抗体片段具有抗肿瘤活性,并且其中所述肽被所述肿瘤细胞内在化。在一个方面,肽可将抗体或抗体片段维持在特定的三级构象中以维持结合。
根据本公开的另一个目的,提供了一种杀死肿瘤细胞的方法,该方法包括对患者施用外科;以及药学上可接受的组合物,该药学上可接受的组合物包含与靶向所述肿瘤细胞的肽缀合的抗肿瘤化合物,其中所述肽被所述肿瘤细胞内在化。在该实施方案中,内在化肽可以与抗肿瘤化合物和荧光光学显像剂两者缀合。
根据本公开的另一个目的,存在一种杀死肿瘤细胞的方法,该方法包括对患者施用基因疗法;以及药学上可接受的组合物,该药学上可接受的组合物包含与靶向所述肿瘤细胞的肽缀合的抗肿瘤化合物,其中所述肽被所述肿瘤细胞内在化。在一个具体的实施方案中,基因疗法涉及核酸序列,该核酸序列选自由以下项构成的组:ras、myc、raf、erb、src、fms、jun、trk、ret、gsp、hst、bcl abl、Rb、CFTR、p16、p21、p27、p53、p57、p73、C-CAM、APC、CTS-1、zac1、scFV ras、DCC、NF-1、NF-2、WT-1、MEN-I、MEN-II、BRCA1、VHL、MMAC1、FCC、MCC、BRCA2、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11IL-12、GM-CSF G-CSF和胸苷激酶。
根据本公开的附加目的,在合适的容器装置中存在一种肿瘤治疗试剂盒,该肿瘤治疗试剂盒包含治疗有效量的药学上可接受的制剂,该制剂包含肽,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQID NO:8和/或SEQ ID NO:9,其中所述肽靶向肿瘤细胞。在一个具体的实施方案中,在合适的容器装置中的肿瘤治疗试剂盒包含治疗有效量的药学上可接受的制剂,该制剂包含肽,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ IDNO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQ ID NO:9,其中所述肽靶向肿瘤细胞和抗肿瘤化合物。在一个具体的实施方案中,抗肿瘤化合物是阿霉素、博莱霉素、(或其类似物诸如,例如多西他赛)、氨甲蝶呤或西妥昔单抗。在另一个具体的实施方案中,抗肿瘤化合物选自由以下项构成的组:顺铂(CDDP)、卡铂、丙卡巴肼、双氯乙基甲胺、环磷酰胺、异环磷酰胺、美法仑、苯丁酸氮芥、白消安(bisulfan)、亚硝基脲(nitrosurea)、更生霉素、柔红霉素、普卡霉素(plicomycin)、丝裂霉素、依托泊苷(VP16)、他莫昔芬、跨铂、5-氟尿嘧啶、长春新碱或长春碱或本文公开的任何其他化学治疗剂。
根据本公开的另一个目的,存在一种组合物,该组合物包含肽,该肽包含SEQ IDNO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQ ID NO:9,其中所述肽靶向肿瘤细胞;以及包含用于基因疗法的组合物的载体。在一个具体的实施方案中,载体选自由以下项构成的组:蛋白质、肽、脂质体、脂质、核酸及其组合。在一个具体的实施方案中,用于基因疗法的组合物包含核酸。在附加的具体实施方案中,用于基因疗法的组合物包含p53核酸。在其他具体的实施方案中,用于基因疗法的组合物包含选自由以下项构成的组的核酸:ras、myc、raf、erb、src、fms、jun、trk、ret、gsp、hst、bcl abl、Rb、CFTR、p16、p21、p27、p53、p57、p73、C-CAM、APC、CTS-1、zac1、scFVras、DCC、NF-1、NF-2、WT-1、MEN-I、MEN-II、BRCA1、VHL、MMAC1、FCC、MCC、BRCA2、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11IL-12、GM-CSF G-CSF G-CSF和胸苷激酶。
根据本公开的另一个目的,提供了一种治疗生物体的癌症的方法,该方法包括使所述生物体与治疗有效量的包含肽的药学上可接受的组合物接触,该肽包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQID NO:8和/或SEQ ID NO:9,其中所述肽靶向肿瘤细胞;以及抗肿瘤化合物。在一个具体的实施方案中,将抗肿瘤化合物缀合至所述肽。在另一个具体的实施方案中,抗肿瘤化合物是(或其类似物诸如,例如多西他赛)、氨甲蝶呤或西妥昔单抗。在另一个具体的实施方案中,抗肿瘤化合物选自由以下项构成的组:顺铂(CDDP)、卡铂、丙卡巴肼、双氯乙基甲胺、环磷酰胺、异环磷酰胺、美法仑、苯丁酸氮芥、白消安(bisulfan)、亚硝基脲(nitrosurea)、更生霉素、柔红霉素、普卡霉素(plicomycin)、丝裂霉素、依托泊苷(VP16)、他莫昔芬、跨铂、5-氟尿嘧啶、长春新碱或长春碱或本文公开的任何其他化学治疗剂。在一个具体的实施方案中,癌症选自由以下项构成的组:鳞状细胞癌、头颈癌和乳腺癌。
根据本公开的附加目的,提供了一种用于分离内在化肽(诸如,例如,HN17、HN18或表1或3中列出的任何肽)的方法,该方法包括以下步骤:获得肽文库;将所述文库的肽与细胞群的成员单独接触;以及通过所述细胞群的所述成员分析所述肽的内吞作用。在一个具体的实施方案中,肽文库为随机肽展示文库。在一个具体的实施方案中,肽文库是基于M13单链噬菌体的随机肽展示文库。在一个具体的实施方案中,细胞是癌细胞。
在本公开的另一个实施方案中,存在一种用于检测癌症的方法,该方法包括以下步骤:获得内在化肽(诸如,例如HN17(SEQ ID NO:1)或HN18 SE QID NO:7,或SEQ ID Nos:2-6、8、9中的任一个或表1或3中列出的任何肽);将可检测到的标记物缀合至所述肽;将缀合肽和标记物施用给生物体;以及通过合适的检测装置检测所述缀合物与癌细胞的结合。
在本公开的附加实施方案中,存在一种用于检测癌症的方法,该包括以下步骤:获得肽文库;将所述文库的肽与细胞群的成员单独接触;通过所述细胞群的所述成员分析所述肽的内吞作用以识别内在化肽(诸如,例如HN17(SEQ ID NO:1)、HN18(SEQ IDE NO:7)、SEQ ID Nos:2-6、8、9中的任一个或表1或3中列出的任何肽);将可检测到的标记物缀合至所述肽;将缀合肽和标记物施用给生物体;以及通过合适的检测装置检测所述缀合物与细胞的结合。
本发明人设想,这将允许人们提供必要剂量的药物来破坏肿瘤,而不受对其他细胞的有害副作用的发生所限制。由于HN17和/或HN18无毒、无免疫原性、在体内稳定(通过注射后24小时检测血液中的完整肽显示),在运输期间保护其货物并且在48小时内充分积聚在一个或多个肿瘤中,这一事实进一步增强了HN17和/或HN18作为药物递送穿梭的可能性。
V.附图说明
并入并构成本说明书一部分的附图示出了几个实施方案,并且连同说明书一起示出了所公开的组合物和方法。
图1示出了HN-1-FITC和4Iphf-HN18-IR800分子的完整化学结构。它还示出了与HN17缀合的附加染料标记物的结构,其方式与IR800与HN18缀合的方式相同,形成了完全相似的结构。
图2A、图2B和图2C示出了通过培养的Cal 27细胞(人HNSCC)中的相应染料标记物的荧光测量的细胞中杂合肽的相对摄取。图2A是在0.3、1、3、10、30μM(与细胞孵育48h)处的f-HN-1-IR800(实线)和HN1-IR800(虚线);图2B是在10μM处孵育0、2、4、8、24、48h的f-HN-1-IR800(实线)和HN1-IR800(虚线);图2C是使用FITC标记的肽与图2B进行相同的实验。染料化学(FITC或IR800)对两种杂合肽的相对摄取速率没有明显影响。
图3示出了孵育2h的Cal 27细胞中IR800标记化合物的相对细胞摄取(缩写参见表3)。将Cal 27细胞与指示剂在0.625-10μM下温育。将细胞摄取相对于10μM下的f-HN-1-IR800标准化。最底部的曲线是未缀合的IR800染料,为游离酸(商业上称为IRdye-800-CW)。
图4A示出了在100%小鼠血清中4Iphf-HN18-IR800(实线)和HN1-IR800(虚线)的代谢。通过经由荧光检测的HPLC色谱图中完整分子的峰面积确定肽的量。
图4B示出了从小鼠静脉内施用40nmol剂量的肽的血液清除率,其中经由荧光检测在给药后3h的尿液积累总量。
图5A示出了在静脉内给药40nmol肽后3-48h内携带Cal 27异种移植物肿瘤的完整全鼠的fluobeam光学图像。
图5B在顶部示出了剥皮小鼠的全身图像,比较了在75ms的荧光成像仪曝光时的HN1-IR800和4Iphf-HN18-IR800(左侧两只小鼠)以及在曝光300ms时的HN1-IR800(右侧)。在图5B的底部,示出了肿瘤和类似大小的肌肉,将其切成2mm厚的厚片,并且在相同的曝光下成像。
图5C示出了整个和切片的肿瘤和肌肉的强度。*是通过配对t检验(n=4:24、48h,n=3:8h)在HN-1-IR800与4Iphf-HN18-IR800之间的显著差异。
图6示出(前两行):用Cal 27细胞孵育的IR800标记化合物的荧光显微镜法。4Iph-HN18-IR800在1和24h的孵育后在细胞内显示亮红色信号。仅未与肽缀合的HN-1-IR800、HNJ-IR800和IR800染料在细胞中几乎没有荧光。(底部行):用10μM 4Iphf-HN18-CY5(红色)处理1.5h的活Cal 27细胞的共焦显微镜法。Hoechst 33342对细胞核进行染色(蓝色)。Alexa-546将细胞骨架中的F-肌动蛋白染成橙色(参见合并图像中最底部的左侧细胞)。4Iphf-HN18-Cy5被视为红色。右侧底部行的白光摄影图像显示细胞完整。合并的彩色图像示出4IphF-HN18-Cy5不在细胞核或细胞膜中,而已内在化到细胞的胞质溶胶中。这是最具体和期望的药物递送类型,即直接递送到胞质溶胶。在右侧两张显微照片的底部行中,在用10μM4Iphf-HN18-Cy5处理之前,用10倍摩尔过量的未标记4Iphf-HN18(100μM)处理Cal 27细胞1.5h。过量的未标记4Iphf-HN18阻止了内在化,因此仅在细胞周围而不是在活细胞内部看到了4Iphf-HN18-Cy5,这表明该机制是可阻断的,并且HN18肽的工作与存在标记物无关。
图7示出了MTC侧腹皮下异种移植物模型中4Iphf-HN18-IR8004Iph-HN18-IR800的荧光成像。在静脉内注射40nmol后四十八小时之后,对小鼠实施安乐死,并且在移除皮肤后拍摄图像。
图8示出了在TT和MZ-CRC1(MTC细胞)原位异种移植物中观察到的高荧光,其中将细胞植入小鼠的甲状腺中以生长成肿瘤。通过尾静脉注射四十纳摩尔的HN-J-IR800(左侧,加扰序列混杂对照)或4Iphf-HN18-IR800HN18。在32小时之后获得的图像示出4Iphf-HN18-IR800HN18允许对MTC进行原位异种移植物的成像,而在加扰的肽序列或注射4Iphphf-HN18-IR800HN18的小鼠周围组织中几乎没有观察到荧光。
图9A示出了将MDA-MB-231三阴性人类乳腺癌细胞植入两只脂肪垫裸性雌性小鼠中。这些肿瘤随时间的生长速率示于图9。在具有两个此类肿瘤的这些小鼠之一中,在肿瘤长到约1cm的直径后,给小鼠注射40nmol的f-f-HN17-IR800。
图9B示出了在将40nmol的f-f-HN17-IR800注射入患有脂肪垫乳腺癌肿瘤(MDA-MB-231)的小鼠中后24小时,使用FluOptics Fluobeam光学外科成像仪记录的图像。光学图像中的大白色椭圆形是两个肿瘤,表明f-HN17-IR800在肿瘤中的定位。
图10示出了37℃和4℃下未固定的Cal 27活细胞的共焦图像。白光图像(右侧)表明细胞是完整的。Hoechst 33342将细胞核染成蓝色。Vybrant DiO将部分膜染色为绿色,而4Iphf-HN18-Cy5杂合肽则为红色。通过降低温度来移除大部分可用的环境能减缓了包括膜结合和肽渗透的所有过程。
图11示出了在多种内吞作用抑制剂存在下HN18肽渗透的共焦和FACS图像。在图11中,中列白光图像示出左列图像中未固定的Cal 27活细胞是完整的。使用4Iphf-HN18-FITC在10μM与细胞孵育1h的右列中的FACS数据表明,大多数细胞都被荧光标记的杂合肽标记。左列示出了在每种测量的条件下,4Iphf-HN18-Cy5(红色)渗透细胞膜并且停留在胞质溶胶中。蓝染的细胞核用Hoechst 33342染色。绿色是Vybrant DiO染色的一些膜。NaN3耗尽ATP,表明杂合肽无需使用细胞能量依赖性过程即可渗透细胞膜到达胞质溶胶。诺考达唑抑制了批网格蛋白小窝的形成,表明杂合肽没有利用这种机制渗透到细胞的胞质溶胶中。MβCD抑制脂筏介导的穴样内陷途径,表明杂合肽不使用此机制进行细胞渗透。CPZ是氯丙嗪,它抑制网格蛋白的独立途径,表明杂合肽不利用该机制使细胞渗透到胞质溶胶中(细胞核未染色且呈黑色)。最后,阿米洛利抑制了巨胞饮作用,表明杂合肽不利用这种机制将细胞渗透到胞质溶胶中。
图12A示出了与5μM 4Iphf-HN18-Cy5孵育1小时的未固定的Cal 27活细胞。左图中的红色为41phf-HN18-Cy5。该图像中的蓝色是碘化丙啶,分子不能渗透完整的细胞膜。然而,当与41phf-HN18-Cy5同时孵育时,碘化丙锭确实会渗透Cal 27细胞膜并且进入胞质溶胶,并且移至细胞核以使其染成蓝色。
图12B表明在使用>41phf-HN18-Cy5刃天青的存在下,细胞保持存活。41phf-HN18-Cy5不会影响细胞活性,因此在良性、直接渗透的机制下,在存在41phf-HN18-Cy5的情况下,图12A中的碘化丙啶被允许进入细胞,类似于在相同情况下的药物作用。
图13示出了未固定的Cal 27活细胞中4Iphf-HN18-Cy5渗透细胞的动力学。示出了两个细胞。4Iphf-HN18-Cy5在几秒钟内从本体溶液渗透到细胞膜,然后在5分钟内明显渗透到胞质溶胶中,在接下来的25分钟内继续移入细胞。
VI.具体实施方式
应当理解,在公开和描述本发明化合物、组合物、制品、装置和/或方法之前,除非另有说明,否则它们不限于特定合成方法或特定重组生物技术方法,或者除非另有说明,否则不限于特定试剂,因此当然可以改变。另外应当了解,本文所用的术语只是为了描述特定实施方案的目的,并非旨在进行限制。
A。定义
如本说明书和所附权利要求书中所使用的,单数形式“一个”和“所述”包括复数指代,除非上下文另有明确说明。因此,例如,对“药物载体”的提及包括两种或更多种这样的载体的混合物等。
在本文中,范围可被表达为从“约”一个特定值,和/或到“约”另一个特定值。当表示这样的范围时,另一个实施方案包括从一个特定值和/或到其他特定值。相似地,当前面用“约”将值表示为近似值时,应当理解,该值的特定值构成了另一个实施方案。还应当理解,每个范围的端值相对于另一个端值以及独立于另一个端值都是有意义的。还应当理解,本文公开了若干值,并且除了值本身之外,每个值在本文中也被公开为“约”该特定值。例如,如果公开了值“10”,则还公开了“约10”。还应当理解,当公开一个值时,“小于或等于”该值、“大于或等于该值”和在值之间的可能范围也被公开,如本领域技术人员适当理解的。例如,如果公开了值“10”,则还公开了“小于或等于10”以及“大于或等于10”。还应当理解,在整个申请中,数据以多种不同格式提供,并且该数据表示端点和起点,以及数据点的任何组合的范围。例如,如果公开了特定数据点“10”和特定数据点15,则应当理解,认为公开了大于、大于或等于、小于、小于或等于、等于10和15以及介于10和15之间。还应当理解,还公开了在两个特定单元之间的每个单元。例如,如果公开了10和15,则还公开了11、12、13和14。
在本说明书和随后的权利要求书中,将提及的许多术语将被定义为具有下列含义:
“任选的”或“任选地”意指随后描述的事件或情况可发生或可不发生,并且该描述包括所述事件或情况发生的示例和不发生的示例。
如本文所用,术语“凋亡剂”被定义为赋予细胞凋亡或程序性细胞死亡的药物、毒素、化合物、组合物或生物实体。在一个具体的实施方案中,细胞是肿瘤细胞。在另一个实施方案中,肿瘤细胞是头颈癌细胞、鳞状细胞癌、脑肿瘤细胞或乳腺癌细胞。如本文所用,术语“癌症”被定义为细胞的不受控制的生长或增殖的组织,诸如肿瘤。在一个具体的实施方案中,肿瘤导致局部入侵和转移。如本文所用,术语“化学治疗剂”被定义为用作癌症治疗的药物、毒素、化合物、组合物或生物实体。
如本文所用,术语“缀合物”被定义为HN17或HN18肽与另一实体诸如药物、组合物、化合物或可检测到的标记物的连接或结合。在一个具体的实施方案中,通过与例如HN17或HN18肽的羧基或胺基和对应药物上的活化基团相关的化学反应进行缀合。技术人员知道,化学反应将取决于在HN17或HN18或其衍生物上存在哪些官能团以及在药物上存在哪些对应的官能团。
如本文所用,术语“细胞毒性剂”被定义为用于杀死细胞或多个细胞的药物、毒素、化合物、组合物或生物实体。在一个具体的实施方案中,细胞是肿瘤细胞。在另一个实施方案中,肿瘤细胞是头颈癌细胞、鳞状细胞癌或乳腺癌细胞。
如本文所用,术语“递送”被定义为由化合物的HN17和/或HN18的肽或片段提供的分子传输,该肽或片段结合或缀合至肿瘤或肿瘤细胞。给药后可直接靶向肿瘤或肿瘤细胞,或可通过间接装置或机制靶向。在该术语的范围内允许包含HN17和/或HN18化合物的缀合物遵循间接途径以最终靶向肿瘤或肿瘤细胞,包括出于非治疗目的与其他生物实体结合。如本文所用,术语“递送”可与术语“靶向”互换使用。
如本文所用,术语“DNA损伤剂”是损伤核酸的药物、毒素、化合物、组合物或生物实体。损伤可以是对核酸的任何种类,例如断裂DNA双螺旋分子的一条或两条链,或引起一个或多个核苷酸的突变。
如本文所用,术语“药物”被定义为用于治疗医学病症或疾病的药剂或药物。药物可与另一种药物或某种类型的疗法联合使用,并且在一个优选的实施方案中可有效地治疗癌症。
如本文所用,术语“头颈癌”被定义为可在头部和颈部区域中发生的多种恶性肿瘤中的任一种:口腔(包括唇部或嘴部的组织,诸如舌头、牙龈、脸颊和嘴唇内部、嘴部的底部、硬和软腭以及磨牙后区);咽(包括喉咽、鼻咽和口咽)(也称为咽喉);鼻旁窦(包括鼻部上方的额窦、上颚骨两侧上部的上颌窦、正好位于上鼻部两侧后方的筛窦以及颅骨中央筛窦后的蝶窦)和鼻腔;喉(或喉头);甲状腺(包括甲状腺的乳头状、滤泡状,髓样和间变性癌);甲状旁腺;唾液腺(包括在舌头下方、在耳朵正前方的脸部侧面以及在颚骨下方发现的主要唾液腺簇);面部和颈部皮肤以及颈部淋巴结的病变;以及转移性鳞状颈部癌伴隐匿性原发。
如本文所用,术语“内在化”被定义为至少部分的HN17和/或HN18肽或通过与本文所述类似的装置分离的另一种肽摄取到肿瘤或肿瘤细胞中。内在化到肿瘤细胞中是指将部分或全部肽诸如HN17和/或HN18带入细胞的内部区域,这包括将部分或全部肽保留在细胞膜内或保留到细胞膜中,并且还包括将部分或全部肽保留在细胞的细胞质中。内在化可以是暂时性的或永久性的。
如本文所用,术语“标签”被定义为直接或间接与允许检测肽的HN17和/或HN18肽结合或缀合的实体。标签可以是荧光团、发色团、放射性标签、自旋标签或任何其他促进肽检测的装置。
如本文所用,术语“口腔癌”被定义为口腔的癌症。
如本文所用,术语“口腔”被定义为唇部或嘴部的任何组织,诸如舌头、牙龈、脸颊和嘴唇内部、嘴部的底部、硬和软腭以及磨牙后区(智齿后面的区域)。
如本文所用,术语“肽”被定义为至多约50个氨基酸的链。
如本文所用,术语“特异性”在一个实施方案中被定义为通过HN17和/或HN18肽或与抗肿瘤化合物缀合的另一种内在化肽递送或靶向至癌性组织。在另一个实施方案中,术语特异性是指HN17和/或HN18肽或另一种内在化肽优先向癌性组织递送或靶向抗肿瘤化合物。在又一个实施方案中,该术语指针对抗肿瘤化合物的癌性组织的递送或靶向,其中包含HN17和/或HN18肽或另一种内在化肽的缀合物主要结合癌性组织。在这些实施方案的一方面,本文所述的缀合物可以在将缀合物递送至肿瘤的过程或旅程期间与其他生物实体接触。
如本文所用,术语“靶标”被定义为由HN17和/或HN18肽或其片段提供的分子方向,该肽或其片段结合或缀合至肿瘤或肿瘤细胞。给药后可直接靶向肿瘤或肿瘤细胞,或可通过间接装置或机制靶向。在该术语的范围内允许包含HN17和/或HN18化合物的缀合物遵循间接途径以最终靶向肿瘤或肿瘤细胞,包括出于非治疗目的与其他生物实体结合。
如本文所用,术语“治疗”被定义为对医学病症或疾病应用治疗的实践。如果至少一种症状得到改善或根除,则该治疗不需要完全治愈,并且被认为是有效的。此外,尽管这是优选的,但是治疗不需要提供疾病状态或医学病症的永久改善。
如本文所用,术语“肿瘤细胞”被定义为恶性肿块的细胞,诸如肿瘤或癌症。细胞可位于肿瘤内、位于肿瘤表面上,或者其可与肿瘤相关联。
多种出版物的引用贯穿于本申请。这些出版物的公开内容据此全文以引用方式并入本申请中以便更全面地描述其所属领域的现状。所公开的参考文献所含有的材料也单独且具体地通过引用方式并入本文,这些材料在引用文献所依据的句子中进行了讨论。
B。组合物
公开了用于制备所公开的组合物的组分以及在本文所公开的方法内使用的组合物本身。本文公开了这些及其他材料,并且应当理解,当公开这些材料的组合、子组、交互、组等时,尽管可能没有明确公开对这些化合物的各种单独和集合组合和排列中每一者的特定引用,但本文对每一者都进行了具体地设想和描述。例如,如果公开和讨论了特定的HN17和/或HN18,并且讨论了可以对包括HN17和/或HN18的许多分子进行的许多修饰,则具体地设想HN17和/或HN18的每种组合和排列以及可能的修饰,除非明确地指出相反的情况。因此,如果公开了一类分子A、B和C以及一类分子D、E和F,并且公开了组合分子的一个示例A-D,则即使没有单独地列举每一个,每一个都是单独且全部地设想的意义组合,也认为公开了A-E、A-F、B-D、B-E、B-F、C-D、C-E和C-F。同样,还公开了这些的任何子组或组合。因此,例如,将考虑公开A-E、B-F和C-E的子组。该概念适用于本申请的所有方面,包括但不限于制备和使用所公开的组合物的方法中的步骤。因此,如果存在可进行的各种另外的步骤,则应当理解,这些另外的步骤中的每一个步骤可利用所公开的方法的任何特定实施方案或实施方案的组合来进行。
在一个方面,本公开涉及与化合物缀合的氨基酸TLPNSNHIKQGL(HN17)(SEQ IDNO:1)、TSPLNIHNGQKL(HN1)(SEQ ID NO:2)、LNKQTHGLIPNS(HNscr)(SEQ ID NO:3)、NQHSKNTLLIGP(HNJ)(SEQ ID NO:4)、LKQGNHINLPS(SEQ ID NO:5)、YSPLNIHNGQKL(SEQ IDNO:6)、LPNSNHIKQGL(HN18)(SEQ ID NO:7)、YLPNSNHIKQGL(SEQ ID NO:8)或FLPNSNHIKQGL(SEQ ID NO:9)的利用,以将缀合的复合物递送至肿瘤。该肽的能力允许将抗癌药物靶向肿瘤,诸如头颈部鳞状癌和乳腺癌。在其他具体的实施方案中,肽通过缀合至可检测到的标签并随后递送至患者的肿瘤组织而促进癌细胞的成像和诊断。
在一些实施方案中,HN17肽、变体和合成分子可以由式(I)定义
XR–Z–KR1–LR2 (I),
其中
X是T、Y、芴基甲氧羰基(Fmoc)(缩写为(f))、4-对-碘-苄基(4Iph)或3-碘酪氨酸(3IY)。X可以是任何终止残基。例如,X可以是由生物相容性自组装分子从固相肽合成期间使用的固相支持树脂上裂解得到的化学结构部分。例如,X可以是胺、醇、酰胺基或羧酸基(例如,C末端或N末端氨基酸的NH2或COOH基)。另选地,终止残基X可以是丙酰胺或丙酸基团。X也可以是此结构部分的化学修饰形式(例如,烷基化的胺或酯化的羧酸)。在任何实施方案中,本文具体公开的或设想的并且由本文公开的内容涵盖的变体,X是亲脂的。
Z表示HN17-TLPNSNHIKQGL(SEQ ID NO:1)、HN1-TSPLNIHNGQKL(SEQ ID NO:2)、HNscr-LNKQTHGLIPNS(SEQ ID NO:3)、HNJ-NQHSKNTLLIGP(SEQ ID NO:4)、LKQGNHINLPS(SEQID NO:5)、YSPLNIHNGQKL(SEQ ID NO:6)、HN18-LPNSNHIKQGL(SEQ ID NO:7)、YLPNSNHIKQGL(SEQ ID NO:8)或FLPNSNHIKQGL(SEQ ID NO:9)的氨基酸序列;
R表示NR3R4的末端氨基并且必须是亲脂性的(诸如,例如4Iph和Fmoc)。在一个方面,亲脂的可为两亲物,诸如IR800。
R1表示近红外荧光(NIRF)染料(例如,荧光素(FITC)或水溶性双花青染料)或R2。在一个方面,R1可为IRDye800(IR800);或H
R2表示末端CONR5R6
R3、R4、R5和R6表示H、CO烷基(直链或环状)或COQR7
R7表示H,CO烷基(直链或环状);
Q表示O或NHR8;以及
R8表示H,CO烷基(直链或环状)或COXR7
R必须是亲脂的,诸如,例如非活性亲脂的、亲脂的治疗药物(例如,紫杉酚)或亲脂的光学染料,诸如缺少一个或多个COO-或SO3-基团的双花青。R1和R2是H或FITC的亲水性染料,或用于诊断(诸如,例如光学外科导航或组织学组织染色)的多电荷光学染料或亲水性治疗药物,诸如另一种肽、PKCε或siRNA。R1和dR2可以不同或相同。
氨基酸分类为表1。
表1.药剂编号及其氨基酸序列
Rn可以为烷基、烯基或炔基。如本文所用,“烷基”是指饱和脂族基团的基团,包括直链烷基和支链烷基。在一些实施方案中,烷基在其主链中包含30个或更少的碳原子(例如,对于直链,C1-C30,对于支链,C3-C30)。例如,烷基在其主链中可包含25个或更少的碳原子、22个或更少的碳原子、20个或更少的碳原子、19个或更少的碳原子、18个或更少的碳原子、17个或更少的碳原子、16个或更少的碳原子、15个或更少的碳原子、14个或更少的碳原子、12个或更少的碳原子、12个或更少的碳原子、10个或更少的碳原子、8个或更少的碳原子或者6个或更少的碳原子。在一些实施方案中,烷基在其主链中可包含6个或更多的碳原子、8个或更多的碳原子、10个或更多的碳原子、11个或更多的碳原子、12个或更多的碳原子、13个或更多的碳原子、14个或更多的碳原子、15个或更多的碳原子、16个或更多的碳原子、17个或更多的碳原子、18个或更多的碳原子、19个或更多的碳原子或者20个或更多的碳原子。烷基的大小范围可以从上述的最小碳原子数中的任一个到最大碳原子数中的任一个。例如,烷基可以是C6-C30烷基(例如,C12-C22烷基或C12-C18烷基)。术语烷基包括未取代的烷基和取代的烷基,后者是指具有一个或多个取代基的烷基,诸如卤素或羟基,替代了烃主链的一个或多个碳上的氢。烷基还可以在烷基的碳主链内包含一个至四个杂原子(例如,氧、氮、硫及其组合)。如本文所用,“烯基”和“炔基”是指含有一个或多个长度相似的双键或三键的不饱和脂族基团(例如,C2-C30)并且可能被上述烷基取代。
在某些实施方案中,Rn是直链C12-C18烷基(例如,直链C14-C16烷基)。例如,Rn可以是月桂基、肉豆蔻基、棕榈基或硬脂基。
在某些实施方案中,Rn为环状的。
式(I)中的每个整数(q、o、p和n,表示Cn中的碳原子数的整数)可以按比例增加,以便提供更大(即,更高分子量)的自组装分子,其可以具有类似的吸引力和排斥力平衡。例如,o可以表示2到4的整数,p可以表示10到40的整数,q可以表示7到14的整数,并且n可以在20到40的范围内(例如,Cn表示C20-C40烷基);或者o可以表示4到6的整数,p可以表示20到60的整数,并且q可以表示12到21的整数,并且n可以在30到60的范围内(例如,Cn表示C30-C60烷基)。
本公开描述了识别携带SEQ ID NO:1的肽(HN17)和携带SEQ ID NO:7的肽(HN18),其被人头颈部鳞状癌细胞或某些其他实体瘤组织细胞特异性内在化,诸如乳腺癌细胞。本发明人预想了HN17和/或HN18肽实现诊断和抗癌药物向癌性组织的肿瘤组织特异性递送的用途。因此,在本公开的某些实施方案中,本发明人描述了开发的将抗癌药物与HN17和/或HN18肽缀合的方法,以及允许将肽缀合的药物递送至特异肿瘤组织的方法。在其他实施方案中,本发明人描述了可通过使肿瘤与HN17和/或HN18肽和药物缀合物的药学上可接受的组合物接触而用于实现癌症患者中癌症和/或肿瘤细胞的选择性杀伤的方法。在其他实施方案中,描述了使用HN17和/或HN18肽缀合的标记物对癌症成像的用于体外和体内应用两者的方法,并且在其他实施方案中,可以存在诊断和治疗标记物。因此,描述了癌症治疗和诊断试剂盒的开发。
过去,识别肿瘤特异性抗原的抗体已用于将细胞毒性药物递送至肿瘤。然而,由于这些免疫缀合物不能渗透肿瘤组织,因此它们对实体瘤的有效性有限。相比之下,与典型抗体相比,本发明人分离的12聚体肽(HN17)和11聚体肽(HN18)的质量为1/100,并且能够渗透裸鼠中形成的肿瘤,诸如人头颈部鳞状细胞癌(HNSCC)异种移植物。因此,通过将HN17或HN18肽与药物缀合,本发明人已经开发了用于在癌细胞的全身性沉积中的药物的肿瘤特异性递送系统。
HN17是通过修饰HN-1而获得的,HN-1先前已证明对某些癌症具有特异性。通过荧光显微镜法,在体外记录了荧光染料缀合的HN17和HN18肽在HNSCC细胞中的内在化。该肽在进入之后定位在细胞质中。这表明该肽对于某些癌症是特异性的。此外,与原代细胞水平上的正常细胞相比,HN17和HN18肽优先与HNSCC细胞结合。在体内,静脉注射的HN17和HN18肽定位于裸鼠中形成的HNSCC异种移植物。该肽在整个肿瘤中积累,表明其渗透肿瘤肿块内部的能力。
如本文公开的,HN17的摄取显著优于HN-1。然而,向HN17添加N-末端亲脂性显著增加了细胞摄取,而不仅仅是HN17。因此,在一个方面,本文公开的是包含N末端亲脂性的诸如fmoc或4Iph的肽诸如HN17。一旦发现HN17的摄取随N末端亲脂性的存在而增加,就将HN-1(SEQ ID NO:2)、HNscr(SEQ ID NO:3)、HNJ(SEQ ID NO:4)、SEQ ID NO:5、SEQ ID NO:6、SEQID NO:7、SEQ ID NO:8和SEQ ID NO:9分别修饰为包含N末端亲脂性(表1和表3),其中SEQID No:2、5、6和7的摄取随着fmoc和/或4Iph的添加而增加在一个方面,当添加4Iph时,可以从f-HN17(即,如表3所示的T(f)LPNSNHIKQGL)中移除HN17(苏氨酸)的氨基末端氨基酸,从而产生4Iph-f-HN18。因此,在一个方面,本文公开了SEQ ID NO:1、SEQ ID NO:2、SEQ IDNO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SE QIDNO:9所示的肽,其中该肽已被修饰以包含N端亲脂基,其中N端亲脂基包含芴基甲氧羰基(Fmoc)、4-对-碘-苄基(4Iph),4-对-碘-苯甲酰基或3-碘酪氨酸(3IY)。在一个方面,修饰的肽可包含4Iph-f-HN17或4Iph-f-HN18。
为了模拟药物递送,将4Iph-f-HN18与IR800缀合,IR800是一种复杂的有机分子,其紫杉醇的分子量约为50%。在静脉内给药之后,4Iphf-HN18-IR800定位于人头颈部癌细胞衍生的异种移植物中。在整个肿瘤中都发现了该肽,这表明其能够渗入带有缀合化合物的肿瘤组织。通过在HN-1和HN17中添加fmoc或4Iph,可以显著改善与IR800缀合的肽的肽摄取。将IR800切换到fmoc或4Iph相对于HN-1或HN17或单独的HN18有所增加的N末端,其有效性是我们最佳分子4Iphf-HN18-IR800的约60%。染料IR800为两亲物,并且因此具有亲脂性和亲水性特征两者。在一个方面,本文公开了SEQ ID No:1-9中的任一个,其包含缀合至氨基末端氨基酸并且缀合至染料诸如IR800或抗肿瘤药物的亲脂性。
在本公开的优选的实施方案中,HN17或HN18肽与抗肿瘤药物诸如阿霉素、博莱霉素、(或其类似物诸如例如多西紫杉醇)、甲氨蝶呤或西妥昔单抗缀合或结合。抗肿瘤药物通常具有足够的疏水性以允许在肿瘤细胞膜上扩散,尽管HN17或HN18肽将药物靶向肿瘤细胞并且允许通过其他手段改善抗肿瘤药物的易位或内在化在本发明的范围内。
尽管本领域描述了某些先前已用于将细胞毒性药物递送至实体瘤中的肽,但是所述肽不适用于结合蛋白。一种类型包括高分子量阳离子聚合物,诸如聚L赖氨酸(Wu等人,1987年),其由于泄漏的肿瘤脉管系统而被肿瘤选择性地保留,而另一种类型包括选择性地结合到肿瘤脉管系统的肽,从而允许破坏肿瘤生长所必需的血管生成内皮血管。然而,由于直径小于1mm的肿瘤可持续通过从相邻正常血管获得的营养物质(Folkman,1990年),消除这些较小肿瘤的任务仍然存在。本公开通过提供能够渗透实体瘤和/或被实体瘤摄取的肿瘤特异性肽HN17或HN18解决了这些问题。本公开涉及HN17或HN18肽与抗癌药物的偶联,这些抗癌药物在施用于动物时提供抗癌药物的肿瘤特异性靶向,并且因此提供有效的抗癌疗法。另外,本公开提供了在N末端上的亲脂性到其他肽诸如HN-1(SEQ ID NO:2)、HN17(SEQID NO:1)、HN18(SEQ ID NO:7)或表1和3中揭示的SEQ ID No:1-9的任何其他肽的添加显著增加了肽摄取的速度和量。
本发明人设想,这将允许人们提供必要剂量的药物来破坏肿瘤,而不受对其他细胞的有害副作用的发生所限制。由于HN17或HN18无毒、无免疫原性、在体内稳定(由其血液中的一半显示为5.29小时的新陈代谢),在运输期间保护其货物并且在48小时内充分积聚并保持在中,这一事实进一步增强了HN17或HN18作为药物递送穿梭的可能性。
1。肽
a)HN18和HN17
本发明人设想使用HN17和/或HN18来诊断和治疗头颈癌。还预期HN17和/或HN18可用于治疗其他实体瘤,诸如乳腺癌、皮肤癌、结肠直肠癌、前列腺癌、肺癌和脑肿瘤。
因此,在一个实施方案中,本发明人将紫杉酚(其是用于治疗HNSCC(Shin等,1998年)和乳腺癌的最有效的化学治疗剂)缀合至HN17和/或HN18。在其他实施方案中,将HN17和/或HN18缀合至其他化学治疗剂。
在其他实施方案中,HN17和/或HN18存在多种用途,包括但不限于在肿瘤成像、肿瘤诊断中使用,并且为基因转移方法提供肿瘤特异性(Clayman等人,1995年)。
在本公开的一个实施方案中,存在靶向肿瘤细胞的肽,并且在一个具体的实施方案中被肿瘤细胞内在化。本公开的目的是包含SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8和/或SEQ ID NO:9或由其组成的肽。在本公开的一个优选的实施方案中,存在肽的内在化,尽管在本公开的范围内利用HN17肽(SEQ ID NO:1)或另一种内在化肽(HN18)(SEQ ID NO:7),以通过直接或间接的手段或机制将抗癌药物靶向肿瘤。
在一个方面,存在一种组合物,其包含药物和靶向肿瘤细胞的HN17和/或HN18肽,并且在一个具体的实施方案中,该组合物被所述肿瘤细胞内在化。在具体的实施方案中,药物为化学治疗剂、细胞毒性剂、凋亡剂、DNA损伤剂或紫杉醇。在一个具体的实施方案中,药物是顺铂(CDDP)、卡铂、丙卡巴肼、双氯乙基甲胺、环磷酰胺、异环磷酰胺、美法仑、苯丁酸氮芥、白消安(bisulfan)、亚硝基脲(nitrosurea)、更生霉素、柔红霉素、阿霉素、博莱霉素、普卡霉素(plicomycin)、丝裂霉素、依托泊苷(VP16)、他莫昔芬、跨铂、5-氟尿嘧啶、长春新碱、长春碱或甲氨蝶呤。
b)HN17和HN18的变体
本公开内容也涵盖了HN17和/或HN18的氨基酸序列变体。多肽的氨基酸序列变体可以是取代变体、缺失变体或插入变体。
插入突变体通常涉及在肽的非末端添加物质。这可包括插入一些残基;免疫反应性表位;或仅一个残基。添加的材料可诸如通过甲基化、乙酰化等修饰。另选地,可将附加的残基添加到肽的N末端或C末端。
缺失的特征在于从蛋白质序列中去除一个或多个氨基酸残基。通常,在蛋白质分子内的任何一个位点缺失不超过约2至6个残基。这些变体通常通过编码蛋白质的DNA中核苷酸的位点特异性诱变来制备,从而产生编码变体的DNA,然后在重组细胞培养物中表达DNA。
取代变体通常在肽内的一个或多个位点包含一个氨基酸与另一个氨基酸的交换,并且可以设计成调节该肽的一个或多个特性,诸如抗蛋白水解裂解的稳定性,而不会丧失其他功能或特性。
在具有已知序列的DNA中的预定位点处进行取代突变的技术是众所周知的,例如M13引物诱变和PCR诱变。氨基酸取代通常是单个残基,但可以同时发生在多个不同的位置;插入通常将为约1至10个氨基酸残基的顺序;并且缺失将在约1至30个残基的范围内。缺失或插入优选在相邻对中进行,即缺失2个残基或插入2个残基。
取代、缺失、插入或其任何组合可以组合以得到最终构型。突变不得将序列置于阅读框之外,并且优选不会形成可产生二级mRNA结构的互补区。取代变体是其中已去除至少一个残基并在其位置插入不同残基的变体。
通过选择比表2中的取代更不保守的取代来进行功能或免疫同一性的显著变化,即选择在维持(a)取代区域中多肽骨架的结构(例如片状或螺旋构象)、(b)靶位点处分子的电荷或疏水性或(c)侧链的大部分等方面效果更显著不同的残基。通常预期会在蛋白质性质中产生最大变化的取代是其中(a)亲水残基(例如丝氨酰或苏氨酰)被(或由)疏水残基(例如亮氨酰、异亮氨酰、苯丙氨酰、缬氨酰或丙氨酰)取代;(b)半胱氨酸或脯氨酸被(或由)任何其他残基取代;(c)具有带正电荷的侧链的残基(例如赖氨酰、精氨酰或组氨酰)被(或由)带负电荷的残基(例如谷氨酰或天冬氨酰)取代;或者(d)具有庞大侧链的残基(例如苯丙氨酸)被(或由)不具有侧链的残基(例如甘氨酸)取代,在这种情况下,(e)通过增加硫酸化和/或糖基化位点的数量的取代。
例如,置换被称为保守的,即,一个氨基酸被替换为类似形状和电荷的氨基酸。保守置换是本领域熟知的,并且包括例如以下变化:丙氨酸变为丝氨酸;精氨酸变为赖氨酸;天冬酰胺变为谷氨酰胺或组氨酸;天冬氨酸变为谷氨酸;半胱氨酸变为丝氨酸;谷氨酰胺变为天冬酰胺;谷氨酸变为天冬氨酸;甘氨酸变为脯氨酸;组氨酸变为天冬酰胺或谷氨酰胺;异亮氨酸变为亮氨酸或缬氨酸;亮氨酸变为缬氨酸或异亮氨酸;赖氨酸变为精氨酸;甲硫氨酸变为亮氨酸或异亮氨酸;苯丙氨酸变为酪氨酸、亮氨酸或甲硫氨酸;丝氨酸变为苏氨酸;苏氨酸变为丝氨酸;色氨酸变为酪氨酸;酪氨酸变为色氨酸或苯丙氨酸;以及缬氨酸为异亮氨酸或亮氨酸,或表2中列出的任何取代基。
表2:氨基酸取代
原始残基示例性保守取代,其他是本领域已知的。
/>
可以采用取代或缺失诱变来插入N-糖基化(Asn-X-Thr/Ser)或O-糖基化(Ser或Thr)的位点。也可能需要缺失半胱氨酸或其他不稳定残基。潜在蛋白水解位点(例如Arg)的缺失或取代例如通过缺失一个碱性残基或用谷氨酰胺酰或组氨酰残基取代一个碱性残基来完成。
某些翻译后衍生化是重组宿主细胞对表达多肽的作用的结果。谷氨酰胺酰和天冬酰胺酰残基经常在翻译后脱酰胺成相应的谷氨酰和天冬酰残基。另选地,这些残基在温和的酸性条件下脱酰胺。其他翻译后修饰包括脯氨酸和赖氨酸的羟基化、丝氨酰或苏氨酰残基的羟基磷酸化、赖氨酸、精氨酸和组氨酸侧链的o-氨基的甲基化(T.E.Creighton,“Proteins:Structure and Molecular Properties”,W.H.Freeman&Co.,San Francisco,第79-86页,1983年)、N-末端胺的乙酰化,以及在某些情况下,C-末端羧基的酰胺化。
以下是基于改变肽的氨基酸以产生等效的或甚至改善的第二代分子的讨论。例如,某些氨基酸可替代肽/蛋白质结构中的其他氨基酸而不会显著丧失与结构(诸如,例如,抗体的底物分子或抗原结合区上的结合位点)的交互式结合能力。由于肽/蛋白质的交互式容量和性质限定了肽/蛋白质的生物功能活性,因此可在肽/蛋白质序列及其下面的DNA编码序列中进行某些氨基酸取代,然后获得具有类似性质的蛋白质。因此,预期可在基因的DNA序列中进行各种改变而不会显著丧失其生物用途或活性,如下所述。此外,本公开的氨基酸可包含改变诸如甲基化、乙酰化、肉豆蔻酰化等。
在进行此类改变时,可考虑氨基酸的亲水性指数。亲水性氨基酸指数在赋予肽/蛋白质交互式生物学功能中的重要性在本领域中是众所周知的(Kyte和Doolittle,1982年)。公认的是,氨基酸的相对亲水特征有助于所得肽/蛋白质的二级结构,这继而定义了肽/蛋白质与其他分子的相互作用,例如,酶、底物、受体、DNA、抗体、抗原等。
根据它们的疏水性和电荷特征,已为每个氨基酸指定了亲水性指数(Kyte和Doolittle,1982年),这些是:异亮氨酸(+4.5);缬氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸/胱氨酸(+2.5);甲硫氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8);色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸(-3.5);谷氨酰胺(-3.5);天冬氨酸(-3.5);天冬酰胺(-3.5);赖氨酸(-3.9);以及精氨酸(-4.5)。
在本领域中已知的是,某些氨基酸可被其他氨基酸取代,这些其他氨基酸具有类似的亲水性指数或评分,并且仍然产生具有类似生物活性的肽/蛋白质,即,仍获得生物功能上等同的肽/蛋白质。在进行此类改变时,亲水性指数在.+-.2之内的氨基酸的取代是优选的,在.+-.1之内的那些氨基酸是特别优选的,而在.+-.0.5之内的那些氨基酸甚至是更特别优选的。
在本领域中还应当理解,可基于亲水性来有效地进行类似氨基酸的取代。美国专利No.4,554,101(通过引用方式并入本文)指出,蛋白质的最大局部平均亲水性,由其相邻氨基酸的亲水性决定,与蛋白质的生物特性相关。如在美国专利No.4,554,101中详述,以下亲水性值被分配给氨基酸残基:精氨酸(+3.0);赖氨酸(+3.0);天冬氨酸(+3.0.+-.1);谷氨酸(+3.0.+-.1);丝氨酸(+0.3);天冬酰胺(+0.2);谷氨酰胺(+0.2);甘氨酸(0);苏氨酸(-0.4);脯氨酸(-0.5.+-.1);丙氨酸(-0.5);组氨酸(-0.5);半胱氨酸(-1.0);甲硫氨酸(-1.3);缬氨酸(-1.5);亮氨酸(-1.8);异亮氨酸(-1.8);酪氨酸(-2.3);苯丙氨酸(-2.5);色氨酸(-3.4)。
应当理解,氨基酸可取代具有类似亲水性值的另一种,并且仍获得生物学上等同的和免疫等同的蛋白质。在此类改变时,亲水性值在.+-.2之内的氨基酸的取代是优选的,在.+-.1之内的那些氨基酸是特别优选的,而在.+-.0.5之内的那些氨基酸甚至是更特别优选的。
如上所述,氨基酸置换通常基于氨基酸侧链取代基的相对类似性,例如它们的疏水性、亲水性、电荷、大小等。考虑了上述各种特征的示例性取代是本领域技术人员众所周知的,并且包括:精氨酸和赖氨酸;谷氨酸和天冬氨酸;丝氨酸和苏氨酸;谷氨酰胺和天冬酰胺;以及缬氨酸、亮氨酸和异亮氨酸。然而,本公开的氨基酸的改变可以不是保守的,并且仍然在本公开的范围内,只要这些肽仍保留靶向肿瘤细胞的功能即可。
用于制备根据本公开的肽的另一个实施方案是肽模拟物的使用。模拟物是模拟蛋白质二级结构元素的含肽分子。参见例如Johnson等人,1993年。使用肽模拟物的基本原理是,蛋白质的肽主链主要存在于以有利于分子相互作用(诸如抗体和抗原的分子相互作用)的方式取向氨基酸侧链。期望肽模拟物允许与天然分子类似的分子相互作用。这些原理可以与上述原理结合使用,以工程化具有HN17和/或HN18的许多自然特性但具有改变甚至改善的特性的第二代分子。例如,氨基酸置换产生与肿瘤细胞结合更强的基序;或者可特异性地定制以结合不同类型的肿瘤细胞的基序可以允许产生更多的HN17和/或HN18相关的肽,每种肽对于不同的肿瘤类型是不同的。
在本公开的一个实施方案中,存在与包含HN17和/或HN18或其片段或衍生物的肽相关的附加的手段,其促进肽-抗肿瘤组合物缀合物向肿瘤细胞的转导或内在化。在一个具体的实施方案中,蛋白质转导结构域也与HN17和/或HN18/抗肿瘤组合物结合物结合、缀合或以其他方式缔合。在另一个具体的实施方案中,蛋白质转导结构域是HIV TAT蛋白质(Schwarze等人,1999年),并且蛋白质转导结构域的添加促进了向包括脑肿瘤细胞的肿瘤细胞的递送,因为该结构域允许穿越血脑屏障。因此,在本公开的该实施方案中,尽管蛋白质转导结构域促进了递送至任何组织,但是本公开的HN17和/或HN18肽将整个复合物特异性地引导至肿瘤细胞,诸如头颈癌细胞、乳腺癌细胞或脑癌细胞,并且蛋白质转导结构域主要是促进抗肿瘤药物复合物的递送和转导的辅助手段。其他蛋白质转导结构域在本公开的范围内,并且是本领域已知的。
本领域技术人员知道,可以容易地筛选或测试变体以确定该变体是否仍保留了肿瘤靶向特性。即,根据本文提供的方法,诸如在实施例中,可以将HN17和/或HN18肽变体或其他内在化肽变体缀合至可检测到的标记物,引入细胞中,并且通过细胞进行内在化分析。在一个优选的实施方案中,分析方法是荧光显微镜法,尽管技术人员知道该分析方法应根据所用标记物的类型来使用。除了该体外方法之外或另选地,可使用体内内在化分析。例如,将缀合至可检测到的标记物的变体引入动物,诸如具有肿瘤或癌性组织的裸鼠,并且分析动物的肿瘤组织以检测标记物。技术人员可以使用本领域已知的其他方法或这些方法的变型来测试将内在化肽诸如HN17和/或HN18靶向细胞。
应当理解,有许多氨基酸和肽类似物可以掺入所公开的组合物中。例如,存在许多D氨基酸或具有与L氨基酸不同的功能取代基的氨基酸。公开了天然存在的肽的相反立体异构体,以及肽类似物的立体异构体。通过用所选择的氨基酸加入tRNA分子并利用例如琥珀密码子以位点特异性方式将类似物氨基酸插入肽链的工程化基因构建体,可以容易地将这些氨基酸掺入多肽链中。
可以产生类似肽但不经由天然肽键连接的分子。例如,氨基酸或氨基酸类似物的键可包括CH2NH-、-CH2S-、-CH2-CH2-、-CH=CH-(顺式和反式)、-COCH2-、-CH(OH)CH2-和-CHH2SO-(这些键和其他键可以在以下参考文献中看到:Spatola,A.F.,“Chemistry andBiochemistry of Amino Acids,Peptides,and Proteins”,B.Weinstein编辑,MarcelDekker,New York,第267页,1983年;Spatola,A.F.,Vega Data,1983年3月,第1卷第3期,“Peptide Backbone Modifications(general review)”;Morley,Trends Pharm Sci,1980年,第463-468页;Hudson,D。等人,Int J Pept Prot Res,第14期,第177-185页,1979年(-CH2NH-、CH2CH2-);Spatola等人,Life Sci,第38期,第1243-1249页,1986年(-CH H2-S);Hann,J.Chem.Soc Perkin Trans.,第I期,第307-314页,1982年(-CH-CH-,顺式和反式);Almquist等人,J.Med.Chem.,第23期,第1392-1398页,1980年(-COCH2-);Jennings-White等人,Tetrahedron Lett,第23期,第2533页,1982年(-COCH2-);Szelke等人,EuropeanAppln,EP 45665CA,1982年,第97期,第39405页,1982年(-CH(OH)CH2-);Holladay等人,Tetrahedron.Lett,第24期,第4401-4404页,1983年(-C(OH)CH2-);以及Hruby,Life Sci,第31期,第189-199页,1982年(-CH2-S-);其中每一篇都以引用方式并入本文。特别优选的非肽键是-CH2NH-。应当理解,肽类似物可在键原子之间具有多于一个原子,诸如b-丙氨酸、g-氨基丁酸等。
氨基酸类似物和类似物和肽类似物通常具有增强的或期望的性质,诸如更经济的生产、更好的化学稳定性、增强的药理学性质(半衰期、吸收、效力、功效等)、改变的特异性(例如,广谱的生物活性)、降低的抗原性等。
D-氨基酸可用于产生更稳定的肽,因为D氨基酸不被肽酶等识别。用相同类型的D-氨基酸(例如,用D-赖氨酸代替L-赖氨酸)系统取代共有序列的一个或多个氨基酸可用于产生更稳定的肽。半胱氨酸残基可用于将两个或更多个肽环化或连接在一起。这有利于将肽限制为特定构象。
c)合成肽
本公开描述了用于本公开的各种实施方案中的HN17和/或HN18、HN17和/或HN18相关的肽以及其他癌细胞特异性肽。这些肽具有被癌细胞/肿瘤细胞而不是正常细胞特异性摄取的能力。HN17肽为12聚体,并且HN18肽为11聚体。然而,可以向12聚体肽添加其他序列。还设想了仍保持易位穿过肿瘤细胞膜的能力的其他变体和HN17或HN18相关肽。此类肽通常可包含完整的HN17或HN18序列或其部分,并且长度为至少四、五、六、七、八、九、十、十一、十二、十三、十四、十五、十六、十七、十八、十九、二十、二十一、二十二、二十三、二十四、二十五个氨基酸残基,并且可以为5-10、10-15、15-20、20-25、25-30、30-35、35-40、40-45或甚至55-50个残基左右。
由于它们的相对较小的尺寸,本公开的肽还可以根据常规技术在溶液中或在固体支持物上合成。各种自动合成器可商购获得,并且可以根据已知协议使用。参见例如Stewart和Young,(1984年);Tam等人,(1983年);Merrifield,(1986年);以及Barany和Merrifield(1979年),它们各自以引用方式并入本文。短肽序列或重叠肽的文库,通常是从约6个氨基酸到约35至50个氨基酸,对应于本文所述的选定区域,可以容易地合成,然后在旨在识别反应性肽的筛选分析中进行筛选。
2。缀合方法
在本公开的一个实施方案中,将抗肿瘤化合物缀合至HN17和/或HN18肽以用于杀死癌细胞的方法。在本公开的另一个实施方案中,将可检测的标记物缀合至HN17和/或HN18肽以用于针对癌细胞的诊断和成像方法。在一个具体的实施方案中,标记物是直接可视化的。在另一个实施方案中,通过第二手段使标记物可视化,诸如检测标记物的第二生物实体的可视化。
在本公开的目的中,将HN17和/或HN18肽缀合至抗肿瘤药物或组合物。在一个具体的实施方案中,该肽与包含抗肿瘤药物或组合物的脂质体缀合。缀合手段诸如Bauminger和Wilchek(1980年)或Nagy等人(1996年)所教导的那些在本领域中是众所周知的,两者均通过引用方式并入本文。在本公开的一个实施方案中,抗肿瘤药物或组合物通过碳二亚胺缀合。在本公开的一个具体实施方案中,抗肿瘤药物例如阿霉素与1-乙基-3-(3-二甲基-氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)缀合,如在Arap等人(1999年)的参考文献中所教导的。另选地,使用Brown等人(1995年)的方法将HN17和/或HN18肽缀合至抗肿瘤药物,该方法在氧化剂(诸如过硫酸氢钾和单过氧邻苯二甲酸)的存在下利用了三肽NH.sub.2-Gly-Gly-His-COOH(SEQ ID NO:2)的Ni(II)复合物。
3。缀合物
为了检测或成像癌细胞而标记HN17或HN18肽(诸如,例如SEQ ID NO:1或SE QIDNO:7)的缀合物包括放射性标记物、核磁自旋共振原子(诸如螯合的Fe(III)、Mn(II)和Gd(III)或FeO纳米颗粒)、荧光标记物以及当与适当的底物接触时能够产生有色产物的酶标。例如,缀合物可为IRDye800(IR800)。
如本文所用,缀合物可包括荧光染料、结合对的成员诸如生物素/链霉亲和素、金属(例如,金)或可与可检测的分子特异性相互作用的表位标签,诸如通过产生有色底物或荧光。适于可检测地标记蛋白质的物质包括荧光染料(本文中也称为荧色物和荧光团)和与比色底物反应的酶(例如,辣根过氧化物酶)。在本发明的实践中通常优选使用荧光染料,因为它们可以以非常低的量检测。此外,在多抗原与单个阵列反应的情况下,每种抗原可用不同的荧光化合物进行标记,以用于同时检测。使用荧光计检测阵列上的标记斑点,存在指示抗原结合至特异抗体的信号。
荧光团是发光的化合物或分子。通常,荧光团以一个波长吸收电磁能并以第二波长发射电磁能。代表性荧光团包括但不限于1,5IAEDANS;1,8-ANS;4-甲基伞形酮;5-羧基-2,7-二氯荧光素;5-羧基荧光素(5-FAM);5-羧基萘酚荧光素;5-羧基四甲基罗丹明(5-TAMRA);5-羟色胺(5-HAT);5-ROX(羧基-X-罗丹明);6-羧基罗丹明6G;6-CR 6G;6-JOE;7-氨基-4-甲基香豆素;7-氨基放线菌素D(7-AAD);7-羟基-4-I甲基香豆素;9-氨基-6-氯-2-甲氧基吖啶(ACMA);ABQ;酸性品红;吖啶橙;吖啶红;吖啶黄;锥虫黄;锥虫黄孚尔根SITSA;水母发光蛋白(光蛋白);AFP—自体荧光蛋白质—(量子生物技术)参见sgGFP、sgBFP;AlexaFluor 350TM;Alexa Fluor 430TM;Alexa Fluor 488TM;Alexa Fluor 532TM;Alexa Fluor546TM;Alexa Fluor 568TM;Alexa Fluor 594TM;Alexa Fluor 633TM;Alexa Fluor 647TM;Alexa Fluor 660TM;Alexa Fluor 680TM;茜素络合指示剂;茜素红;别藻蓝蛋白(APC);AMC、AMCA-S;氨甲基香豆素(AMCA);AMCA-X;氨基放线菌素D;氨基香豆素;苯胺蓝;硬脂酸蒽;APC-Cy7;APTRA-BTC;APTS;阿斯屈拉崇亮红4G;阿斯屈拉崇橙R;阿斯屈拉崇红6B;阿斯屈拉崇黄7GLL;阿的平;ATTO-TAGTMCBQCA;ATTO-TAGTMFQ;金胺;Aurophosphine G;Aurophosphine;BAO 9(Bisaminophenyloxadiazole);BCECF(高pH);BCECF(低pH);硫酸黄连素;β-内酰胺酶;BFP蓝移GFP(Y66H);蓝色荧光蛋白;BFP/GFP FRET;Bimane;Bisbenzemide;双苯酰亚胺(Hoechst);双BTC;布兰科福尔FFG;布兰科福尔SV;BOBOTM-1;BOBOTM-3;氟硼荧492/515;氟硼荧493/503;氟硼荧500/510;氟硼荧;505/515;氟硼荧530/550;氟硼荧542/563;氟硼荧558/568;氟硼荧564/570;氟硼荧576/589;氟硼荧581/591;氟硼荧630/650-X;氟硼荧650/665-X;氟硼荧665/676;氟硼荧Fl;氟硼荧FL ATP;氟硼荧Fl-神经酰胺;氟硼荧R6G SE;氟硼荧TMR;氟硼荧TMR-X缀合物;氟硼荧TMR-X,SE;氟硼荧TR;氟硼荧TR ATP;氟硼荧TR-X SE;BO-PROTM-1;BO-PROTM-3;亮磺基黄素FF(BrilliantSulphoflavin FF);BTC;BTC-5N;钙黄绿素;丐黄绿素蓝;钙红-;钙绿;钙绿-1Ca 2+染料;钙绿-2Ca2+;钙绿-5N Ca2+;钙绿-C18 Ca2+;钙橙;钙荧光白;羧基-X-罗丹明(5-ROX);级联蓝TM;级联黄;儿茶酚胺;CCF2(GeneBlazer);CFDA;CFP(青色荧光蛋白);CFP/YFP FRET;叶绿素;色霉素A;色霉素A;CL-NERF;CMFDA;腔肠素;腔肠素cp;腔肠素f;腔肠素fcp;腔肠素h;腔肠素hcp;腔肠素ip;腔肠素n;腔肠素O;香豆素鬼笔环肽;C-藻蓝蛋白;CPM I甲基香豆素;CTC;CTC甲臜;Cy2TM;Cy3.18;Cy3.5TM;Cy3TM;Cy5.1 8;Cy5.5TM;Cy5TM;Cy7TM;青色GFP;环腺苷酸氟传感器(FiCRhR);Dabcyl;丹酰;丹酰胺;丹酰尸胺;丹酰氯;丹酰DHPE;丹酰氟;DAPI;Dapoxyl;Dapoxyl 2;Dapoxyl 3'DCFDA;DCFH(二氯双氢荧光素二乙酸酯);DDAO;DHR(二氢罗丹明123);二-4-ANEPPS;二-8-ANEPPS(非定比);DiA(4-Di 16-ASP);二氯二氢荧光素二乙酸酯(DCFH);DiD-亲脂示踪剂;DiD(DilC18(5));DIDS;二氢罗丹明123(DHR);Dil(DilC18(3));I二硝基苯酚;DiO(DiOC18(3));DiR;DiR(DilC18(7));DM-NERF(高pH);DNP;多巴胺;红色荧光蛋白;DTAF;DY-630-NHS;DY-635-NHS;EBFP;ECFP;EGFP;ELF 97;伊红;赤藓红;赤藓红ITC;溴化乙锭;溴乙啡锭二聚体-1(EthD-1);Euchrysin;EukoLight;氯化铕(111);EYFP;速蓝;FDA;孚尔根(副品红);FIF(甲醛(Formaldehyd)诱导的荧光);FITC;FlazoOrange;Fluo-3;Fluo-4;荧光素(FITC);荧光素二乙酸酯;荧光祖母绿;荧光金(羟芪巴脒);Fluor-Ruby;FluorX;FM 1-43TM;FM 4-46;Fura RedTM(高pH);Fura RedTM/Fluo-3;Fura-2;Fura-2/BCECF;Genacryl亮红B;Genacryl亮黄10GF;Genacryl粉红3G;Genacryl黄5GF;GeneBlazer;(CCF2);GFP(S65T);GFP红移(rsGFP);非UV激发的GFP野生型(wtGFP);UV激发的GFP野生型(wtGFP);GFPuv;Gloxalic Acid;粒状蓝;血卟啉;Hoechst 33258;Hoechst33342;Hoechst 34580;HPTS;羟基香豆素;羟芪巴脒(荧光金);羟色胺;Indo-1,高钙;Indo-1低钙;吲哚二碳菁(DiD);吲哚三碳菁(DiR);Intrawhite Cf;JC-1;JO JO-1;JO-PRO-1;LaserPro;Laurodan;LDS 751(DNA);LDS 751(RNA);Leucophor PAF;Leucophor SF;Leucophor WS;丽丝胺罗丹明;丽丝胺罗丹明B;钙黄绿素/溴乙啡锭二聚体;LOLO-1;LO-PRO-1;荧光黄;溶酶体蓝色探针;溶酶体蓝白探针;溶酶体绿色探针;溶酶体红色探针;溶酶体黄色探针;LysoSensor蓝;LysoSensor绿;LysoSensor黄/蓝;Mag绿;萘红(根皮红B);Mag-Fura红;Mag-Fura-2;Mag-Fura-5;Mag-lndo-1;镁绿;镁橙;孔雀绿;海蓝;I MaxilonBrilliant Flavin 10GFF;Maxilon Brilliant Flavin 8GFF;部花青;甲氧基香豆素;线粒体绿色荧光探针FM;线粒体橙色荧光探针;线粒体红色荧光探针;光辉霉素;单溴二胺;单溴二胺(mBBr-GSH);单氯二胺;MPS(甲基绿派洛宁二苯乙烯);NBD;NBD胺;尼罗红;硝基苯并噁二唑;去甲肾上腺素;核固红;i核黄;Nylosan Brilliant lavin E8G;俄勒冈绿TM;俄勒冈绿TM488;俄勒冈绿TM500;俄勒冈绿TM514;太平洋蓝;副品红(孚尔根);PBFI;PE-Cy5;PE-Cy7;PerCP;PerCP-Cy5.5;PE-TexasRed(红613);根皮红B(萘红);Phorwite AR;Phorwite BKL;Phorwite Rev;Phorwite RPA;磷化氢3R;光致抗蚀剂;藻红蛋白B[PE];藻红蛋白R[PE];PKH26(Sigma);PKH67;PMIA;Pontochrome蓝黑;POPO-1;POPO-3;PO-PRO-1;PO-I PRO-3;樱草灵;普施安黄;碘化丙锭(Pl);PyMPO;芘;派洛宁;派洛宁B;Pyrozal Brilliant Flavin7GF;QSY 7;芥奎吖因;试卤灵;RH 414;Rhod-2;罗丹明;罗丹明110;罗丹明123;罗丹明5GLD;罗丹明6G;罗丹明B;罗丹明B 200;碱性玫瑰精;罗丹明BB;罗丹明BG;罗丹明绿;罗丹明毒伞素;罗丹明:鬼笔环肽;罗丹明红;罗丹明WT;玫瑰红;R-藻蓝蛋白;R-藻红蛋白(PE);rsGFP;S65A;S65C;S65L;S65T;宝石蓝GFP;SBFI;血清素;Sevron亮红2B;Sevron亮红4G;Sevron I亮红B;Sevron橙;Sevron黄L;sgBFPTM(超级发光BFP);sgGFPTM(超级发光GFP);SITS(樱草灵;二苯乙烯异硫代磺酸);SNAFL钙黄绿素;SNAFL-1;SNAFL-2;SNARF钙黄绿素;SNARF1;钠绿;SpectrumAqua;SpectrumGreen;SpectrumOrange;Spectrum Red;SPQ(6-甲氧基-N-(3磺丙基)喹啉);二苯乙烯;磺酰罗丹明B和C;超磺酰罗丹明;SYTO 11;SYTO 12;SYTO13;SYTO 14;SYTO 15;SYTO 16;SYTO 17;SYTO 18;SYTO 20;SYTO 21;SYTO 22;SYTO 23;SYTO 24;SYTO 25;SYTO 40;SYTO 41;SYTO 42;SYTO 43;SYTO 44;SYTO 45;SYTO 59;SYTO60;SYTO 61;SYTO 62;SYTO 63;SYTO 64;SYTO 80;SYTO 81;SYTO 82;SYTO 83;SYTO 84;SYTO 85;SYTOX蓝;SYTOX绿;SYTOX橙;四环素;四甲基罗丹明(TRITC);德克萨斯红TM;德克萨斯红TM缀合物;硫代二碳花菁(DiSC3);噻嗪红R;噻唑橙;硫磺素5;硫磺素S;硫磺素TON;Thiolyte;硫唑橙;Tinopol CBS(钙荧光白);TIER;TO-PRO-1;TO-PRO-3;TO-PRO-5;TOTO-1;TOTO-3;TriColor(PE-Cy5);TRITC四甲基罗丹明异硫代氰酸酯;True蓝;Tru红;Ultralite;荧光素钠B;Uvitex SFC;wt GFP;WW 781;X-罗丹明;XRITC;二甲酚橙;Y66F;Y66H;Y66W;黄GFP;YFP;YO-PRO-1;YO-PRO 3;YOYO-1;YOYO-3;Sybr绿;吲哚菁绿;噻唑橙(内螯合染料);半导体纳米粒子,诸如量子点;或封闭荧光团(可用光或其他电磁能源活化),或它们的组合。
改性剂单元诸如放射性核素可通过卤化并入或直接连接到本文所述的任何化合物上。可用于该实施方案的放射性核素的示例包括但不限于氚、碘-125、碘-131、碘-123、碘-124、砹-210、碳-11、碳-14、氮-13、氟-18。在另一个方面,放射性核素可以连接到连接基团或通过螯合基团结合,然后螯合基团直接或通过连接基团连接到化合物上。可用于该组合(apset)的放射性核素的示例包括但不限于Tc-99m、Re-186、Ga-68、Re-188、Y-90、Sm-153、Bi-212、Cu-67、Cu-64、Lu-177和Cu-62。诸如这些的放射性标记技术通常用于放射性药物工业中。
放射性标记的化合物可用作诊断神经疾病(例如,神经变性疾病)或精神病症或跟踪哺乳动物(例如人)中这种疾病或病症的进展或治疗的显像剂。本文所述的放射性标记的化合物可以方便地与成像技术结合使用,诸如正电子发射计算机断层扫描(PET)或单光子发射计算机断层扫描(SPECT)。
标记可以是直接标记或间接标记。在直接标记中,检测抗体(目标分子的抗体)或检测分子(可以通过目标分子的抗体结合的分子)包括标记。对标记的检测表明存在检测抗体或检测分子,其继而分别表明存在目标分子或目标分子的抗体。在间接标记中,使另外的分子或部分与免疫复合物接触或在免疫复合物的位点处产生。例如,信号产生分子或部分诸如酶可以与检测抗体或检测分子连接或相关联。然后,信号产生分子可以在免疫复合物的位点处产生可检测的信号。例如,当提供有合适的底物时,酶可以在免疫复合物的位点处产生可见的或可检测的产物。ELISA使用这种类型的间接标签。
4。抗氧化剂
一般来讲,抗氧化剂是能与氧气反应并且通常被氧气消耗的化合物。由于抗氧化剂通常与氧反应,所以抗氧化剂通常也与自由基产生剂和自由基反应。(RichardA.Passwater博士,1985年,Keats出版公司的“The Antioxidants--The Nutrients thatGuard Your Body”,至少对于与抗氧化剂有关的材料通过引用方式并入本文)。该组合物可以包含任何抗氧化剂,并且非限制性列表将包括但不限于,非类黄酮抗氧化剂和可以直接清除自由基的营养物质,包括多胡萝卜素、β-胡萝卜素、α-胡萝卜素、γ-胡萝卜素、番茄红素、叶黄素和玉米蛋白、硒、维生素E,包括α-、β-和γ-(生育酚,尤其是α-生育酚等)、维生素E琥珀酸酯和水溶性维生素E(可溶性维生素E类似物)、维生素C(阿斯卡比酸)和烟酸(维生素B3、烟酸和烟酰胺)、维生素A、13-顺式视黄酸、N-乙酰基-L-半胱氨酸(NAC)、抗坏血酸钠、吡咯烷菌素-二硫代氨基甲酸酯和辅酶Q10;催化自由基破坏的酶,包括过氧化物酶诸如作用于H2O2的谷胱甘肽过氧化物酶(GSHPX),以及诸如有机过氧化物,包括作用于H2O2的过氧化氢酶(CAT)、使O2H2O2歧化的超氧化物歧化酶(SOD);谷胱甘肽转移酶(GSHTx)、谷胱甘肽还原酶(GR)、6-磷酸葡萄糖脱氢酶(G6PD)及其模拟物、类似物和聚合物(抗氧化剂酶的类似物和聚合物,诸如SOD描述于,例如,美国专利序列号5,171,680,其至少与抗氧化剂和抗氧化剂酶有关的材料通过引用方式并入本文);谷胱甘肽;血浆铜蓝蛋白;半胱氨酸和半胱胺(β-巯基乙胺)以及黄酮类化合物和黄酮类化合物样分子,如叶酸(folic acid和folate)。抗氧化剂酶及其模拟物和抗氧化剂营养素的综述可见于Kumar等人,Pharmac.Ther.第39卷:第301页,1988年以及Machlin L.J.和Bendich,F.A.S.E.B.Journal第1卷:第441-445页,1987年,这两篇文献中与抗氧化剂有关的材料通过引入方式并入本文。
类黄酮,也称为“苯色酮”,是天然存在的具有抗氧化特性的水溶性化合物。类黄酮广泛分布于维管束植物中,并且存在于许多蔬菜、水果和饮料中,诸如茶和葡萄酒(尤其是红酒)。类黄酮为缀合芳族化合物。最广泛存在的类黄酮是黄酮和黄酮醇(例如,杨梅素(3,5,7,3',4',5',-六羟基黄酮))、槲皮素(3,5,7,3',4'-五羟基黄酮)、山柰酚(3,5,7,4'-四羟基黄酮)、黄酮芹菜素(5,7,4'-三羟基黄酮)和木犀草素((5,7,3',4'-四羟基黄酮)及其糖苷和槲皮素)。
5。核酸
本文公开的多种分子是基于核酸的,包括例如编码例如HN17和/或HN18的核酸或其片段,以及各种功能性核酸。所公开的核酸由例如核苷酸、核苷酸类似物或核苷酸替代物构成。本文讨论了这些和其他分子的非限制性示例。应当理解,例如,当载体在细胞中表达时,表达的mRNA将通常由A、C、G和U构成。同样,应当理解,例如,如果反义分子通过例如外源递送被引入细胞或细胞环境中,则有利的是反义分子由降低细胞环境中反义分子降解的核苷酸类似物构成。
a)核苷酸和相关分子
核苷酸是含有碱基部分、糖部分和磷酸部分的分子。核苷酸可通过它们的磷酸部分和糖部分连接在一起,形成核苷间键。核苷酸的碱基部分可以是腺嘌呤-9-基(A)、胞嘧啶-1-基(C)、鸟嘌呤-9-基(G)、尿嘧啶-1-基(U)和胸腺嘧啶-1-基(T)。核苷酸的糖部分是核糖或脱氧核糖。核苷酸的磷酸部分是五价磷酸。核苷酸的非限制性示例将为3'-AMP(3'-腺苷一磷酸)或5'-GMP(5'-鸟苷一磷酸)。
核苷酸类似物是含有对碱基、糖或磷酸部分的某种类型修饰的核苷酸。碱基结构部分的修饰将包括A、C、G和T/U的天然修饰和合成修饰,以及不同的嘌呤或嘧啶碱基,诸如尿嘧啶-5-基(.psi.)、次黄嘌呤-9-基(I)和2-氨基腺嘌呤-9-基。修饰的碱基包括但不限于5-甲基胞嘧啶(5-me-C)、5-羟甲基胞嘧啶、黄嘌呤、次黄嘌呤、2-氨基腺嘌呤、腺嘌呤和鸟嘌呤的6-甲基和其他烷基衍生物、腺嘌呤和鸟嘌呤的2-丙基和其他烷基衍生物、2-硫脲嘧啶、2-硫代胸腺嘧啶和2-硫代胞嘧啶、5-卤代尿嘧啶和胞嘧啶、5-丙炔基尿嘧啶和胞嘧啶、6-偶氮尿嘧啶、胞嘧啶和胸腺嘧啶、5-尿嘧啶(伪尿嘧啶)、4-硫脲嘧啶、8-卤代、8-氨基、8-硫醇、8-硫烷基、8-羟基和其他8-取代的腺嘌呤和鸟嘌呤、5-卤代特别是5-溴、5-三氟甲基和其他5-取代的尿嘧啶和胞嘧啶、7-甲基鸟嘌呤和7-甲基腺嘌呤、8-氮杂鸟嘌呤和8-氮杂腺嘌呤、7-脱氮鸟嘌呤和7-脱氮杂腺嘌呤和3-脱氮鸟嘌呤和3-脱氮杂腺嘌呤。例如,附加的碱基修饰可见于美国专利No.3,687,808,Englisch等人,Angewandte Chemie,国际版,1991年,第30卷,第613页,以及Sanghvi,Y.S.,第15章,Antisense Research and Applications,第289-302,Crooke,S.T.和Lebleu,B.编辑,CRC出版社,1993年。某些核苷酸类似物,诸如5-取代的嘧啶、6-氮杂嘧啶和N-2、N-6和O-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。5-甲基胞嘧啶可以增加双链形成的稳定性。通常,时基修饰可以与例如糖修饰诸如2'-O-甲氧基乙基结合,以实现独特的特性,诸如增加的双链稳定性。
核苷酸类似物也可以包括糖结构部分的修饰。糖结构部分的修饰将包括核糖和脱氧核糖的天然修饰以及合成修饰。糖修饰包括但不限于在2'位置的以下修饰:OH;F;O-、S-或N-烷基;O-、S-或N-烯基;O-、S-或N-炔基;或O-烷基-O-烷基,其中烷基、烯基和炔基可以是取代或未取代的C1-C10、烷基或C2-C10烯基和炔基。2'糖修饰还包括但不限于-O[(CH2)nO]mCH3、-O(CH2)n OCH3、-O(CH2)n NH2、-O(CH2)n CH3、-O(CH2)n-ONH2和-O(CH2)nON[(CH2)n CH3)]2,其中n和m为1至约10。
2'位置的其他修饰包括但不限于:C1至C10低级烷基、取代的低级烷基、烷芳基、芳烷基、O-烷芳基或O-芳烷基、SH、SCH3、OCN、Cl、Br、CN、CF3、OCF3、SOCH3、SO2 CH3、ONO2、NO2、N3、NH2、杂环烷基、杂环烷基芳基、氨基烷基氨基、聚烷基氨基、取代的甲硅烷基、RNA裂解基团、报告基团、嵌入剂、用于改善寡核苷酸的药代动力学特性的基团或用于改善寡核苷酸的药效性质的基团,以及具有类似性质的其他取代基。也可以在糖上的其他位置进行类似的修饰,特别是在3'末端核苷酸上或在2'-5'连接的寡核苷酸中糖的3'位置和5'末端核苷酸的5'位置。修饰的糖还包括在桥环氧上含有修饰的糖,诸如CH2和S。核苷酸糖类似物也可以具有糖模拟物,诸如环丁基结构部分代替戊呋喃糖基糖。
核苷酸类似物也可在磷酸结构部分处修饰。修饰的磷酸结构部分包括但不限于可被修饰的那些,使得两个核苷酸之间的键合包含硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯、包括3'-亚烷基膦酸酯和手性膦酸酯的甲基和其他烷基膦酸酯、次膦酸酯、包括3'-氨基氨基磷酸酯和氨基烷基氨基磷酸酯的氨基磷酰胺、硫代氨基磷酸酯、硫代烷基磷酸酯、硫代烷基磷酸三酯和硼烷磷酸酯(boranophosphate)。应当理解,两个核苷酸之间的这些磷酸酯或修饰的磷酸酯键可以通过3'-5'键或2'-5'键,并且该键可以包含反向极性,诸如3'-5'至5'-3'或2'-5'至5'-2'。还包括各种盐、混合盐和游离酸形式。
应当理解,核苷酸类似物仅需要包含单个修饰,但是也可以在一个结构部分内或不同结构部分之间包含多个修饰。
核苷酸替代物是与核苷酸具有相似的功能性特性的分子,但是不含磷酸部分,诸如肽核酸(PNA)。核苷酸替代物是将以Watson Crick或Hoogsteen方式识别核酸的分子,但其通过除磷酸部分以外的部分连接在一起。当与适当靶核酸相互作用时,核苷酸替代物能够适形于双螺旋类型结构。
核苷酸替代物是已经替换了磷酸盐结构部分和/或糖结构部分的核苷酸或核苷酸类似物。核苷酸替代物不包含标准的磷原子。磷酸盐替代物可以是,例如,短链烷基或环烷基核苷间键、混合的杂原子和烷基或环烷基核苷间键,或者一个或多个短链杂原子或杂环核苷间键。这些包括具有吗啉代键的那些(部分由核苷的糖部分形成);硅氧烷主链;硫化物、亚砜和砜主链;甲乙酰基和硫代甲乙酰基主链;亚甲基甲乙酰基和硫代甲乙酰基主链;含烯烃主链;氨基磺酸盐主链;亚甲基亚胺和亚甲基肼主链;磺酸盐和磺酰胺主链;酰胺主链;以及其他混合了N、O、S和CH2的成分。
还应当理解,在核苷酸替代物中,核苷酸的糖和磷酸结构部分两者都可以被例如酰胺型键(氨基乙基甘氨酸)(PNA)替换。
还可以将其他类型的分子(缀合物)连接到核苷酸或核苷酸类似物以增强例如细胞摄取。缀合物可与核苷酸或核苷酸类似物化学连接。此类缀合物包括但不限于脂质结构部分,诸如胆固醇结构部分(Letsinger等人,Proc.Natl.Acad.Sci.USA,1989年,第86卷,第6553-6556页),胆酸(Manoharan等人,Bioorg.Med.Chem.Let.,1994年,第4卷,第1053-1060页),硫醚,例如,己基-S-三苯甲基硫醇(Manoharan等人,Ann.N.Y.Acad.Sci.,1992年,第660卷,第306-309页;Manoharan等人,Bioorg.Med.Chem.Let.,1993年,第3卷,第2765-2770页),巯基胆固醇(Oberhauser等人,Nucl.Acids Res.,1992年,第20卷,第533-538页),脂族链,例如,十二烷二醇或十一烷基残基(Saison-Behmoaras等人,EMBO J.,1991年,第10卷,第1111-1118页;Kabanov等人,FEBS Lett.,1990年,第259卷,第327-330页;Svinarchuk等人,Biochimie,1993年,第75卷,第49-54页),磷脂,例如,二-十六烷基外消旋甘油或1,2-二-O-十六烷基外消旋甘油-3-H-膦酸酯三乙铵(Manoharan等人,Tetrahedron Lett.,1995年,第36卷,第3651-3654页;Shea等人,Nucl.Acids Res.,1990年,第18卷,第3777-3783页),多胺或聚乙二醇链(Manoharan等人,Nucleosides&Nucleotides,1995年,第14卷,第969-973页),或金刚烷乙酸(Manoharan等人,Tetrahedron Lett.,1995年,第36卷,第3651-3654页),棕榈基结构部分(Mishra等人,Biochim.Biophys.Acta,1995年,第1264卷,第229-237页),或十八烷基胺或己氨基-羰基-氧胆固醇结构部分(Crooke等人,J.Pharmacol.Exp.Ther.,1996年,第277卷,第923-937页。
Watson-Crick相互作用是与核苷酸、核苷酸类似物或核苷酸替代物的Watson-Crick面的至少一种相互作用。核苷酸、核苷酸类似物或核苷酸替代物的Watson-Crick面包括基于嘌呤的核苷酸、核苷酸类似物或核苷酸替代物的C2、N1和C6位置以及基于嘧啶的核苷酸、核苷酸类似物或核苷酸替代物的C2、N3、C4位置。
Hoogsteen相互作用是在核苷酸或核苷酸类似物的Hoogsteen面上发生的相互作用,该核苷酸或核苷酸类似物暴露于双链DNA的大沟中。Hoogsteen面包括N7位置和嘌呤核苷酸C6位置的反应性基团(NH2或O)。
6。表达系统
递送给细胞的核酸通常含有表达控制系统。例如,病毒和逆转录病毒系统中插入的基因通常含有启动子和/或增强子,以帮助控制所需的基因产物的表达。启动子通常是DNA的一个或多个序列,其在处于相对于转录起始位点的相对固定的位置时起作用。启动子含有RNA聚合酶和转录因子的基本相互作用的所需的核心元件,并且可含有上游元件和应答元件。
a)病毒启动子和增强子
控制哺乳动物的宿主细胞中载体转录的优选的启动子可从各种来源获得,例如,病毒的基因组,诸如:多瘤病毒、猿猴病毒40(SV40)、腺病毒、逆转录病毒、乙型肝炎病毒,并且最优选地巨细胞病毒,或者获自异源哺乳动物的启动子,例如β肌动蛋白启动子。SV40病毒的早期和晚期启动子可方便地作为SV40限制性片段获得,该片段还含有SV40病毒复制起点(Fiers等人,Nature,第273卷,第113页,1978年)。人巨细胞病毒的立即早期启动子方便地作为HindIII E限制性片段获得(Greenway,P.J.等人,Gene,第18卷,第355-360页,1982年)。当然,来自宿主细胞或相关物种的启动子也可用于本文。
增强子通常是指在与转录起始位点没有固定距离的情况下起作用的DNA序列,并且可以是转录单元的5'(Laimins,L.等人,Proc.Natl.Acad.Sci.第78卷,第993页,1981年)或3'(Lusky,M.L.等人,Mol.Cell Bio.第3卷,第1108页,1983年)。此外,增强子可在内含子内(Banerji,J.L.等人,Cell,第33卷,第729页,1983年)以及在编码序列本身内(Osborne,T.F.等人,Mol.Cell Bio.第4卷,第1293页,1984年)。它们通常长度在10bp到300bp之间,并且它们以顺式起作用。增强子用于增加来自附近启动子的转录。增强子也通常含有介导转录调节的应答元件。启动子也可含有介导转录调节的应答元件。增强子通常确定基因表达的调节。虽然许多增强子序列现在已知来自哺乳动物的基因(球蛋白、弹性蛋白酶、白蛋白、胎蛋白和胰岛素),但通常人们将使用来自真核细胞病毒的增强子来进行一般表达。优选的示例是复制起点后侧上的SV40增强子(bp 100-270)、巨细胞病毒早期启动子增强子、复制起点后侧的多瘤增强子和腺病毒增强子。
启动子和/或增强子可通过触发其功能的光或特定化学事件特异性激活。系统可通过四环素和地塞米松等试剂进行调节。还有通过暴露于辐射(诸如γ辐射)或烷基化化疗药物来增强病毒载体基因表达的方法。
在某些实施方案中,启动子和/或增强子区可充当组成型启动子和/或增强剂,以最大化待转录的转录单元的区的表达。在某些构建体中,启动子和/或增强子区在所有真核细胞类型中都是有活性的,即使它仅在特定时间在特定类型的细胞中表达。此类型的优选的启动子是CMV启动子(650个碱基)。其他优选的启动子是SV40启动子、巨细胞病毒(全长启动子)和逆转录病毒载体LTR。
已经表明,可以克隆所有特定调节元件并用于构建在特定细胞类型诸如黑素瘤细胞中选择性地表达的表达载体。神经胶质原纤维乙酸蛋白(GFAP)启动子已被用于在神经胶质起源的细胞中选择性地表达基因。
用于真核宿主细胞(酵母、真菌、昆虫、植物、动物、人或有核细胞)的表达载体也可含有终止转录所必需的序列,其可影响mRNA表达。这些区在编码组织因子蛋白质的mRNA的非翻译部分中被转录为聚腺苷酸化片段。3'非翻译区还包括转录终止位点。优选的是,转录单元还含有聚腺苷酸化区。该区的一个好处是它增加了转录单元像mRNA一样被加工和转运的可能性。已经很好地建立了聚腺苷酸化信号在表达构建体中的鉴定和使用。优选的是,同源聚腺苷酸化信号用于转基因构建体中。在某些转录单元中,聚腺苷酸化区来源于SV40早期聚腺苷酸化信号并且由约400个碱基组成。还优选的是,单独含有其他标准序列或与上述序列组合的转录单元改善来自构建体的表达或其稳定性。
b)标记
病毒载体可包括编码标记产物的核酸序列。该标记产物用于确定基因是否已被递送至细胞并且一旦递送即表达。优选的标记基因是大肠杆菌(E.Coli)lacZ基因,其编码β-半乳糖苷酶和绿荧光蛋白。
在一些实施方案中,该标记可以是可选择标记。适用于哺乳动物的细胞的可选择标记的示例为二氢叶酸还原酶(DHFR)、胸苷激酶、新霉素、新霉素类似物G418、潮霉素和嘌呤霉素。当这些可选择标记成功转移到哺乳动物的宿主细胞中时,如果置于选择性压力下,转化的哺乳动物的宿主细胞可存活。有两种广泛使用的不同类别的选择性制度。第一类别是基于细胞的代谢和突变细胞系的使用,其缺乏独立于补充培养基生长的能力。两个示例为:CHO DHFR-细胞和小鼠LTK-细胞。这些细胞在不添加胸苷或次黄嘌呤等营养素的情况下缺乏生长能力。由于这些细胞缺乏完整的核苷酸合成途径所必需的某些基因,除非在补充培养基中提供缺失的核苷酸,否则它们不能存活。补充培养基的替代方案是将完整的DHFR或TK基因引入缺乏相应基因的细胞中,从而改变其生长要求。未用DHFR或TK基因转化的单个细胞不能在非补充培养基中存活。
第二类别是显性选择,其是指在任何细胞类型中使用的选择方案,并且不需要使用突变细胞系。这些方案通常使用药物来抑制宿主细胞的生长。具有新型基因的那些细胞将表达传递耐药性的蛋白质并且将在选择中存活。此类显性选择的示例使用药物新霉素(Southern P.和Berg,P.,J.Molec.Appl.Genet.第1卷,第327页,1982年)、霉酚酸(Mulligan,R.C.和Berg,P.,Science,第209卷,第1422页,1980年)或潮霉素(Sugden,B.等人,Mol.《细胞》(Cell),Biol.第5卷,第410-413页,1985年)。这三个示例在真核生物控制下使用细菌基因分别对适当药物G418或新霉素(遗传霉素)、xgpt(霉酚酸)或潮霉素传递抗性。其他包括新霉素类似物G418和嘌呤霉素。
7。体内成像
本公开还提供了使用HN17和/或HN18和其他癌症特异性蛋白质缀合物对癌症进行成像的体内方法。术语“体内成像”是指允许检测特异性结合位于动物或人类受试者体内的癌细胞的肽或其片段的任何非侵入性方法。在本公开中,当肽或其片段被癌细胞摄取时,本发明人特别设想通过将肽或其片段与合适的检测剂缀合来检测肽的摄取。
根据本公开的方法的内在化肽的分离和癌症的检测,本领域技术人员知道,内在化肽用于成像或诊断肿瘤细胞。如本文在针对HN17或HN18的实施例中所述的方法所教导的那样,技术人员可以分离内在化、识别或检测特异性癌细胞类型的内在化肽。尽管实施例针对头颈部癌细胞诸如鳞状细胞癌,但是可以通过相同的方法利用任何癌细胞类型来识别该癌细胞类型的特异性内在化肽。根据该具体实施方案,技术人员可以使用本文所述的方法来识别内在化其他肿瘤或癌性组织的其他肽,包括但不限于:淋巴瘤,B细胞淋巴瘤,T细胞淋巴瘤,蕈样霉菌病,霍奇金病,骨髓性白血病,膀胱癌,脑癌,神经系统癌症,头颈癌,头颈部鳞状细胞癌,肾脏癌,肺癌诸如小细胞肺癌和非小细胞肺癌,神经母细胞瘤,胶质母细胞瘤,胃癌,卵巢癌,骨肉瘤,胰腺癌,前列腺癌,皮肤癌,肝癌,黑色素瘤,口腔、咽喉、喉和肺的鳞状细胞癌,结肠癌,宫颈癌,宫颈鳞癌,乳腺癌和上皮癌,肾癌,结肠直肠癌、泌尿生殖系统癌,肺癌,食管癌,头颈癌,大肠癌,造血系统癌;睾丸癌;前列腺癌或胰腺癌。
成像方法通常涉及在药学上有效的载体中,向动物或受试者施用成像有效量的与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQID NO:7、SE QID NO:8或SEQ ID NO:9(例如HN17肽、HN18肽或其任何片段)所示的肽缀合的可检测到的标记物,然后检测癌性组织对所标记的HN17肽-标记结合物和/或HN18肽-标记结合物的摄取。可检测到的标记物优选的是可通过非侵入性方法检测到的自旋标记分子或放射性同位素。
“成像有效量”是SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ IDNO:5、SEQ ID NO:6、SEQ ID NO:7、SE QID NO:8或SEQ ID NO:9(例如,HN17肽、HN18肽或其任何片段)所示的可检测到地所标记的肽的量,该量在给药时足以使得以后能够检测到所标记的肽或片段对癌组织的摄取。允许有效量的肽-标记缀合物有足够的时间与患者组织内存在的癌组织接触,然后将患者暴露于检测设备以识别可检测到的标记物。
因此,本公开的一个实施方案提供了用于成像的HN17和/或HN18-染料缀合物或构建体,该成像具有提供肿瘤图像的能力,例如,通过磁共振成像、X射线成像、计算机放射断层摄影术等。在磁共振成像(“MRI”)中特别有用的元素包括核磁共振自旋同位素157Gd、55Mn、162Dy、52Cr和56Fe,其中钆通常是优选的。也可以使用可以使用γ闪烁相机或检测器检测到的放射性物质,诸如technicium99m或铟111。适用于本公开的金属离子的其他示例是123I、131I、97Ru、67Cu、67Ga、125I、68Ga、72As、89Zr、18F和201Tl。
放射性核素可通过使用中间官能团直接或间接结合至HN17和/或HN18肽或其片段。通常,用于将金属离子形式存在的放射性同位素与抗体结合的中间官能团是二亚乙基三胺五乙酸(DTPA)、DOTA(十二烷四叔酸)、DO3A(十二烷三酸)、NOTA(环壬烷三乙酸)和乙二胺四乙酸(EDTA)和R-DO3A,其中R是含有与金属结合的羟基的结构部分。
所标记的HN17和/或HN18肽或其片段的给药可以是局部的或全身的,并且可以经由脊髓液等静脉内、动脉内地完成。根据所检查的身体部位,给药也可以是皮内的或腔内的。在经过足够的时间使所标记的HN17和/或HN18肽或其片段与患病组织(在这种情况下为癌组织)结合之后,例如30分钟至48小时,然后通过成像技术检查受检受试者的区域。MRI、SPECT、平面闪烁成像、PET、NIRF光学成像和其他新兴成像技术都可以使用。可以利用多种成像技术来澄清或确认检测。
监测和记录结合的放射性同位素的分布及其随时间的增加或减少。通过将结果与从临床正常人的研究获得的数据进行比较,可以确定患病组织的存在和程度。
确切的成像方案将必然取决于患者特有的因素而变化,并且还可能取决于所检查的身体部位、给药方法、所用标记物的类型等。然而,具体步骤的确定对于技术人员而言是常规的。尽管成像实施方案的剂量取决于患者的年龄和体重,但是预期每位患者约0.1至约20mg、更优选约1.0至约2.0mg的所标记的HN17和/或HN18肽或其片段的一次性剂量是有用的。在20g的小鼠中成像剂量为10-100nmol或0.5至5微摩尔/kg在肿瘤小鼠中非常有效,并且每只小鼠40nmol或2微摩尔/kg是优选的。在人类使用中,剂量将根据人类患者的体重或体表面积从小鼠剂量按比例增加,例如从0.02kg的小鼠到70kg的患者,剂量将增加(以重量计)至40纳摩尔的约3500倍,即约140微摩尔。
因此,本文公开的一方面是检测受试者的癌细胞的方法,包括向受试者施用包含肽的组合物,其中所述肽包含TLPNSNHIKQGL(SEQ ID NO:1)、TSPLNIHNGQKL(SEQ ID NO:2)、LNKQTHGLIPNS(SEQ ID NO:3)、NQHSKNTLLIGP(SEQ ID NO:4)、LKQGNHINLPS(SEQ ID NO:5)、YSPLNIHNGQKL(SEQ ID NO:6)、LPNSNHIKQGL(SEQ ID NO:7)、YLPNSNHIKQGL(SEQ ID NO:8)或FLPNSNHIKQGL(SEQ ID NO:9)的氨基酸序列;其中将肽缀合至可检测到的标记物。在一个方面,该肽还包含附接至氨基末端氨基酸的亲脂体(诸如,例如,芴基甲氧羰基、4-对-碘-苄基、4-对-碘-苯甲酰基和/或3-碘酪氨酸)。
8。内在化肽的分离
在本公开的实施方案中,本文提供了一种用于分离内在化肽的方法。尽管技术人员知道这些方法通常是涉及识别内在化为肿瘤或癌性组织的肽,但是在涉及识别HN17和/或HN18肽(诸如,例如,SEQ ID NO:1或SEQ ID NO:7)以用于检测、成像或识别癌症(诸如,例如,鳞状细胞癌)的实施例中提供了具体示例。根据该具体实施方案,技术人员可以使用本文所述的方法来识别内在化其他肿瘤或癌性组织的其他肽,包括但不限于:淋巴瘤,B细胞淋巴瘤,T细胞淋巴瘤,蕈样霉菌病,霍奇金病,骨髓性白血病,膀胱癌,脑癌,神经系统癌症,头颈癌,头颈部鳞状细胞癌,肾脏癌,肺癌诸如小细胞肺癌和非小细胞肺癌,神经母细胞瘤,胶质母细胞瘤,胃癌,卵巢癌,骨肉瘤,胰腺癌,前列腺癌,皮肤癌,肝癌,黑色素瘤,口腔、咽喉、喉和肺的鳞状细胞癌,结肠癌,宫颈癌,宫颈鳞癌,乳腺癌和上皮癌,肾癌,结肠直肠癌、泌尿生殖系统癌,肺癌,食管癌,头颈癌,大肠癌,造血系统癌;睾丸癌;前列腺癌或胰腺癌。
9。通过本发明的方法检测癌症
在本公开的实施方案中,存在用于检测癌症的方法。尽管本文提供的方法的描述是根据一般教导技术人员如何分离内在化肽并且利用该肽来检测癌细胞的描述,但是在关于分离HN17和/或HN18肽(诸如,例如SEQ ID NO:1或SEQ ID NO:7)作为内在化肽的实施例中描述了具体的示例,并且描述了其用于检测癌症(诸如,例如,鳞状细胞癌)的用途。具体的方法步骤可包括获得内在化肽;将可检测到的标记物缀合至肽;将缀合肽和标记物施用给生物体;以及通过合适的检测装置检测缀合物与癌细胞的结合。
在附加的实施方案中,用于检测癌症的方法包括获得肽文库;将文库的肽与细胞群的成员单独接触;通过细胞群成员分析肽的内吞作用以识别内在化肽;将可检测到的标记物缀合至所述肽;将缀合肽和标记物施用给生物体;以及通过合适的检测装置检测缀合物与细胞的结合。尽管该细胞可能是鳞状细胞癌细胞,包括头颈癌细胞,但也可以另选地是:淋巴瘤,B细胞淋巴瘤,T细胞淋巴瘤,蕈样霉菌病,霍奇金病,骨髓性白血病,膀胱癌,脑癌,神经系统癌症,头颈癌,头颈部鳞状细胞癌,肾脏癌,肺癌诸如小细胞肺癌和非小细胞肺癌,神经母细胞瘤,胶质母细胞瘤,胃癌,卵巢癌,骨肉瘤,胰腺癌,前列腺癌,皮肤癌,肝癌,黑色素瘤,口腔、咽喉、喉和肺的鳞状细胞癌,结肠癌,宫颈癌,宫颈鳞癌,乳腺癌和上皮癌,肾癌,结肠直肠癌、泌尿生殖系统癌,肺癌,食管癌,头颈癌,大肠癌,造血系统癌;睾丸癌;前列腺癌或胰腺癌。
10。癌症治疗
在本公开的一个实施方案中,存在一种利用SEQ ID NO:1、SEQ ID NO:2、SEQ IDNO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ ID NO:9中任一个的肽或片段的癌症治疗。待治疗的患者可以是婴儿、儿童、青少年或成人,并且在优选的实施方案中显示出疾病的至少一种症状的改善,包括肿瘤大小的减小。
本领域技术人员已知的多种癌症治疗可以与本公开的肿瘤细胞特异性肽组合使用(可以同时给药,在给药时混合,配制成相同的组合物或共价附接)。本发明人设想使用本公开的肿瘤细胞特异性肽来实现本领域已知的各种化学治疗向癌细胞和/或肿瘤细胞的特异性和靶向递送。除了本领域已知的其他癌症治疗之外,其他实施方案还设想使用本公开的肿瘤细胞特异性肽靶向抗癌药物。下文描述了一些现有的癌症治疗和化学治疗剂。本领域的技术人员将认识到可以与本公开的肿瘤细胞特异性肽结合使用的其他抗癌治疗的存在和发展,并且将进一步认识到,本公开的肿瘤细胞特异性肽的使用将不限于以下所述的试剂。在一个方面,本文公开了包含肽(诸如,例如,SEQ ID NO:1或SEQ ID NO:7)的组合物,其中该肽在该肽的羧基末端或赖氨酸残基上共价连接至抗癌剂(诸如,例如,阿霉素、博莱霉素、多西他赛、甲氨蝶呤或西妥昔单抗或本文公开的任何其他抗癌剂)。在另一个方面,本文公开了包含肽(诸如,例如,SEQ ID NO:1或SEQ ID NO:7)和抗癌剂(诸如,例如,阿霉素、博莱霉素、多西他赛、甲氨蝶呤或西妥昔单抗或本文公开的任何其他抗癌剂)的组合物。
11。放射治疗剂
放射治疗剂发出引起DNA损伤的辐射,例如,γ射线、β射线、α射线、X射线、UV射线、微波、电子发射等。可以通过用上述形式的辐射照射局部肿瘤部位来实现治疗。所有这些因素很可能会影响DNA的广泛损伤,对于DNA的前体、DNA的复制和修复以及染色体的组装和维护。HN17和/或HN18可用于将两种有效的放射疗法手段递送至癌细胞。一个是一个或多个放射性原子,并且第二个是放射敏化剂分子,作为外加的辐射(诸如束辐射)的助剂。放射敏化剂分子也可以靶向附接在HN17和/或HN18上,并且通过使第二靶向的放射性同位素原子也附接在HN17和/或HN18上,或将其定向到含有与HN17和/或HN18缀合的放射性敏化剂的癌细胞的任何其他手段,可以将其分别靶向于癌症。
X射线的剂量范围从每日剂量50到200伦琴,持续时间较长(3到4周),到单次剂量的2000到6000伦琴。放射性同位素的剂量范围变化很大,并且取决于同位素的半衰期、所发射辐射的强度和类型以及熬生性细胞的摄取。一般来讲,至少25Gy,优选地至少50Gy靶向癌症肿瘤。
在本公开的上下文中,除了使用本公开的肿瘤细胞特异性肽以实现细胞特异性癌症治疗之外,还可以使用放射疗法。
在一些情况下,在使用它们的位置或附近(例如,在医院药房或诊所中)制备包含放射性核素的复合物可能是方便的。因此,在一些实施方案中,所公开的肽包含不与金属离子复合的金属螯合剂。在此类实施方案中,所公开的肽可以在给药之前与合适的金属离子复合。在其他实施方案中,所公开的肽包含与合适的金属离子(例如,顺磁性金属离子或放射性核素)络合的金属螯合剂。
合适的金属螯合剂包括,例如,直链、大环、三联吡啶和N3S、N2S2或N4螯合剂(还可参见美国专利No.4,647,447、美国专利No.4,957,939、美国专利No.4,963,344、美国专利No.5,367,080、美国专利No.5,364,613、美国专利No.5,021,556、美国专利No.5,075,099、美国专利No.5,886,142,其公开内容通过引用方式并入本文),以及本领域已知的其他螯合剂,包括但不限于HYNIC、DTPA、EDTA、DOTA、DO3A、TETA和双氨基双硫醇(BAT)螯合剂(还可参见美国专利No.5,720,934)。例如,大环螯合剂,特别是N4螯合剂描述于美国专利No.4,885,363、5,846,519、5,474,756、6,143,274、6,093,382、5,608,110、5,665,329、5,656,254、和5,688,487中,其公开内容全文以引用方式并入本文。某些N3S螯合剂描述于PCT/CA94/00395、PCT/CA94/00479、PCT/CA95/00249和美国专利No.5,662,885、5,976,495、和5,780,006中,其公开内容全文以引用方式并入本文。螯合剂还可包括螯合配体巯基-乙酰基-甘氨酰-甘氨酰-甘氨酸(MAG3)的衍生物,其包含N3S和N2S2系统,诸如MAMA(单酰胺单胺二硫醇)、DADS(N2S二胺二硫醇)、CODADS等。这些配体系统和各种其他系统描述于:Liu和Edwards,Chem.修订版,1999年,第99卷,第2235-2268页;Caravan等人,Chem.修订版,1999年,第99卷,第2293-2352页;以及其中的参考文献,其公开内容全文通过引用方式并入本文。
金属螯合剂还可以包括称为锝和铼二肟的硼酸加合物的复合物,诸如描述于美国专利No.5,183,653、5,387,409和5,118,797中的那些,其公开内容全文以引用方式并入本文。
合适的螯合剂的示例包括但不限于二亚乙基三胺五醋酸(DTPA)、1,4,7,10-四氮杂环十四烷-1,4,7,10-四乙酸(DOTA)、1-取代的1,4,7,-三羧甲基1,4,7,10四氮杂环十二烷三乙酸(DO3A)的衍生物,1-1-(1-羧基-3-(对硝基苯基)丙基-1,4,7,10四氮杂环十二烷三乙酸酯(PA-DOTA)和MeO-DOTA的衍生物,乙二胺四乙酸(EDTA),1,4,8,11-四氮杂环十四烷-1,4,8,11-四乙酸(TETA),3,3,9,9-四甲基-4,8-二氮杂十一烷-2,10-二酮二肟的衍生物(PnAO);以及3,3,9,9-四甲基-5-氧杂-4,8-二氮杂十一烷-2,10-二酮二肟的衍生物(氧杂PnAO)。附加的螯合配体是亚乙基双-(2-羟基-苯基甘氨酸)(EHPG)及其衍生物,包括5-C1-EHPG、5-Br-EHPG、5-Me-EHPG、5-t-Bu-EHPG和5-sec-Bu-EHPG;苯并二亚乙基三胺五乙酸(苯并-DTPA)及其衍生物,包括二苯并-DTPA、苯基-DTPA、二苯基-DTPA、苄基-DTPA和二苄基-DTPA;双-2(羟基苄基)-乙二胺二乙酸(HBED)及其衍生物;一类含有至少3个碳原子和至少两个杂原子(O和/或N)的大环化合物,该大环化合物可以由一个环或两个或三个在杂环元素上连接在一起的环组成,例如,苯并-DOTA、二苯并-DOTA和苯并-NOTA,其中NOTA为1,4,7-三氮杂环壬烷N,N',N”-三乙酸、苯并-TETA,苯并-DOTMA,其中DOTMA为1,4,7,10-四氮杂环十四烷-1,4,7,10-四(甲基四乙酸)和苯并-TETMA,其中TETMA为1,4,8,11-四氮杂环十四烷-1,4,8,11-(甲基四乙酸);1,3-丙二胺四乙酸(PDTA)和三亚乙基四胺六乙酸(TTHA)的衍生物;1,5,10-N,N',N”-三(2,3-二羟基苯甲酰基)-三儿茶酚酸酯(LICAM)和1,3,5-N,N',N”-三(2,3-二羟基苯甲酰基)氨基甲基苯(MECAM)的衍生物。代表性的螯合剂和螯合基团的示例描述于WO 98/18496、WO 86/06605、WO 91/03200、WO 95/28179、WO96/23526、WO 97/36619、PCT/US98/01473、PCT/US98/20182和美国专利No.4,899,755、美国专利No.5,474,756、美国专利No.5,846,519和美国专利No.6,143,274,每个专利全文均以引用方式并入本文。上面提到的DOTA衍生物也可以是R-DO3A衍生物,其中R=H或含有酰胺或羟基金属结合阴离子。在一些实施方案中,金属螯合剂包括去铁胺(也称为去铁敏、去铁胺B、去铁敏B、DFO-B、DFOA、DFB或甲磺酸去铁胺)或其衍生物。参见例如美国专利No.8,309,583、美国专利No.4,684,482和美国专利No.5,268,165,由于其去铁胺和去铁敏衍生物的教导,全文通过引用方式并入本文。
如本领域中众所周知的,金属螯合剂可以是特定金属离子所特有的。可以基于所需的金属离子和自组装分子的预期用途来选择合适的金属螯合剂以掺入到自组装分子中。
顺磁性离子在向其施加外部磁场时形成磁矩。在没有外部施加的磁场的情况下不能保持磁化,这是因为热运动导致未成对的电子的自旋在没有外部磁场的情况下变得随机取向。通过利用其缩短水分子的磁弛豫时间的特性,顺磁性物质可用作MRI造影剂的活性成分。合适的顺磁性过渡金属离子包括Cr3+、Co2+、Mn2+、Ni2+、Fe2+、Fe3+、Zr4+、Cu2+和Cu3+。在优选的实施方案中,顺磁性离子是镧系离子(例如,La3+、Gd3+、Ce3+、Tb3+、Pr3+、Dy3+、Nd3+、Ho3+、Pm3 +、Er3+、Sm3+、Tm3+、Eu3+、Yb3+或Lu3+)。在MRI中,特别优选的金属离子是Gd3+、Mn2+、Fe3+和Eu2+
MRI造影剂也可用顺磁性氮氧化物分子代替螯合剂和顺磁性金属离子制成。
合适的放射性核素包括99mTc、67Ga、68Ga、66Ga、47Sc、51Cr、167Tm、141Ce、111In、123I、125I、131I、124I、18F、11C、15N、17O、168Yb、175Yb、140La、90Y、88Y、86Y、153Sm、166Ho、165Dy、166Dy、62Cu、64Cu、67Cu、97Ru、103Ru、186Re、188Re、203Pb、211Bi、212Bi、213Bi、214Bi、225Ac、211At、105Rh、109Pd、117mSn、149Pm、161Tb、177Lu、198Au、199Au、89Zr及其氧化物或氮化物。同位素的选择将基于所需的治疗或诊断应用来确定。例如,出于诊断目的(例如,诊断和监测原发肿瘤和转移的治疗进展),合适的放射性核素包括64Cu、67Ga、68Ga、66Ga、99mTc和111In、18F、89Zr、123I、131I、124I、177Lu、15N、17O。为了治疗目的(例如,为与前列腺癌、乳腺癌、肺癌等相关的原发肿瘤和转移提供放射疗法),合适的放射性核素包括64Cu、90Y、105Rh、111In、131I、117mSn、149Pm、153Sm、161Tb、166Dy、166Ho、175Yb、177Lu、186/188Re、199Au、131I和125I、212Bi、211At。
在本公开的肽被设计成使用PET成像的情况下,通常使用半衰期短的放射性核素,诸如碳-11(~20分钟)、氮-13(~10分钟)、氧-15(~2分钟)、氟-18(~110分钟)或铷-82(~1.27分钟)。在某些实施方案中,当使用非金属放射性核素时,治疗剂或诊断剂包含共价附接于自组装分子的放射性示踪剂。举例来说,合适的基于18F的放射性示踪剂包括18F-氟脱氧葡萄糖(FDG)、18F-多巴胺,18F-L-DOPA,18F-氟胆碱、18F-氟甲基乙基胆碱和18P-氟二氢睾酮。
在设计为使用PET成像的自组装分子的情况下,还经常使用半衰期长的放射性核素,诸如124I或89Zr。
12。外科
移除癌生长的外科处理通常是治疗肿瘤和癌症的标准规程。这试图移除整个癌性生长。然而,外科通常与化学疗法和/或放射疗法结合以确保破坏任何剩余的赘生性或恶性细胞。因此,在本公开的上下文中,除了使用本公开的肿瘤细胞特异性肽以实现细胞特异性癌症治疗之外,还可以使用外科。
13。化学治疗剂
如本文所用,化学治疗剂是指任何抗癌剂,无论其作用机理如何。这些可以是例如直接交联DNA的试剂,插入DNA中的试剂,以及通过影响核酸合成而导致染色体和有丝分裂畸变的试剂。
本文设想并且示出了直接交联核酸,特别是DNA的试剂,以最终发生DNA损伤,从而导致协同的抗肿瘤组合。可以使用试剂诸如顺铂和其他DNA烷基化试剂。
破坏DNA的试剂还包括会干扰DNA复制、有丝分裂和染色体分离的化合物。这些化合物的示例包括:维拉帕米、玻玛西尼、乙酸阿比特龙酯、Abitrexate(甲氨蝶呤)、Abraxane(白蛋白结合型紫杉醇纳米粒子制剂)、ABVD、ABVE、ABVE-PC、AC、AC-T、Adcetris(本妥昔单抗)、ADE、曲妥珠单抗-美坦新偶联物、Adriamycin(盐酸阿霉素)、马来酸阿法替尼、飞尼妥(依维莫司)、Akynzeo(奈妥吡坦和盐酸帕洛诺司琼)、艾达乐(咪喹莫特)、阿地白介素、Alecensa(艾乐替尼)、艾乐替尼、阿来组单抗、力比泰(培美曲塞二钠)、Aliqopa(Copanlisib Hydrochloride)、注射用爱克兰(盐酸美法仑)、爱克兰片(美法仑)、Aloxi(盐酸帕洛诺司琼)、Alunbrig(布吉替尼)、Ambochlorin(苯丁酸氮芥)、Amboclorin(苯丁酸氮芥)、氨磷汀、氨基乙酰丙酸、阿那曲唑、阿瑞匹坦、阿可达(帕米膦酸二钠)、瑞宁得(阿那曲唑)、Aromasin(依西美坦)、Arranon(奈拉滨)、三氧化二砷、Arzerra(奥法木单抗)、菊欧文氏菌(Erwinia chrysanthemi)天冬酰胺酶、阿特珠单抗、安维汀(贝伐珠单抗)、阿维鲁单抗、阿昔替尼、阿扎胞苷、Bavencio(阿维鲁单抗)、BEACOPP、Becenum(卡莫司汀)、Beleodaq(贝利司他)、贝利司他、盐酸苯达莫司汀、BEP、Besponsa(依托珠单抗)、贝伐珠单抗、贝沙罗汀、百克沙(托西莫单抗和碘131托西莫单抗)、康士得比卡鲁胺、BiCNU(卡莫司汀)、博来霉素、博纳吐单抗、Blincyto(博纳吐单抗)、硼替佐米、Bosulif(博舒替尼)、博舒替尼、本妥昔单抗、布加替尼、白消安加美法仑、白消安、白舒非(白消安)、卡巴他赛、卡博替尼(苹果酸卡博替尼)、苹果酸卡博替尼、CAF、Campath(阿仑单抗)、Camptosar(盐酸伊立替康)、卡培他滨、CAPOX、Carac(氟尿嘧啶--局部)、卡铂、卡铂-紫杉醇、卡非佐米、Carmubris(卡莫司汀)、卡莫司汀、卡莫司汀植入膜剂、康士得(比卡鲁胺)、CEM、色瑞替尼、Cerubidine(盐酸柔红霉素)、Cervarix(重组HPV二价疫苗)、西妥昔单抗、CEV、苯丁酸氮芥、苯丁酸氮芥-强的松、CHOP、顺铂、克拉屈滨、Clafen(环磷酰胺)、氯法拉滨、Clofarex(氯法拉滨)、Clolar(氯法拉滨)、CMF、考比替尼、Cometriq(苹果酸卡博替尼)、Copanlisib Hydrochloride、COPDAC、COPP、COPP-ABV、Cosmegen(更生霉素)、Cotellic(考比替尼)、克唑替尼、CVP、环磷酰胺、Cyfos(异环磷酰胺)、Cyramza(雷莫芦单抗)、阿糖胞苷、阿糖胞苷脂质体、Cytosar-U(阿糖胞苷)、Cytoxan(环磷酰胺)、达拉菲尼、达卡巴仁、达珂(地西他滨)、放线菌素D、达雷木单抗、Darzalex(达雷木单抗)、达沙替尼、盐酸柔红霉素、盐酸柔红霉素和阿糖胞苷脂质体、地西他滨、去纤核苷酸钠、去纤维钠(去纤核苷酸钠)、地加瑞克、地尼白介素、地诺单抗、DepoCyt(阿糖胞苷脂质体)、DepoFoam(阿糖胞苷脂质体)、地塞米松、盐酸右雷佐生、达妥昔单抗、多西他赛、Doxil(盐酸阿霉素脂质体)、盐酸阿霉素、盐酸阿霉素脂质体、Dox-SL(盐酸阿霉素脂质体)、DTIC-Dome(达卡巴仁)、德瓦鲁单抗、Efudex(氟尿嘧啶--局部)、Elitek(拉布立酶)、Ellence(盐酸表阿霉素)、埃洛妥珠单抗、Eloxatin(奥沙利铂)、艾曲波帕乙醇胺、Emend(阿瑞匹坦)、Empliciti(埃罗妥珠单抗)、恩西地平甲磺酸、恩杂鲁胺、盐酸表阿霉素、EPOCH、尔必得舒(西妥昔单抗)、甲磺酸艾日布林、Erivedge(维莫德吉)、盐酸厄洛替尼、Erwinaze(菊欧文氏菌天冬酰胺酶)、Ethyol(氨磷汀)、凡毕复(磷酸依托泊苷)、依托泊苷、磷酸依托泊苷、Evacet(盐酸阿霉素脂质体)、依维莫司、易维特(盐酸雷洛昔芬)、优维宁(盐酸美法仑)、依西美坦、5-FU(氟尿嘧啶注射液)、5-FU(氟尿嘧啶--局部)、Fareston(托瑞米芬)、Farydak(帕比司他)、Faslodex(氟维司群)、FEC、Femara(来曲唑)、非格司亭、Fludara(磷酸氟达拉滨)、磷酸氟达拉滨、Fluoroplex(氟尿嘧啶--局部)、注射用氟尿嘧啶、氟尿嘧啶--局部、氟他胺、Folex(甲氨蝶呤)、Folex PFS(甲氨蝶呤)、FOLFIRI、FOLFIRI-贝伐珠单抗、FOLFIRI-西妥昔单抗、FOLFIRINOX、FOLFOX、Folotyn(普拉曲沙)、FU-LV、氟维司群、Gardasil(重组HPV四价疫苗)、Gardasil 9(重组HPV九价疫苗)、Gazyva(阿托珠单抗)、吉非替尼、盐酸吉西他滨、吉西他滨-顺铂、吉西他滨-奥沙利铂、吉妥单抗、健择(盐酸吉西他滨)、Gilotrif(马来酸阿法替尼)、格列卫(甲磺酸伊马替尼)、格立得(卡莫司汀植入膜剂)、Gliadel wafer(卡莫司汀植入膜剂)、羧肽酶、醋酸戈舍瑞林、Halaven(甲磺酸艾日布林)、Hemangeo(盐酸普萘洛尔)、赫赛汀(曲妥珠单抗)、重组HPV二价疫苗、重组HPV九价疫苗、重组HPV四价疫苗、Hycamtin(盐酸拓扑替康)、Hydrea(羟基脲)、羟基脲、Hyper-CVAD、Ibrance(帕博西尼)、替伊莫单抗、依布鲁替尼、ICE、Iclusig(盐酸普纳替尼)、Idamycin(盐酸伊达比星)、盐酸伊达比星、艾代拉里斯、Idhifa(恩西地平甲磺酸盐)、Ifex(异环磷酰胺)、异环磷酰胺、Ifosfamidum(异环磷酰胺)、IL-2(阿地白介素)、甲磺酸伊马替尼、Imbruvica(依布鲁替尼)、Imfinzi(德瓦鲁单抗)、咪喹莫特、Imlygic(Talimogene Laherparepvec)、英立达(阿西替尼)、依托珠单抗、重组干扰素α-2b、白介素-2(阿地白介素)、干扰能(重组干扰素α-2b)、碘131托西莫单抗和托西莫单抗、易普利姆玛、Iressa(吉非替尼)、盐酸依立替康、盐酸依立替康脂质体、Istodax(罗米地辛)、伊沙匹隆、枸橼酸艾莎佐米、Ixempra(伊沙匹隆)、Jakafi(磷酸鲁索利替尼)、JEB、Jevtana(卡巴他赛)、Kadcyla(曲妥珠单抗-美坦新偶联物)、Keoxifene(盐酸雷洛昔芬)、Kepivance(帕利夫明)、可瑞达(派姆单抗)、Kisqali(瑞博西尼)、Kymriah(Tisagenlecleucel)、Kyprolis(卡非佐米)、醋酸兰瑞肽、二甲苯磺酸拉帕替尼、Lartruvo(奥拉单抗)、来那度胺、甲磺酸乐伐替尼、Lenvima(甲磺酸乐伐替尼)、来曲唑、亚叶酸钙、Leukeran(苯丁酸氮芥)、醋酸亮丙瑞林、Leustatin(克拉屈滨)、Levulan(氨基乙酰丙酸)、Linfolizin(苯丁酸氮芥)、LipoDox(盐酸阿霉素脂质体)、洛莫司汀、Lonsurf(三氟吡啶和盐酸替吡西林)、Lupron(醋酸亮丙瑞林)、Lupron Depot(醋酸亮丙瑞林)、Lupron Depot-Ped(醋酸亮丙瑞林)、利普卓(奥拉帕尼)、Marqibo(硫酸长春新碱脂质体)、Matulane(盐酸甲基苄肼)、盐酸氮芥、醋酸甲地孕酮、Mekinist(曲美替尼)、美法仑、盐酸美法仑、巯嘌呤、美司钠、Mesnex(美司钠)、Methazolastone(替莫唑胺)、甲氨蝶呤、甲氨蝶呤LPF(甲氨蝶呤)、溴化甲基纳曲酮、Mexate(甲氨蝶呤)、Mexate-AQ(甲氨蝶呤)、米哚妥林、丝裂霉素C、盐酸米托蒽醌、Mitozytrex(丝裂霉素C)、MOPP、Mozobil(普乐沙福)、Mustargen(盐酸氮芥)、Mutamycin(丝裂霉素C)、马利兰(白消安)、Mylosar(阿扎胞苷)、Mylotarg(吉妥珠单抗)、纳米粒子紫杉醇(白蛋白结合型紫杉醇纳米粒子制剂)、诺维本(酒石酸长春瑞滨)、耐昔妥珠单抗、奈拉滨、Neosar(环磷酰胺)、马来酸来那替尼、来那替尼(马来酸来那替尼)、奈妥吡坦和盐酸帕洛诺司琼、Neulasta(培非格司亭)、Neupogen(培非格司亭)、Nexavar(甲苯磺酸索拉非尼)、Nilandron(尼鲁米特)、尼罗替尼、尼鲁米特、Ninlaro(枸橼酸艾莎佐米)、甲苯磺酸尼拉帕尼一水物、纳武单抗、Nolvadex(枸橼酸他莫昔芬)、Nplate(罗米司亭)、奥比妥珠单抗、Odomzo(索尼吉步)、OEPA、奥法木单抗、OFF、奥拉帕尼、奥拉单抗、高三尖杉酯碱、Oncaspar(培门冬酶)、盐酸昂丹司琼、安能得(盐酸伊立替康脂质体)、Ontak(地尼白介素)、欧狄沃(纳武单抗)、OPPA、奧希替尼、奥沙利铂、紫杉醇、白蛋白结合型紫杉醇纳米粒子制剂、PAD、帕博西尼、帕利夫明、盐酸帕洛诺司琼、盐酸帕洛诺司琼和奈妥吡坦、帕米磷酸二钠、帕尼单抗、帕比司他、Paraplat(卡铂)、伯尔定(卡铂)、盐酸培唑帕尼、PCV、PEB、培门冬酶、培非格司亭、聚乙二醇干扰素α-2b、PEG-Intron(聚乙二醇干扰素α-2b)、派姆单抗、培美曲塞二钠、Perjeta(帕妥珠单抗)、帕妥珠单抗、Platinol(顺铂)、Platinol-AQ(顺铂)、普乐沙福、泊马度胺、Pomalyst(泊马度胺)、盐酸普纳替尼、Portrazza(耐昔妥珠单抗)、普拉曲沙、强的松、盐酸甲基苄肼、Proleukin(阿地白介素)、博力加(地诺单抗)、Promacta(艾曲波帕乙醇胺)、盐酸普萘洛尔、普列威(Sipuleucel-T)、巯基嘌呤(巯嘌呤)、巯嘌呤混悬剂(巯嘌呤)、镭223二氯、盐酸雷洛昔芬、雷莫芦单抗、拉布立酶、R-CHOP、R-CVP、重组人乳头瘤病毒(HPV)二价疫苗、重组人乳头瘤病毒(HPV)九价疫苗、重组人乳头瘤病毒(HPV)四价疫苗、重组干扰素阿尔法-2b、瑞格菲尼、Relistor(溴化甲基纳曲酮)、R-EPOCH、瑞复美(来那度胺)、Rheumatrex(甲氨蝶呤)、瑞博西尼、R-ICE、美罗华(利妥昔单抗)、美罗华与透明质酸酶组合(利妥昔单抗和人透明质酸酶)、利妥昔单抗、利妥昔单抗和人透明质酸酶、盐酸罗拉匹坦、罗米地辛、罗米司亭、红比霉素(盐酸柔红霉素)、Rubraca(瑞卡帕布樟脑磺酸盐)、瑞卡帕布樟脑磺酸盐、磷酸鲁索利替尼、雷德帕斯(米哚妥林)、Sclerosol Intrapleural Aerosol(Talc)、司妥昔单抗、Sipuleucel-T、Somatuline Depot(醋酸兰瑞肽)、索尼德吉、甲苯磺酸索拉非尼、Sprycel(达沙替尼)、STANFORD V、无菌Talc粉末(Talc)、Steritalc(Talc)、Stivarga(Regorafenib)、苹果酸舒尼替尼、Sutent(苹果酸舒尼替尼)、Sylatron(聚乙二醇干扰素Alfa-2b)、Sylvant(司妥昔单抗)、Synribo(高三尖杉酯碱)、Tabloid(硫鸟嘌呤)、TAC、Tafinlar(达拉非尼)、泰瑞沙(奥希替尼)、滑石粉、Talimogene Laherparepvec、枸橼酸他莫昔芬、Tarabine PFS(阿糖胞苷)、特罗凯(盐酸厄洛替尼)、Targretin(贝沙罗汀)、达希纳(尼罗替尼)、泰素(紫杉醇)、泰索帝(多西他赛)、特善奇(阿特珠单抗)、泰道(替莫唑胺)、替莫唑胺、替西罗莫司、沙利度胺、Thalomid(沙利度胺)、硫鸟嘌呤、噻替哌、Tisagenlecleucel、Tolak(氟尿嘧啶--局部)、盐酸拓扑替康、托瑞米芬、驮瑞塞尔(替西罗莫司)、托西莫单抗和碘131托西莫单抗、Totect(盐酸右雷佐生)、TPF、曲贝替定、曲美替尼、曲妥珠单抗、Treanda(盐酸苯达莫司汀)、三氟尿苷和盐酸替吡嘧啶、Trisenox(三氧化二砷)、泰立沙(三氧化二砷)、Unituxin(达妥昔单抗)、尿苷三乙酸酯、VAC、凡德他尼、VAMP、Varubi(盐酸罗拉匹坦)、维克替比(帕尼单抗)、VeIP、Velban(硫酸长春碱)、万珂(硼替佐米)、Velsar(硫酸长春碱)、维罗非尼、Venclexta(维纳妥拉)、维纳妥拉、Verzenio(玻玛西林)、Viadur(醋酸亮丙瑞林)、维达扎(阿扎胞苷)、硫酸长春碱、Vincasar PFS(硫酸长春新碱)、硫酸长春新碱、硫酸长春新碱脂质体、酒石酸长春瑞滨、VIP、维莫德吉、Vistogard(尿苷三乙酸酯)、羧肽酶(谷卡匹酶)、伏立诺他、Votrient(盐酸培唑帕尼)、Vyxeos(盐酸柔红霉素阿糖胞苷脂质体)、Wellcovorin(亚叶酸钙)、赛可瑞(克唑替尼)、希罗达(卡培他滨)、XELIRI、XELOX、狄诺塞麦(地诺单抗)、Xofigo(镭223二氯)、Xtandi(恩杂鲁胺)、Yervoy(伊匹单抗)、Yondelis(曲贝替定)、阿柏西普(Ziv-Aflibercept)、Zarxio(非格司亭)、则乐(甲苯磺酸尼拉帕尼一水物)、Zelboraf(威罗菲尼)、泽瓦林(替伊莫单抗)、Zinecard(盐酸右雷佐生)、阿柏西普、枢复宁(盐酸昂丹司琼)、诺雷得(醋酸戈舍瑞林)、唑來磷酸、Zolinza(伏立诺他)、择泰(唑來磷酸)、Zydelig(艾代拉里斯)、Zykadia(色瑞替尼)和/或Zytiga(乙酸阿比特龙酯)。本文还设想了作为PD1/PDL1阻断抑制剂的化学治疗剂(诸如,例如派姆单抗(lambrolizumab)、纳武单抗、派姆单抗(pembrolizumab)、pidilizumab、BMS-936559、阿特珠单抗、德瓦鲁单抗或阿维鲁单抗)。这些化合物广泛用于临床环境,用于治疗赘生物,这些化合物通过静脉推注的方式给药,剂量范围为25-75mg/m.sup.2(阿霉素,间隔21天)到35-100mg/m.sup.2(依托泊苷)(静脉或口服)。
14。药物载体/药物产品递送
如上所述,组合物也可在药用载体中体内施用。所谓“药用”是指在生物学上或其他方面不期望的材料,即,该材料可以与核酸或载体一起施用于受试者,而不引起任何不期望的生物效应或不与含有其的药物组合物中的任何其他组分以有害的方式相互作用。自然地选择载体以使活性成分的任何降解最小化,并且使对受试者的任何不良副作用最小化,如本领域的技术人员所熟知的。
组合物可以口服、非肠道(例如,静脉内)、通过肌内注射、通过腹膜内注射、透皮、体外、局部等施用,包括局部鼻内施用或通过吸入剂施用。如本文所用,“局部鼻内施用”意指通过两个鼻孔中的一个或两个将组合物递送到鼻和鼻腔通道中,并且可以包括用喷涂机制或液滴机制进行递送,或通过核酸或载体的雾化。通过吸入剂施用组合物可以是通过用喷雾或液滴机制经由递送而经鼻或经口的。也可以经由插管法直接递送到呼吸系统的任何区域(例如肺)。所需的组合物的确切的量将因受试者而异,取决于受试者的种类、年龄、体重和一般状况、所治疗的过敏性障碍的严重程度,所用的特定核酸或载体、其施用模式等。因此,不可能为每种组合物指定确切的量。但是,在给定本文的教导的情况下,本领域的普通技术人员可以仅使用常规实验来确定适当量。
如果使用的话,非肠道施用组合物通常以注射为特征。注射剂可以以常规形式制备,可以是液体溶液或悬浮液,适于在注射前在液体中溶解或悬浮的固体形式、或者是乳液。最近改进的非肠道施用方法涉及使用缓慢释放或持续释放系统使得保持恒定的剂量。参见例如美国专利No.3,610,795,该专利以引用方式并入本文。
材料可以是溶液、悬浮液(例如,掺入微粒、脂质体或细胞中)。这些可以经由抗体、受体或受体配体靶向特定细胞类型。以下参考文献是使用该技术将特定蛋白质靶向肿瘤组织的示例(Senter等人,Bioconjugate Chem,第2期,第447-451页,1991年;Bagshawe,K.D.,Br.J.Cancer,第60期,第275-281页,1989年;Bagshawe等人,Br.J.Cancer,第58期,第700-703页,1988年;Senter等人,Bioconjugate Chem.,第4期,第3-9页,1993年;Battelli等人,Cancer Immunol.Immunother.,第35期,第421-425页,1992年;Pietersz和McKenzie,Immunolog.Reviews,第129期,第57-80页,1992年;以及Roffler等人,Biochem.Pharmacol,第42期,第2062-2065页,1991年)。载体诸如“隐形”和其他抗体缀合脂质体(包括靶向结肠癌的脂质介导的药物),受体介导的DNA通过细胞特异性配体靶向,淋巴细胞定向肿瘤靶向和体内小鼠神经胶质瘤细胞的高度特异性治疗性逆转录病毒靶向。以下参考文献是使用该技术将特定蛋白质靶向肿瘤组织的示例(Hughes等人,Cancer Research,第49期,第6214-6220页,1989年;以及Litzinger和Huang,Biochimica et Biophysica Acta,第1104期,第179-187页,1992年。通常,受体涉及组成型或配体诱导的内吞作用途径。这些受体聚集在披网格蛋白小窝中,经由披网格蛋白小泡进入细胞,通过其中受体被分选的酸化内体,并且然后循环到细胞表面在细胞内储存,或在溶酶体中降解。内化途径具有多种功能,诸如营养摄取、除去活化蛋白、清除大分子、机会性进入病毒和毒素、解离和降解配体,以及调节受体水平。许多受体遵循超过一种的细胞内途径,这取决于细胞类型、受体浓度、配体类型、配体化合价和配体浓度。综述了受体介导的内吞作用的分子和细胞机制(Brown和Greene,DNA andCell Biology,第10卷第6期,第399-409页,1991年)。
a)药学上可接受的载体
包括抗体的组合物可与药用载体在治疗学上结合使用。
合适的载体及其制剂描述于Remington:The Science and Practice ofPharmacy(第19版),编辑A.R.Gennaro,Mack Publishing Company,Easton,PA,1995年。通常,在制剂中使用适当量的药用盐以使制剂等渗。药用载体的示例包括但不限于盐水、林格氏溶液和葡萄糖溶液。溶液的pH优选地为约5至约8,并且更优选地约7至约7.5。其他载体包括缓释制剂,诸如含有抗体的半透性固体疏水性聚合物基质,所述基质为成形制品形式,例如膜、脂质体或微粒。对于本领域的技术人员将显而易见的是,根据例如施用途径和所施用组合物的浓度,某些载体可能是更优选的。
药物载体是本领域的技术人员已知的。这些药物载体最典型地将是用于向人类施用药物的标准载体,包括溶液诸如生理pH下的无菌水、盐水以及缓冲溶液等。组合物可以肌内或皮下施用。其他化合物将根据本领域的技术人员所使用的标准方法施用。
除了所选择的分子之外,药物组合物还可以包括载体、增稠剂、稀释剂、缓冲剂、防腐剂、表面活性剂等。药物组合物还可以包括一种或多种活性成分,诸如抗微生物剂、消炎药、麻醉剂等。
药物组合物可以多种方式施用,取决于是否需要局部或全身治疗,并且取决于治疗区域。可以局部地(包括经眼地、经阴道地、经直肠地、鼻内给药)、口服、通过吸入或非肠道地施用,所述非肠道施用为例如通过静脉滴注、皮下、腹膜内或肌内注射。所公开的抗体可以静脉内、腹膜内、肌内、皮下、腔内或透皮施用。
非肠道施用的制剂包括无菌水性溶液或非水性溶液、悬浮液和乳液。非水性溶剂的示例是丙二醇、聚乙二醇、植物油诸如橄榄油,以及可注射的有机酯诸如油酸乙酯。水性载体包括水、醇/水性溶液、乳液或包括盐水和缓冲介质的悬浮液。非肠道载体包括氯化钠溶液、林格氏葡萄糖、葡萄糖和氯化钠、乳酸林格氏液或固定油。静脉内载体包括流体和营养补充剂,电解质补充剂(诸如基于林格氏葡萄糖的那些)等等。还可以存在防腐剂和其他添加剂,诸如例如抗微生物剂、抗氧化剂、螯合剂和惰性气体等。
用于局部施用的制剂可以包括膏剂、洗剂、霜剂、凝胶剂、滴剂、栓剂、喷剂、液体和粉剂。常规的药物载体、水性、粉剂或油性基质、增稠剂等可能是必需或期望的。
口服施用的组合物包括粉剂或颗粒剂、悬浮液或水或非水性介质中的溶液、胶囊、小袋或片剂。可能需要增稠剂、调味剂、稀释剂、乳化剂、分散助剂或粘合剂。
一些组合物可以潜在地作为药用酸或碱加成盐施用,所述酸或碱加成盐是通过与无机酸(诸如盐酸、氢溴酸、高氯酸、硝酸、硫氰酸、硫酸和磷酸)和有机酸(诸如甲酸、乙酸、丙酸、乙醇酸、乳酸、丙酮酸、草酸、丙二酸、琥珀酸、马来酸和富马酸)反应,或通过与无机碱(诸如氢氧化钠、氢氧化铵、氢氧化钾)和有机碱(诸如单烷基胺、二烷基胺、三烷基胺和芳基胺以及取代的乙醇胺)反应形成的。
b)治疗用途
用于施用组合物的有效剂量和时间表可凭经验确定,并且使此类确定在本领域技术范围内。组合物施用的剂量范围大到足以产生障碍症状受到影响的所需的效应。剂量不应大到引起不良副作用,诸如不希望的交叉反应、过敏反应等。一般来讲,剂量将随患者的年龄、状况、性别和疾病程度、施用途径或是否包括在该方案中的其他药物而变化,并且可由本领域的技术人员确定。在任何禁忌症的情况下,个体医师可以调整剂量。剂量可以变化,并且可在一天或几天内每天给予一次或多次剂量施用。对于给定类别的药物产品,可以在文献中找到关于适当剂量的指导。例如,可以在关于抗体的治疗用途的文献中找到关于选择抗体的适当剂量的指导,例如,Handbook of Monoclonal Antibodies,Ferrone等人编辑,Noges Publications,Park Ridge,N.J.,1985年,第22章,第303-357页;Smith等人,Antibodies in Human Diagnosis and Therapy,Haber等人编辑,Raven Press,New York,1977年,第365-389页。根据上述因素,单独使用的抗体的典型日剂量可以为每天约1μg/kg至至多达100mg/kg体重或更多。
15。试剂盒
本文公开了抽提可用于实践本文公开的方法的试剂的试剂盒。试剂盒可包括本文讨论的任何试剂或试剂的组合,或者在实践所公开的方法时应被理解为必需或有益的。例如,试剂盒可包括用于执行在方法的某些实施方案中讨论的扩增反应的引物,以及按预期使用引物所需的缓冲液和酶。例如,公开了一种用于识别病理组织的试剂盒,该试剂盒包含一种或多种在TLPNSNHIKQGL(HN17)(SEQ ID NO:1)、TSPLNIHNGQKL(HN1)(SEQ ID NO:2)、LNKQTHGLIPNS(HNscr)(SEQ ID NO:3)、NQHSKNTLLIGP(HNJ)(SEQ ID NO:4)、LKQGNHINLPS(SEQ ID NO:5)、YSPLNIHNGQKL(SEQ ID NO:6)、LPNSNHIKQGL(HN18)(SEQ ID NO:7)、YLPNSNHIKQGL(SEQ ID NO:8)或FLPNSNHIKQGL(SEQ ID NO:9)中列出的肽。还公开了用于检测病理组织和/或亲脂性诸如亲脂性药物的成像缀合物或标记物。
C。制备组合物的方法
除非另外特别指明,否则可以使用本领域技术人员已知的用于该特定试剂或化合物的任何方法来制备本文公开的组合物和执行所公开的方法所必需的组合物。
1。肽的合成
产生所公开的蛋白质诸如SEQ ID NO:1的一种方法是通过蛋白质化学技术将两种或更多种肽或多肽连接在一起。例如,可以使用目前可用的实验室设备,使用Fmoc(9-芴甲氧羰基)或Boc(叔丁氧羰基)化学品来化学合成肽或多肽(加利福尼亚州福斯特城的应用生物系统公司(美国加利福尼亚州,福斯特城,Applied Biosystems有限公司(AppliedBiosystems,Inc.,Foster City,CA))。本领域技术人员可以容易地理解,例如,对应于本公开的蛋白质的肽或多肽可以通过标准化学反应合成。例如,可合成肽或多肽而不从其合成树脂切割,而肽或蛋白质的另一片段可合成并且随后从树脂切割,从而在另一片段上暴露功能性阻断的末端基团。通过肽缩合反应,这两个片段可以分别经由在其羧基和氨基末端的肽键共价连接,以形成抗体或其片段。(Grant GA(1992年)Synthetic Peptides:A UserGuide.W.H.Freeman and Co.,纽约(1992年);Bodansky M和Trost B.,Ed.(1993年)肽合成原理,施普林格出版有限公司(Springer-Verlag Inc.),纽约(至少对于与肽合成有关的材料通过引用方式并入本文)。另选地,肽或多肽如本文所述在体内独立合成。一旦分离,这些独立的肽或多肽可经由类似的肽缩合反应连接形成肽或其片段。
例如,克隆或合成肽片段的酶促连接允许相对较短的肽片段连接以产生更大的肽片段、多肽或完整的蛋白质结构域(Abrahmsen L等人,Biochemistry,第30期,第4151页,1991年)。另选地,合成肽的天然化学连接可用于从较短的肽片段合成构建较大的肽或多肽。该方法由两步化学反应组成(Dawson等人,“Synthesis of Proteins by NativeChemical Ligation”,Science,第266期,第776-779页,(1994年))。第一步是未保护合成肽-硫酯与另一个包含氨基末端Cys残基的未保护肽片段的化学选择性反应,得到硫酯连接的中间体作为初始共价产物。在不改变反应条件的情况下,该中间体进行自发的快速分子内反应,以在连接位点形成天然肽键(Baggiolini M等人1992年,FEBS Lett.,第307期,第97-101页;Clark-Lewis等人,J.Biol.Chem.,第269期,第16075页,1994年;Clark-Lewis I等人,Biochemistry,第30期,第3128页,1991年;Rajarathnam K等人,Biochemistry,第33期,第6623-6630页,1994年)。
另选地,未保护的肽片段是化学连接的,其中由于化学连接而在肽片段之间形成的键是非天然(非肽)键(Schnolzer,M等人,Science,第256期,第221页,1992年)。该技术已被用于合成蛋白质结构域的类似物以及具有完整生物活性的大量相对较纯的蛋白质(deLisle Milton RC等人,Techniques in Protein Chemistry IV,Academic Press,NewYork,第257-267页,1992年)。
D。治疗癌症的方法
本文所公开的组合物可用于治疗发生不受控制的细胞增殖的任何疾病诸如癌症。因此,本文公开的一个方面是治疗癌症的方法,该方法包括向受试者施用表1或表3中公开的任何肽。应当理解,所述肽可包含成像标记物或缀合物(诸如,例如,荧光染料或放射性标记物)。在一些方面,该肽还可包含亲脂性和/或化学治疗剂。可以将两种不同的成像标记物、两种不同的治疗药物或治疗药物加成像标记物同时掺入一种HN17或HN18肽中。成像标记物或治疗药物也可用作末端亲脂体。
可以通过所公开的组合物治疗的不同类型的癌症的非限制性列表如下:淋巴瘤(霍奇金和非霍奇金)、白血病、癌、实体组织癌、鳞状细胞癌、腺癌、肉瘤、神经胶质瘤、高分级神经胶质瘤、母细胞瘤、成神经细胞瘤、浆细胞瘤、组织细胞瘤、黑素瘤、腺瘤、缺氧肿瘤、骨髓瘤、艾滋病相关淋巴瘤或肉瘤、转移性癌症或一般癌症,包括肺癌、前列腺癌、大肠癌、胰腺癌、白血病、淋巴瘤和肾癌。
所公开的组合物可用于治疗的癌症的代表性但非限制性列表如下:淋巴瘤,B细胞淋巴瘤,T细胞淋巴瘤,蕈样霉菌病,霍奇金病,骨髓性白血病,膀胱癌,脑癌,神经系统癌症,头颈癌,头颈部鳞状细胞癌,肾脏癌,肺癌诸如小细胞肺癌和非小细胞肺癌,神经母细胞瘤,胶质母细胞瘤,胃癌,卵巢癌,骨肉瘤,胰腺癌,前列腺癌,皮肤癌,肝癌,黑色素瘤,口腔、咽喉、喉和肺的鳞状细胞癌,结肠癌,宫颈癌,宫颈鳞癌,乳腺癌和上皮癌,肾癌,结肠直肠癌、泌尿生殖系统癌,肺癌,食管癌,头颈癌,大肠癌,造血系统癌;睾丸癌;前列腺癌或胰腺癌,包括白血病和淋巴瘤。
本文所公开的化合物也可用于治疗癌前病症,诸如宫颈和肛门发育异常、其他发育异常、严重发育异常、增生、非典型增生和瘤形成。
所公开的治疗方法预期包含肽的组合物的给药,该肽包含氨基酸序列TLPNSNHIKQGL(HN17)(SEQ ID NO:1)、TSPLNIHNGQKL(HN1)(SEQ ID NO:2)、LNKQTHGLIPNS(HNscr)(SEQ ID NO:3)、NQHSKNTLLIGP(HNJ)(SEQ ID NO:4)、LKQGNHINLPS(SEQ ID NO:5)、YSPLNIHNGQKL(SEQ ID NO:6)、LPNSNHIKQGL(HN18)(SEQ ID NO:7)、YLPNSNHIKQGL(SEQ IDNO:8)或FLPNSNHIKQGL(SEQ ID NO:9)。因此,本文公开的是治疗受试者的癌症的方法,包括向受试者施用肽,其中该肽包含TLPNSNHIKQGL(SEQ ID NO:1)、TSPLNIHNGQKL(SEQ ID NO:2)、LNKQTHGLIPNS(SEQ ID NO:3)、NQHSKNTLLIGP(SEQ ID NO:4)、LKQGNHINLPS(SEQ ID NO:5)、YSPLNIHNGQKL(SEQ ID NO:6)、LPNSNHIKQGL(SEQ ID NO:7)、YLPNSNHIKQGL(SEQ ID NO:8)或FLPNSNHIKQGL(SEQ ID NO:9)的氨基酸序列。在一个方面,肽可以共价附接于亲脂体诸如,例如Fmoc和/或4-对-碘-苄基(4Iph),其中亲脂体附接于肽的氨基末端(诸如,例如,该肽可以是4Iphf-HN18)。
在一个方面,公开的治疗癌症的方法还设想了抗癌剂(本文也称为化学治疗剂)的给药。抗肿瘤剂可包括本领域已知的任何抗癌剂,包括但不限于抗体、肿瘤浸润淋巴细胞、检查点抑制剂、树突状细胞疫苗、抗肿瘤疫苗、免疫疗法和化学治疗剂。在一个方面,抗肿瘤剂可包括但不限于维拉帕米、玻玛西尼、乙酸阿比特龙酯、Abitrexate(甲氨蝶呤)、Abraxane(白蛋白结合型紫杉醇纳米粒子制剂)、ABVD、ABVE、ABVE-PC、AC、AC-T、Adcetris(本妥昔单抗)、ADE、曲妥珠单抗-美坦新偶联物、Adriamycin(盐酸阿霉素)、马来酸阿法替尼、飞尼妥(依维莫司)、Akynzeo(奈妥吡坦和盐酸帕洛诺司琼)、艾达乐(咪喹莫特)、阿地白介素、Alecensa(艾乐替尼)、艾乐替尼、阿来组单抗、力比泰(培美曲塞二钠)、Aliqopa(Copanlisib Hydrochloride)、注射用爱克兰(盐酸美法仑)、爱克兰片(美法仑)、Aloxi(盐酸帕洛诺司琼)、Alunbrig(布吉替尼)、Ambochlorin(苯丁酸氮芥)、Amboclorin(苯丁酸氮芥)、氨磷汀、氨基乙酰丙酸、阿那曲唑、阿瑞匹坦、阿可达(帕米膦酸二钠)、瑞宁得(阿那曲唑)、Aromasin(依西美坦)、Arranon(奈拉滨)、三氧化二砷、Arzerra(奥法木单抗)、菊欧文氏菌(Erwinia chrysanthemi)天冬酰胺酶、阿特珠单抗、安维汀(贝伐珠单抗)、阿维鲁单抗、阿昔替尼、阿扎胞苷、Bavencio(阿维鲁单抗)、BEACOPP、Becenum(卡莫司汀)、Beleodaq(贝利司他)、贝利司他、盐酸苯达莫司汀、BEP、Besponsa(依托珠单抗)、贝伐珠单抗、贝沙罗汀、百克沙(托西莫单抗和碘131托西莫单抗)、康士得比卡鲁胺、BiCNU(卡莫司汀)、博来霉素、博纳吐单抗、Blincyto(博纳吐单抗)、硼替佐米、Bosulif(博舒替尼)、博舒替尼、本妥昔单抗、布加替尼、白消安加美法仑、白消安、白舒非(白消安)、卡巴他赛、卡博替尼(苹果酸卡博替尼)、苹果酸卡博替尼、CAF、Campath(阿仑单抗)、Camptosar(盐酸伊立替康)、卡培他滨、CAPOX、Carac(氟尿嘧啶--局部)、卡铂、卡铂-紫杉醇、卡非佐米、Carmubris(卡莫司汀)、卡莫司汀、卡莫司汀植入膜剂、康士得(比卡鲁胺)、CEM、色瑞替尼、Cerubidine(盐酸柔红霉素)、Cervarix(重组HPV二价疫苗)、西妥昔单抗、CEV、苯丁酸氮芥、苯丁酸氮芥-强的松、CHOP、顺铂、克拉屈滨、Clafen(环磷酰胺)、氯法拉滨、Clofarex(氯法拉滨)、Clolar(氯法拉滨)、CMF、考比替尼、Cometriq(苹果酸卡博替尼)、Copanlisib Hydrochloride、COPDAC、COPP、COPP-ABV、Cosmegen(更生霉素)、Cotellic(考比替尼)、克唑替尼、CVP、环磷酰胺、Cyfos(异环磷酰胺)、Cyramza(雷莫芦单抗)、阿糖胞苷、阿糖胞苷脂质体、Cytosar-U(阿糖胞苷)、Cytoxan(环磷酰胺)、达拉菲尼、达卡巴仁、达珂(地西他滨)、放线菌素D、达雷木单抗、Darzalex(达雷木单抗)、达沙替尼、盐酸柔红霉素、盐酸柔红霉素和阿糖胞苷脂质体、地西他滨、去纤核苷酸钠、去纤维钠(去纤核苷酸钠)、地加瑞克、地尼白介素、地诺单抗、DepoCyt(阿糖胞苷脂质体)、DepoFoam(阿糖胞苷脂质体)、地塞米松、盐酸右雷佐生、达妥昔单抗、多西他赛、Doxil(盐酸阿霉素脂质体)、盐酸阿霉素、盐酸阿霉素脂质体、Dox-SL(盐酸阿霉素脂质体)、DTIC-Dome(达卡巴仁)、德瓦鲁单抗、Efudex(氟尿嘧啶--局部)、Elitek(拉布立酶)、Ellence(盐酸表阿霉素)、埃洛妥珠单抗、Eloxatin(奥沙利铂)、艾曲波帕乙醇胺、Emend(阿瑞匹坦)、Empliciti(埃罗妥珠单抗)、恩西地平甲磺酸、恩杂鲁胺、盐酸表阿霉素、EPOCH、尔必得舒(西妥昔单抗)、甲磺酸艾日布林、Erivedge(维莫德吉)、盐酸厄洛替尼、Erwinaze(菊欧文氏菌天冬酰胺酶)、Ethyol(氨磷汀)、凡毕复(磷酸依托泊苷)、依托泊苷、磷酸依托泊苷、Evacet(盐酸阿霉素脂质体)、依维莫司、易维特(盐酸雷洛昔芬)、优维宁(盐酸美法仑)、依西美坦、5-FU(氟尿嘧啶注射液)、5-FU(氟尿嘧啶--局部)、Fareston(托瑞米芬)、Farydak(帕比司他)、Faslodex(氟维司群)、FEC、Femara(来曲唑)、非格司亭、Fludara(磷酸氟达拉滨)、磷酸氟达拉滨、Fluoroplex(氟尿嘧啶--局部)、注射用氟尿嘧啶、氟尿嘧啶--局部、氟他胺、Folex(甲氨蝶呤)、Folex PFS(甲氨蝶呤)、FOLFIRI、FOLFIRI-贝伐珠单抗、FOLFIRI-西妥昔单抗、FOLFIRINOX、FOLFOX、Folotyn(普拉曲沙)、FU-LV、氟维司群、Gardasil(重组HPV四价疫苗)、Gardasil 9(重组HPV九价疫苗)、Gazyva(阿托珠单抗)、吉非替尼、盐酸吉西他滨、吉西他滨-顺铂、吉西他滨-奥沙利铂、吉妥单抗、健择(盐酸吉西他滨)、Gilotrif(马来酸阿法替尼)、格列卫(甲磺酸伊马替尼)、格立得(卡莫司汀植入膜剂)、Gliadel wafer(卡莫司汀植入膜剂)、羧肽酶、醋酸戈舍瑞林、Halaven(甲磺酸艾日布林)、Hemangeo(盐酸普萘洛尔)、赫赛汀(曲妥珠单抗)、重组HPV二价疫苗、重组HPV九价疫苗、重组HPV四价疫苗、Hycamtin(盐酸拓扑替康)、Hydrea(羟基脲)、羟基脲、Hyper-CVAD、Ibrance(帕博西尼)、替伊莫单抗、依布鲁替尼、ICE、Iclusig(盐酸普纳替尼)、Idamycin(盐酸伊达比星)、盐酸伊达比星、艾代拉里斯、Idhifa(恩西地平甲磺酸盐)、Ifex(异环磷酰胺)、异环磷酰胺、Ifosfamidum(异环磷酰胺)、IL-2(阿地白介素)、甲磺酸伊马替尼、Imbruvica(依布鲁替尼)、Imfinzi(德瓦鲁单抗)、咪喹莫特、Imlygic(Talimogene Laherparepvec)、英立达(阿西替尼)、依托珠单抗、重组干扰素α-2b、白介素-2(阿地白介素)、干扰能(重组干扰素α-2b)、碘131托西莫单抗和托西莫单抗、易普利姆玛、Iressa(吉非替尼)、盐酸依立替康、盐酸依立替康脂质体、Istodax(罗米地辛)、伊沙匹隆、枸橼酸艾莎佐米、Ixempra(伊沙匹隆)、Jakafi(磷酸鲁索利替尼)、JEB、Jevtana(卡巴他赛)、Kadcyla(曲妥珠单抗-美坦新偶联物)、Keoxifene(盐酸雷洛昔芬)、Kepivance(帕利夫明)、可瑞达(派姆单抗)、Kisqali(瑞博西尼)、Kymriah(Tisagenlecleucel)、Kyprolis(卡非佐米)、醋酸兰瑞肽、二甲苯磺酸拉帕替尼、Lartruvo(奥拉单抗)、来那度胺、甲磺酸乐伐替尼、Lenvima(甲磺酸乐伐替尼)、来曲唑、亚叶酸钙、Leukeran(苯丁酸氮芥)、醋酸亮丙瑞林、Leustatin(克拉屈滨)、Levulan(氨基乙酰丙酸)、Linfolizin(苯丁酸氮芥)、LipoDox(盐酸阿霉素脂质体)、洛莫司汀、Lonsurf(三氟吡啶和盐酸替吡西林)、Lupron(醋酸亮丙瑞林)、Lupron Depot(醋酸亮丙瑞林)、Lupron Depot-Ped(醋酸亮丙瑞林)、利普卓(奥拉帕尼)、Marqibo(硫酸长春新碱脂质体)、Matulane(盐酸甲基苄肼)、盐酸氮芥、醋酸甲地孕酮、Mekinist(曲美替尼)、美法仑、盐酸美法仑、巯嘌呤、美司钠、Mesnex(美司钠)、Methazolastone(替莫唑胺)、甲氨蝶呤、甲氨蝶呤LPF(甲氨蝶呤)、溴化甲基纳曲酮、Mexate(甲氨蝶呤)、Mexate-AQ(甲氨蝶呤)、米哚妥林、丝裂霉素C、盐酸米托蒽醌、Mitozytrex(丝裂霉素C)、MOPP、Mozobil(普乐沙福)、Mustargen(盐酸氮芥)、Mutamycin(丝裂霉素C)、马利兰(白消安)、Mylosar(阿扎胞苷)、Mylotarg(吉妥珠单抗)、纳米粒子紫杉醇(白蛋白结合型紫杉醇纳米粒子制剂)、诺维本(酒石酸长春瑞滨)、耐昔妥珠单抗、奈拉滨、Neosar(环磷酰胺)、马来酸来那替尼、来那替尼(马来酸来那替尼)、奈妥吡坦和盐酸帕洛诺司琼、Neulasta(培非格司亭)、Neupogen(培非格司亭)、Nexavar(甲苯磺酸索拉非尼)、Nilandron(尼鲁米特)、尼罗替尼、尼鲁米特、Ninlaro(枸橼酸艾莎佐米)、甲苯磺酸尼拉帕尼一水物、纳武单抗、Nolvadex(枸橼酸他莫昔芬)、Nplate(罗米司亭)、奥比妥珠单抗、Odomzo(索尼吉步)、OEPA、奥法木单抗、OFF、奥拉帕尼、奥拉单抗、高三尖杉酯碱、Oncaspar(培门冬酶)、盐酸昂丹司琼、安能得(盐酸伊立替康脂质体)、Ontak(地尼白介素)、欧狄沃(纳武单抗)、OPPA、奧希替尼、奥沙利铂、紫杉醇、白蛋白结合型紫杉醇纳米粒子制剂、PAD、帕博西尼、帕利夫明、盐酸帕洛诺司琼、盐酸帕洛诺司琼和奈妥吡坦、帕米磷酸二钠、帕尼单抗、帕比司他、Paraplat(卡铂)、伯尔定(卡铂)、盐酸培唑帕尼、PCV、PEB、培门冬酶、培非格司亭、聚乙二醇干扰素α-2b、PEG-Intron(聚乙二醇干扰素α-2b)、派姆单抗、培美曲塞二钠、Perjeta(帕妥珠单抗)、帕妥珠单抗、Platinol(顺铂)、Platinol-AQ(顺铂)、普乐沙福、泊马度胺、Pomalyst(泊马度胺)、盐酸普纳替尼、Portrazza(耐昔妥珠单抗)、普拉曲沙、强的松、盐酸甲基苄肼、Proleukin(阿地白介素)、博力加(地诺单抗)、Promacta(艾曲波帕乙醇胺)、盐酸普萘洛尔、普列威(Sipuleucel-T)、巯基嘌呤(巯嘌呤)、巯嘌呤混悬剂(巯嘌呤)、镭223二氯、盐酸雷洛昔芬、雷莫芦单抗、拉布立酶、R-CHOP、R-CVP、重组人乳头瘤病毒(HPV)二价疫苗、重组人乳头瘤病毒(HPV)九价疫苗、重组人乳头瘤病毒(HPV)四价疫苗、重组干扰素阿尔法-2b、瑞格菲尼、Relistor(溴化甲基纳曲酮)、R-EPOCH、瑞复美(来那度胺)、Rheumatrex(甲氨蝶呤)、瑞博西尼、R-ICE、美罗华(利妥昔单抗)、美罗华与透明质酸酶组合(利妥昔单抗和人透明质酸酶)、利妥昔单抗、利妥昔单抗和人透明质酸酶、盐酸罗拉匹坦、罗米地辛、罗米司亭、红比霉素(盐酸柔红霉素)、Rubraca(瑞卡帕布樟脑磺酸盐)、瑞卡帕布樟脑磺酸盐、磷酸鲁索利替尼、雷德帕斯(米哚妥林)、Sclerosol Intrapleural Aerosol(Talc)、司妥昔单抗、Sipuleucel-T、Somatuline Depot(醋酸兰瑞肽)、索尼德吉、甲苯磺酸索拉非尼、Sprycel(达沙替尼)、STANFORD V、无菌Talc粉末(Talc)、Steritalc(Talc)、Stivarga(Regorafenib)、苹果酸舒尼替尼、Sutent(苹果酸舒尼替尼)、Sylatron(聚乙二醇干扰素Alfa-2b)、Sylvant(司妥昔单抗)、Synribo(高三尖杉酯碱)、Tabloid(硫鸟嘌呤)、TAC、Tafinlar(达拉非尼)、泰瑞沙(奥希替尼)、滑石粉、Talimogene Laherparepvec、枸橼酸他莫昔芬、Tarabine PFS(阿糖胞苷)、特罗凯(盐酸厄洛替尼)、Targretin(贝沙罗汀)、达希纳(尼罗替尼)、泰素(紫杉醇)、泰索帝(多西他赛)、特善奇(阿特珠单抗)、泰道(替莫唑胺)、替莫唑胺、替西罗莫司、沙利度胺、Thalomid(沙利度胺)、硫鸟嘌呤、噻替哌、Tisagenlecleucel、Tolak(氟尿嘧啶--局部)、盐酸拓扑替康、托瑞米芬、驮瑞塞尔(替西罗莫司)、托西莫单抗和碘131托西莫单抗、Totect(盐酸右雷佐生)、TPF、曲贝替定、曲美替尼、曲妥珠单抗、Treanda(盐酸苯达莫司汀)、三氟尿苷和盐酸替吡嘧啶、Trisenox(三氧化二砷)、泰立沙(三氧化二砷)、Unituxin(达妥昔单抗)、尿苷三乙酸酯、VAC、凡德他尼、VAMP、Varubi(盐酸罗拉匹坦)、维克替比(帕尼单抗)、VeIP、Velban(硫酸长春碱)、万珂(硼替佐米)、Velsar(硫酸长春碱)、维罗非尼、Venclexta(维纳妥拉)、维纳妥拉、Verzenio(玻玛西林)、Viadur(醋酸亮丙瑞林)、维达扎(阿扎胞苷)、硫酸长春碱、Vincasar PFS(硫酸长春新碱)、硫酸长春新碱、硫酸长春新碱脂质体、酒石酸长春瑞滨、VIP、维莫德吉、Vistogard(尿苷三乙酸酯)、羧肽酶(谷卡匹酶)、伏立诺他、Votrient(盐酸培唑帕尼)、Vyxeos(盐酸柔红霉素阿糖胞苷脂质体)、Wellcovorin(亚叶酸钙)、赛可瑞(克唑替尼)、希罗达(卡培他滨)、XELIRI、XELOX、狄诺塞麦(地诺单抗)、Xofigo(镭223二氯)、Xtandi(恩杂鲁胺)、Yervoy(伊匹单抗)、Yondelis(曲贝替定)、阿柏西普(Ziv-Aflibercept)、Zarxio(非格司亭)、则乐(甲苯磺酸尼拉帕尼一水物)、Zelboraf(威罗菲尼)、泽瓦林(替伊莫单抗)、Zinecard(盐酸右雷佐生)、阿柏西普、枢复宁(盐酸昂丹司琼)、诺雷得(醋酸戈舍瑞林)、唑來磷酸、Zolinza(伏立诺他)、择泰(唑來磷酸)、Zydelig(艾代拉里斯)、Zykadia(色瑞替尼)和/或Zytiga(乙酸阿比特龙酯)。本文还设想了作为PD1/PDL1阻断抑制剂的化学治疗剂(诸如,例如派姆单抗(lambrolizumab)、纳武单抗、派姆单抗(pembrolizumab)、pidilizumab、BMS-936559、阿特珠单抗、德瓦鲁单抗或阿维鲁单抗)。
在本文公开的治疗癌症的方法中,可以将抗癌剂共价附接于肽(例如附接于肽的赖氨酸或肽的羧基末端),配制成与肽相同的组合物或与肽同时施用(包括混合或同时给药)。应当理解并且在本文中设想的是,当使用亲脂体的抗癌剂(例如,化学治疗剂)时,该抗癌剂可以取代4Iph或Fmoc,而不是附接在羧基末端。因此,在一个方面,本文公开了共价附接于抗癌剂的肽(诸如,例如,HN17或HN18),其中该抗癌剂是亲脂体,并且其中抗癌剂在肽的氨基末端部分或末端上附接于该肽。还应当理解并且在本文中设想的是,当抗癌剂是亲水体的或肽、蛋白质或其他大分子时,使抗癌剂在羧基末端或赖氨酸上附接于肽可能是有利的。
E。实施例
提出以下实施例以便向本领域的普通技术人员提供如何制备和评价本文要求保护的复合物、组合物、制品、设备和/或方法的完整公开内容和描述,并且预期这些实施例仅仅是示例性的,并非旨在限制本公开。已经努力确保关于数字(例如,量、温度等)的准确性,但是应当考虑一定的误差和偏差。除非另有说明,否则份数是重量份,温度是℃或为环境温度,并且压力是大气压或接近大气压。
1。实施例1:HN17药物的发现
头颈部鳞状细胞癌(HNSCC)是美国第六大最常见的恶性肿瘤。尽管在诊断和治疗方面取得了进步,但是十多年来其5年相对生存率没有显著改善。外科移除癌性组织仍然是HNSCC的主要治疗方式。外科会在5年内使局部区域复发的几率约为60%,如果切除后的切缘为阳性,则复发的几率可能高达90%。遗憾的是,在接近25%的患者中检测到阳性切缘。虽然术前影像学检查和经验有助于外科计划,但是术中切缘决定主要是通过纵切和触诊做出的。因此,任何能改善术中沿边缘检测肿瘤组织的准确性的实用成像方法极有可能导致复发率降低、存活率提高以及正常组织移除所致的缺陷降低。
由于其较大的大小和较慢的图像收集时间,主要的常规成像方式MRI和PET/CT在术中的应用非常有限。最近,近红外荧光(NIRF)成像或光学手术导航(OSN)已成为一种可行的选择。该技术实时运行,并且足够灵敏以检测靶向癌症受体的nM双花青染料。IRdye800标记的抗体目前正在HNSCC中进行临床前和临床研究:抗EGFR(西妥昔单抗)和抗CD147。一旦分离并验证了靶标,相对容易发现抗体。然而,小肽可以是同样强的和特异性的靶结合剂,并且具有渗透组织并且被更快速地去除的潜力。通常它们的规模、开发和商业化也较便宜。
已经探索了若干新的HNSCC靶向肽。已经识别出基于环精氨酸-甘氨酸-天冬氨酸(RGD)的三种肽。已知αvβ3和其他整联蛋白在人HNSCC细胞表面过度表达。Hsiao等人经由生物淘选噬菌体发现了αvβ6特异性肽。由Nothelfer等人发现的HNSCC结合肽(HBP-1)由RGD和LXXL基序组成,并优先结合αvβ6整联蛋白。除了该专利申请之外,Atallah等人还报道了Cy5标记的基于RGD的肽可以检测到在小鼠脸颊原位模型切除期间人眼无法识别的微小肿瘤组织,并且移除这些组织可以延长小鼠的存活时间。
为HNSCC开发的最古老的肽HN1是唯一在多个实验室中均可复制HNSCC细胞亲和力的肽。HN1是通过噬菌体展示筛选人HNSCC癌细胞而发现的,并且使用光学标记的类似物HN1-FITC在人HNSCC细胞中进行了体外、离体人癌症组织和体内小鼠肿瘤异种移植物的验证。因为HN1已被癌细胞内在化,因此后来被成功开发为抗癌药物的载体。Bao等人证实了HN1的内在化,并且发现HN1-PKCepsilon缀合物在HNSCC细胞中内在化并且阻断了PKCε的活性,从而抑制了异种移植物小鼠模型中的肿瘤生长。Un等人表明,HN1-抗-hRRM2(一种肽-siRNA缀合物)在HNSCC和人乳腺癌细胞中被内在化,并且抑制了内源性hRRM2的表达。这些研究均使用了次优的长时间(>24h)孵育时间来证明HN1的可靠内在化。认识到这个问题,Dudas等人探索了更广泛的HN1结合条件,并且对肽序列进行了加扰,使得HNscr与HN1的摄取没有明显差异。他们得出结论,HN1对氨基酸序列不是很敏感,但是确实需要较长的温育期。
对于OSN应用,HN1的第二个缺陷是到目前为止附接的染料发射的光远低于所有临床体内外科成像仪在其中操作的800nm近红外区域。为了在最大渗透深度的室内光线下操作,当前的成像仪经过了优化,可检测非肿瘤特异性,FDA批准的光学染料吲哚菁绿。尽管HN1的行为就像细胞渗透肽一样,但是其作用机理也未知。本文公开了系统研究,这些系统研究创建了新的含有杂合肽的分子,这些分子与HN1相比在HNSCC细胞中的摄取率和内在化大大提高,并且还使用了临床上有用的NIRF染料作为荧光标记物。最好的新分子具有HN1的所有阳性特征,但在培养的细胞中1h内在化率提高了27倍,并且在小鼠异种移植物HNSCC肿瘤成像中的发射强度强得多。
a)材料和方法
(1)材料。
树脂、试剂和所有氨基酸均购自AAPPTEC或CHEMIMPEX International有限公司。用于合成和纯化的溶剂是以试剂级从PHARMCO-AAPER有限公司购得的。使用由AAPPTEC公司制造的Endeavor 90固相肽合成仪组装肽。
(2)剂的合成
本文展示的肽缀合物分子分两个阶段合成。使用标准Fmoc保护策略,使用固相肽合成(SPPS)采购起始肽分子。因此,对于树脂上的每mmol胺,用4.0mmol的适当偶联剂(如HATU或HBTU)和8.0mmol的DIEA(二异丙基乙胺)活化4.0mmol的受保护氨基酸5分钟。然后将活化的酸转移到固相上的胺中,并且将反应容器摇动一个小时。使用含有比例为95:2:2:1的三氟乙酸(TFA)、苯酚、三异丙基硅烷(TIPS)和水的混合物,将最终产物和保护基团从树脂中释放出来(过程重复两次,每次10mL),然后将混合物沉淀到甲基叔丁基醚中。过滤沉淀物,并且将粗固体在制备型HPLC[日本岛津公司制备型纯化单元(LC8A)]上使用C18柱(10μm,50×250mm,以100mL/min的流速冲洗60分钟)用水(0.1%TFA):MeCN(0.1%TFA)-10-100%溶剂纯化。合并纯度>90%的级分,并且通过MS(质谱分析)检查产物。合并具有所需质量和纯度>90%的级分,并且冷冻干燥,得到产物,为无色蓬松固体。
HN17的制备要求通过用Fmoc-4-碘-L-苯丙氨酸替代氨基酸N-Fmoc-O-叔丁基-L-苏氨酸来进行最终偶联。通过将染料缀合物f-HN-1-IR800和83B在环境温度下与20%的二乙胺在乙腈中温育来完成移除Fmoc保护,得到f-HN1-IR800和83A。该反应在真空下通过HPLC监测,并且通过蒸发而终止,随后通过HPLC纯化,得到期望产物。
(3)荧光标记。
向等摩尔量(0.00065mmol)的纯化的肽和IR800-NHS酯的DMSO溶液(干的,250μL)中加入4-甲基吗啉(5μL)。所得混合物在40℃下温育1小时。在反应完成之后(通过LC/MS、MALDI确定),通过制备型HPLC在Sunfire(Waters公司)C18(30×250mm,5μm)柱上以30mL/min的流速分离产物。溶剂体系由溶剂A(在水中的0.1%TFA)和B(在乙腈中的0.1%TFA)组成,溶剂B的梯度在60分钟内从5%升至70%。在分析之后,收集最终化合物并且冻干,得到纯度约为90%的浅蓝色产物。荧光标记物Cy5的制备方法相同。
高分辨率质谱用于确认产物同一性。对于每个合成的染料缀合肽分子,使用基质辅助激光解吸/电离飞行时间(MALDI-TOF),并且在反射正离子模式下操作的BrukerDaltonics UltrafleXtremeTM(德国不来梅市道尔顿公司(Bruker Daltonics,Breman,Germany))质谱仪上进行,随后使用N2smartbeam IITM(337nm)。在产生信号所需的阈值水平下使用较后的功率,并且在1000Hz下获取直至获得合适的数据。使用购自道尔顿公司的肽校准标准II对仪器进行校准,其中包含血管紧张素II、血管紧张素I、P物质、铃蟾肽、CTH片段1-17、ACTH片段18-39、生长激素抑制素28、缓激肽片段1-7、肾素底物十四肽猪,覆盖范围为~700Da-3200Da。
使用岛津LC-10ATvp模型和Waters C18-RP分析柱(XBridge cartridge,150×4.6mm,3.5μm;流速=1mL/min),在开始的前10分钟内从80:20缓冲液A/缓冲液B开始,然后在20分钟内线性梯度洗脱至30:70缓冲液A/缓冲液B,进行合成产物和起始肽的纯度(>90%)分析。染料缀合产物的HPLC峰用检测NIRF发射的荧光检测器(RF-10AXL,岛津)可视化,在每种情况下,在750-820nm的相对HPLC峰面积下,纯度分别>90%。起始肽峰用s-UV-Vis检测器(220nm)可视化,相对HPLC峰面积,纯度>90%。A
(4)细胞系。
人口腔鳞状细胞癌细胞系Cal 27购自美国典型培养物保藏中心(ATCC,CAT#CRL-2095.),并且在DMEM中添加5%CO2并且在37℃的条件下补充10%胎牛血清(FBS)和100U青霉素/链霉素。细胞每周传代两次。
(5)细胞摄取。
对于每个反应,将Cal 27细胞以7,000-12,000/孔的方式一式三份接种在96孔板中。为了确定合适的浓度,细胞培养液在24h后每孔用150μL培养基替换,每孔含有0-30μMHN肽。然后将细胞在37℃和5%CO2中温育48h。为了确定适当的温育时间,每孔含10μM HN肽的150μL培养基在24-48h后更换培养基,并且温育2-48h。为了进行筛选实验,每孔含0-10μMHN肽的150μL培养基在24h后更换培养基,并且温育1-2h。然后将细胞在150μL PBS中洗涤5次。在最后一次洗涤之后,将PBS完全移除,并且将细胞溶解在60μL裂解缓冲液(62.5mMTris-HCl(pH 6.8),2%SDS和10%甘油)中。使用BioTek Synergy H4读板机测量荧光强度,对于IR800缀合物,ex/em为764/809nm,对于FITC缀合物,为485/528nm。试剂f-HN1-IR800包括在Cal 27细胞筛选实验中,用于新开发的试剂,并且将10μM的f-HN1-IR800的读数任意设置为100%或1。将所有其他读数与其进行比较。细胞数由具有相同处理的重复板控制。
(6)荧光显微镜测定法。
将Cal 27细胞以70,000/孔一式两份接种在八孔载玻片上,并且使其附接过夜。将细胞培养基替换为含有10μM试剂的200μL培养基。将细胞在37℃下温育1-24h,然后用300μLHEPES缓冲液(pH 7.4的25mM HEPES、150mM NaCl)洗涤四次,然后用含有1μg/mL DAPI的缓冲液洗涤一次。然后移除载玻片支架。然后,每个载玻片覆盖一滴aqua-poly mount和盖玻片,并且用透明指甲油密封。用奥林巴斯(Olympus)IX81显微镜对细胞进行成像,使用800nm发射滤光片设置IRDye800缀合物,461nm设置DAPI。在奥林巴斯(Olympus)共聚焦显微镜上使用4Iphf-HN18-Cy5进行共聚焦成像。共聚焦显微镜的细胞洗涤使用生长培养基。FBS的蛋白质结合测定法。
将试剂4Iphf-HN18-IR800和HN1-IR800(最终浓度25μM)在室温下于400μL FBS中温育30s。基于在20g小鼠中血液因子为0.078的40nmol的预期静脉内成像剂量选择浓度。然后将溶液(300μL)装入Amicon装置(0.5mL,10K临界值)中,并且以12,000g离心15分钟。将滤液(50μL)、残留物(5μL)和原始溶液(5μL)中的样本一式两份装入黑色壁96孔板中,其中包含50(用于滤液)或95(用于残留物和原始)μL的PBS和0.2%BSA的PBS。为了进行附加的洗涤,然后将300μL的PBS添加到Amicon装置中。如上所述将该装置离心。将相同数量的每个零件装入孔中。通过级分体积×荧光单位/μL计算每个级分的荧光单位。
(7)体外血清稳定性。
将试剂4Iphf-HN18-IR800和HN1-IR800(最终浓度6.4μM)在200μL新鲜小鼠血清(来自nu/nu小鼠)中于37℃温育0、0.5、1.5、3和6h。通过添加2%的SDS将试剂与血清蛋白分离,随后将其与100μL冰冷的ETOH和300μL CAN混合,并且在4℃下以12,000g离心20min。液相(50μL)用C18反相柱通过HPLC进行分析,并且使用岛津RF-10AXL荧光HPLC检测器经由800nm发射荧光进行检测。单独的对照样本仅包括缓冲液,4Iphf-HN18-IR800和HN1-IR800和IRdye800-CW。基于色谱图中的峰面积确定试剂的数量。拟合降解曲线,并且使用MSExcel计算半衰期。
(8)血液清除。
使用6至8周龄的正常雌性Balb/c小鼠。在注射后2min、0.5、1、3、6和24h(p.i.)从隐静脉收集血样(5μL),并且将其装入96孔板,每个孔含有0.15%EDTA(pH 8.5)和0.2%BSA的95μL PBS。收集小鼠尿液直至p.i.3h。为了进行尿液积累分析,将1μL尿液一式三份装入96孔板中,并且用95uL PBS稀释。来自未注射的小鼠的血液和尿液样本用作阴性对照。使用BioTek Synergy H4读板机测量荧光强度。计算每只小鼠的总血液荧光(%ID/血液)(ID为注射剂量),计算方式为(血液体积×每μL血液的荧光单位)/(每μL Id的荧光单位×100),并且每只小鼠的3h尿液排泄量计算方式为(%ID/尿液)等于(尿量×荧光单位/μL尿液)/(每μL Id的荧光单位×100)。基于小鼠体重计算血容量。使用微软Excel软件绘制血液中的荧光变化与时间的关系图。所有数据均以平均值(SD)表示。Student的t检验(微软Excel软件)用于分析两点之间的差异。p值为0.05被认为具有统计学意义。
(9)体内成像。
所有使用活体动物的实验均按照美国俄亥俄州立大学机构动物护理和使用委员会批准的协议进行。5-7周大的雌性裸鼠(nu/nu)购自Charles River公司。将100μL PBS中的Cal 27细胞(1.5×107)皮下接种于左侧腹。每周测量两次肿瘤大小,并且使用以下公式计算体积:长×宽×宽/2。在成像前一周,将小鼠的饮食从常规饮食改为减少荧光(美国威斯康星州哈兰市CAT#TD.97184(Harlan,WI))的食物。
当肿瘤大约生长至150mm3时,经由尾静脉给小鼠注射40nmol的10%DMSO的100μlPBS中的4Iphf-HN18-IR800或HN1-IR800。使用CRi Maestro白光激发成像仪(美国马萨诸塞州Woburn市CRi有限公司(CRi Inc.,Woburn,MA,USA))和激光激发FluobeamTM 800NIR成像系统(法国格勒诺布尔市Fluoptics公司(Fluoptics,Grenoble,France))对动物成像。简而言之,对整个小鼠和剥皮小鼠、具有类似大小的骨骼肌的离体肿瘤进行成像,并且将肿瘤切成2mm厚度,与肌肉的尺寸类似。使用Image J软件测量整个肿瘤和切片肿瘤相对于其肌肉控制的荧光强度,并且计算相对比。
b)结果
(1)合成和命名法。
表3包含合成和研究的肽以及命名缩写,并且图1显示了所讨论染料的结构和缩写。保留了HN1和HN-J衍生肽的原始名称,添加了缀合后缀fluor,例如HN1-FITC或HN1-IR800,并且在C末端缩写为其他氨基酸和有机结果部分,例如,f-HN1-IR800是在K处与IRDye800-NHS缀合的HN1序列的N末端Fmoc加合物。进一步显示4Iphf-HN18类似于f-HN17,但是末端苏氨酸(T)被4-Iph取代。
表3:化合物名称和肽序列作为单个字母代码
极性氨基酸是黑体字。F-Fmoc;对于HN17或HN18系列,4Iph=4-对-碘-苄基,并且对于HN1系列,4Iph=4-对-碘-苯甲酰基。染料与赖氨酸(K)缀合。
最初尝试通过将FITC-NHS与合成的HN1肽缀合来复制原始的HN1-FITC,这产生了三种肽的混合物,其中FITC与苏氨酸(T)和赖氨酸(K)缀合,这是由MS确定的。HN1-FITC和HN1-Cy5缀合的已发表合成的详细信息不足以得出结论,在那些生物学实验中是使用单个肽还是混合物。为了产生与赖氨酸缀合的染料的离散缀合物,在窃除末端Fmoc之前,始终将肽与FITC或IR800-NHS缀合(图1)。然后可任选地移除Fmoc。研究了三组分子:原始的HN1序列是一组,第二组是基于原始的阴性对照“混杂”肽HN-J,其中七个极性氨基酸在N末端簇集。新的第三组用相同氨基酸的新序列HN17制成。
(2)体外研究。
目的是确定是否可以进行较短的温育。先前发表的研究一致地发现了若干HNSCC细胞的摄取,而永生化但未转化的人上皮细胞的摄取却非常少。比较了HN1-FITC和HN1-IR800,发现Cal 27HNSCC细胞的摄取速率没有显著差异(图2B和图2C)。此后,仅使用Cal 27细胞对IR800衍生物进行了一致地研究。实验从最高浓度为30μM的条件开始,并且使用48h温育。如图2A所示,对于HN1-IR800和f-HN1-IR800两者,在48h时,细胞摄取的试剂大约在10μM处饱和,当浓度增加到30μM时,仅观察到很小的增加。然而,很明显,非极性亲脂性的Fmoc附着在N末端,增加了细胞摄取。
通过将Cal 27细胞与这两种试剂在10μM下从2至48h温育来确定温育时间的影响。图2B在所有时间点均显示相同的相对摄取,但f-HN-IR800而非HN1-IR800在2h达到峰值,然后在24-48h逐渐下降至平稳状态。这种现象在N末端携带亲脂性的该系列其他肽中可重复,包括FITC标记的类似物(图2C)。数据表明,无论使用哪种染料,N-末端Fmoc肽在较短的温育时间内均可吸收更多,而长时间积累染料的总容量似乎受末端Fmoc的影响要小得多。使用f-HN1-IR800作为内部对照,对Cal 27细胞在浓度系列下温育1-2h以进一步筛选,以标准化数据。
在温育2小时后,新肽全系列的筛选结果如图3所示。与Hong等人对HNJFITC的发现类似,HN-J-IR800吸收较差,并不比游离IRDye-800-CW好(CW=不可反应的羧酸盐取代NHS)。在序列的极性末端f-HN-J-IR800添加Fmoc,可显著增加摄取。第三组肽是通过从HN1序列中分离极性和非极性氨基酸而合成的。对比Fmoc更可极化的亲脂体的4-碘-苯基进行了测试。现在,该系列分子的跨度>12倍。荧光发射范围为30%,与图3中的所见效果相比并不显著。温育期2h倾向于放大24-48h温育期所见的效果,但是摄取到细胞中的顺序是相同的。Fmoc和4Iph N末端取代以及极性氨基酸分离独立地增加了Cal 27的摄取。
还通过荧光显微镜测定法证实了4Iphf-HN18-IR800的细胞摄取。Cal27细胞摄取在1h和24h均很亮,在1h的发射强度比24h亮得多,这与宏观荧光信号变化一致。相比之下,在HN1-IR800或HN-J-IR800或IRDye800CW温育1h或24h时,在800nm处捕获的荧光信号很少。
在体内研究之前,确定血清蛋白结合潜力和血清稳定性。25μM 4Iphf-HN18-IR800是比HN1-IR800稍强的蛋白质结合剂。在100%FBS中,约有70%和52%与FBS结合。为了验证蛋白质结合不提供主要的摄取机制,在具有或不具有FBS的情况下测量了摄取,发现FBS实质上减少了细胞摄取,可能是通过降低主要摄取机制可用的肽浓度来实现的。对不含蛋白质的PBS测试2%白蛋白表明,结合白蛋白同样会显著降低细胞摄取。在结合实验中使用的FBS为10%时,蛋白质会减少Cal 27的摄取。如果假设这两种化合物代表了该系列中的大多数化合物,则可以得出结论,蛋白质结合是细胞摄取的变量,更强的蛋白质结合通过降低可用于内在化的游离肽的浓度来降低细胞摄取。但是摄取的机制不涉及游离蛋白质结合。
血清稳定性被研究为试剂在体内维持其有效浓度的重要因素。如图4A所示,在37℃下,小鼠血清中的4Iphf-HN18-IR800的血清半衰期比HN1-IR800长6.3倍(5.29小时与0.84小时)。在静脉注射剂量为40nmol时,根据血细胞比容估算的初始血浆浓度为~50μM,并且因此在代谢之前具有足够的稳定性足以靶向肿瘤。有趣的是,HN17从头选择的肽序列比噬菌体衍生的HN1对血清降解的抵抗力更大。后者是在含有血清的生长培养基中专门创建的,以确保其作为体内递送剂的最终稳定性。HN17或HN18序列更强的蛋白质结合可能通过从血清肽酶中分离出肽来有助于血清稳定性。
(3)体内研究。
4Iphf-HN18-IR800和HN1-IR800的血液清除数据如图4B所示,代表该系列的行为范围。两种肽均显示出快速的初始血液清除或分布阶段,随后是较慢的血液清除消除阶段,到24h几乎完全清除。4Iphf-HN18-IR800在前3小时内清除速度明显降低(在5min、30min、1h和3h分别为37.1%与9.7%、22.2%与2.8%、14.1%与2.1%、9.6%与0.3%(在所有时间点上,p<0.05))。较慢的血液清除率与其更长的血清稳定性和更强的血清蛋白结合一致。亲脂性和蛋白质结合在小分子中也倾向于产生更大的肝排泄而不是肾排泄,并且4Iphf-HN18-IR800在静脉内给药后的前3小时内尿液中的ID只有4.4%,而HN1-IR800为34.5%。基于体外和离体数据,两种试剂都具有足够的生物利用度,可以在小鼠模型中充当肿瘤显像剂。
在携带Cal 27侧腹异种移植物肿瘤的小鼠中进一步研究了4Iphf-HN18-IR800。根据实验性试剂量测试研究,选择40nmol/小鼠。首先,在不同时间对小鼠进行成像,以确定肿瘤和整个小鼠中荧光强度随时间的变化。众所周知,所使用的染料可以在较早的时间提供较高的组织背景。但是与此相反,肿瘤的摄取也很缓慢,难以洗净。如图5A所示,当清除整个小鼠的背景信号时,肿瘤逐渐突出。肿瘤与人体背景的最佳对比出现在48h。在UM-SCC-1肿瘤小鼠和原位植入的甲状腺髓样肿瘤小鼠中也发现了这一点。相比之下,在整个观察期期间,施用40nmol的HN1-IR800的小鼠中的肿瘤在肿瘤和身体其余部位均表现出类似的荧光强度。对小鼠实施安乐死并且剥皮后,带有4Iphf-HN18-IR800而非HN1-IR800的肿瘤变得更加可分辨(图5B)。为了更好地比较和半定量荧光强度,首先将切除的肿瘤在与切除的骨骼肌类似质量附近成像,然后在切成2毫米厚的样本后重新成像。如图5C所示,在48h时,对于整个肿瘤和2mm厚度的切片,4Iphf-HN18-IR800的肿瘤均具有更大的肿瘤与肌肉信号比(对于整个肿瘤,分别为11.1与6.3,并且对于2mm厚度的肿瘤为17.5与4.2,n=4,p<0.05)。
为了进一步检查早期的成像潜力,对配对的小鼠注射HN1-IR800和4Iphf-HN18-IR800,进行安乐死,并且在8和24h成像。在24h之前,小鼠皮肤的高摄取干扰了整个小鼠的肿瘤成像。图5C显示了离体组织的肿瘤与肌肉比率值。两种试剂在8h时肿瘤与肌肉的对比率均很小(整个肿瘤为3.8与3.9,2mm切片为3.0与4.0,n=3)。对于4Iphf-HN18-IR800,该值从24至48h有一定程度地改善,而在f-HN1-IR800中的比率没有明显变化。在24h和48h时,肿瘤与肌肉的比率也显著高于HN1-IR800(整个肿瘤为8.8与4.7,2mm厚度为11.7与4.6,n=4,两者均p<0.05)。
4Iphf-HN18-IR800与HN1-IR800相比更大的肿瘤信号和肿瘤与肌肉的比率可能是多种因素导致的结果:(1)当存在血清蛋白时,4Iphf-HN1-IR800的摩尔荧光发射为约HN1-IR800的1.5倍。(2)4Iphf-HN18-IR800的血液清除速度较慢,使肿瘤长时间暴露于试剂中。(3)4Iphf-HN1-IR800对癌细胞的摄取要快得多,并且在较高浓度下达到平衡。(4)在小鼠血清中的稳定性更大。这些因素胜过更强的血清蛋白质结合,后者降低了肿瘤摄取的生物利用度。
为了进一步显示4Iphf-HN18在靶细胞上的定位,用4Iphf-HN18-Cy5处理并在共聚焦显微镜上成像的活Cal 27细胞。用4Iphf-HN18-Cy5处理的活Cal 27细胞,然后洗涤后,染色以显示细胞的微观结构。4Iphf-HN18-Cy5明显位于HNSCC癌细胞Cal 27内。该染料与细胞的胞质溶胶对应,显示出HN18渗透细胞膜并且定位通过细胞膜进入胞质溶胶。该特征使HN18作为用于癌症诊断和治疗的细胞渗透性递送设备有价值。
c)讨论。
Hong和Clayman从针对单个HNSCC细胞系的噬菌体库中获得了HN1。以2.6μM进行细胞内在化研究48h:1)HN1-FITC以时间和剂量依赖性方式内在化到六个HNSCC细胞系中,但不会永生化未转化的上皮细胞,而不会在前列腺癌或结肠癌细胞系中内在化;2)200×HN1抑制HN1-FITC的摄取;3)HN1-FITC染色的人肿瘤组织;4)在260nmol剂量下,HN1-FITC在体内定位在小鼠异种移植物肿瘤中。12聚体肽的两个末端可以延伸若干氨基酸而不会干扰内在化;5)HN1与徳克萨斯红以及FITC标记一起工作,并且在PBS和培养基中工作,并且基于加扰肽HNJ(相同的12个氨基酸)的阴性内在化,判断其为序列特异性的。但是Dudas重新加扰了HN1(HNscr),并且发现没有明显的功能丧失,从而认为内在化和结合不是特定于序列的,而是结构特异性的。在没有亲脂性增强的C末端的肽上进行24-48h温育时,数据无法解决该问题,但是确实表明,在与亲脂性增强的肽进行1-2h温育的短时间内,该肽序列非常重要。Fmoc左边结合到HN1的N末端的偶然发现改善了摄取,从而导致通过N末端的亲脂取代可改善早期摄取的发现。
本工作的目的是为光学外科导航(OSN)创建有用的HNSCC试剂。早期的工作是基于FITC和CY5染料,并且该染料似乎不会抑制Bao治疗剂中的内在化。CY5是一种双花青染料,其结构与FITC明显不同。为了探索HN1发挥此功能的能力,我们替换了另一个双花青素,IRDye800,它是一种NIRF染料,可在FDA批准的光学成像仪检测到的最佳波长>800nm范围内发射,IRDye800具有充分开发的临床前毒理学软件包,并且正在临床研究将其用作标记物与抗体缀合的用途。考虑到染料的分子大小(图1)和IR800的四个负磺酸盐,令人惊讶的是,观察到HN1在标记有FITC、CY5或IR800的相同条件下具有类似的功能。然而,更令人惊讶的是,亲脂性当附加到C末端氨基酸时产生巨大的差异。在亲脂性增强的肽中,通过对分子的肽部分进行重测序以使大多数极性氨基酸居中,并且通过使赖氨酸向肽中间移动来使NIRF染料居中,从而实现了第二改善。为了达到改善细胞摄取率的类似目标,Dudas将K-FITC标记物移到了中间的C末端侧,但是这种变化并未显著改善HN1-FITC的性能。
摄取率的改善是由于与HN1-FITC和HN1-CY5观察到的机制不同。通过添加Fmoc可以改善所有序列,包括阴性对照HNJ。如在4Iphf-HN18-IR800中所证实的,尽管在结构上有所不同,但是在添加4Iph和/或Fmoc时,HN1和HN17序列均会改善,并且4Iph和Fmoc效应是可加的。通过操作定义,具有这种氨基酸组成的肽家族,无论其序列如何,都可能属于细胞渗透肽(CPP)类。这些分子已经作为药物靶向设备众所周知并且研究了数十年。它们的功能主要在微摩尔浓度域(即弱结合)和内在化能力是主要特征,尽管不是癌症特异性。HN家族是不寻常的,携带的总电荷从-1至-3,这完全取决于所选择的跟踪肽的染料。其他类别的CPP或者是具有多个阳离子氨基酸的整体上高度阳离子化,并且用于递送共价附接的药物,或者是两亲性的,包含亲水性和疏水性氨基酸的连续域,并且用于递送非共价附接的药物。然而,考虑到FITC、CY5和IR800是共价附接的药物大小分子,HN肽会偏离CCP规范。总电荷为-3的新型杂化有机肽化合物是两亲CPP类的新变体,或者是新的CPP类。新的杂交亲脂性增强肽显示出如此显著不同的早期内在化,以至于它们可能使用了一种不同的机制(目前还未知),并可能与HN1家族的未知机制结合使用。
d)结论
从FITC标记的噬菌体衍生肽HN1-FITC开始,对N末端亲脂体进行重测序和取代,然后用实用的NIRF染料进行标记,产生4Iphf-HN1-IR800。新的光学试剂具有更快的肿瘤细胞摄取、更大的荧光亮度和改善的体内肿瘤成像特征。这些特征使其有资格作为光学导向的HNSCC肿瘤切除术的实用成像工具进行进一步研究。新化合物的行为类似于两亲性CPP,可能具有但未经证实的癌症特异性。鉴于HN1-PKCe和HN1-siRNA的阳性治疗结果,使用新的靶向载体也有望获得更高的治疗效果。
2。实施例2:在原位模型中用于甲状腺髓样癌的新型荧光显像剂的生物学评估
理想的分子显像剂在外科规程中易于吸收、无毒,并且在外科后不久即可消除。该分子将需要是在正常组织中具有低摄取量的特定病变组织,以减少背景活性。该分子应在术中可用,以便外科医生容易看到。近红外试剂使外科医生能够以相对较低的自发荧光观察肉眼不可见的荧光波长。与大多数其他近红外试剂相比,IRdye800提供了更好的组织渗透性和亮度,同时具有毒性低资料,因此被选作该分子的标记物。
已经开发了多种NIRF试剂,其允许以特定方式靶向肿瘤细胞。虽然这些分子的目的通常是药物递送,但是也可以利用它们的肿瘤特异性来增强术中成像。最初的研究基于一种称为HN-1的化合物,该化合物先前与毒素或抑制肽结合后具有癌细胞杀伤效应。进一步开发和使用IRDye-800进行标记导致了对恶性细胞具有更高亲和力的化合物。
本文描述了在生物学背景下新型成像肽的特性。已证明该肽在体外和体内对两个MTC细胞具有高亲和力。结合动力学表明该分子表现为细胞渗透肽,可与MTC细胞的线粒体缔合。尽管具有背景荧光,但是在小鼠侧腹异种移植物模型中的研究验证了体外结果。为了检查该分子的原位成像,建立了MTC的原位异种移植物模型。该模型允许我们能够通过使用现有的脉管系统和肿瘤微环境,在自然MTC环境中检查显像剂的定位。它还降低了该化合物在胃肠道和肾脏系统中看到的背景荧光。在两种MTC的体内模型(侧腹异种移植物和原位异种移植物)中,成像肽在异种移植物部位均产生明显的荧光。该成像分子可以增强MTC的外科移除率。
a)材料和方法
(1)细胞系的培养:
MZ-CRC1细胞得自Robert Gagel博士(安德森癌症中心(MD Anderson))。TT细胞得自Barry Nelkin博士(美国约翰霍普金斯大学(Johns Hopkins University))。通过PCR证实所有细胞不含支原体。通过短串联重复概况,证实所有细胞均为甲状腺来源。将两万个细胞接种在96孔透明底/黑色板上(Corning Costar#3603),并在37℃下于1640RPMI中附接24小时,其中添加了20%热灭活的血清(Gibco目录号#10437-028)、1%MEM非必需氨基酸(Gibco)和1%L-谷氨酰胺(Gibco目录号#25030-164)。
(2)皮下异种移植物:
通过与0.25%胰蛋白酶EDTA(Gibco)温育,从10cm3组织培养皿中取出细胞。将细胞在1X PBS中冲洗,并且以1×107细胞/mL的浓度重悬于1X PBS中。然后,对于两种细胞系(TT和MZ-CRC1)中的每一种,将每一种细胞系的一百万个细胞与100μL基质胶合并,并且分别注入无胸腺裸鼠(5周大,得自美国俄亥俄州立大学的目标验证共享资源)的侧腹(右侧为TT;左侧为MZ-CRC1)。通过视觉检查监测肿瘤的发展,直到可以通过卡尺测量确定体积。使用下式确定肿瘤体积:肿瘤体积=1/2×(长度×宽度2)。一旦两个肿瘤均达到最小体积150mm3,经由尾静脉注射向动物注射40nmole的4Iph-HN18-IR800。在注射后3、6、24、36和48小时使用CRi Maestro对动物成像。
(3)近红外荧光成像:
在注射后四十八小时,将动物安乐死并且剥皮以进行成像。移除连同内部器官的肿瘤以进行成像。使用CRi Maestro白光激发成像仪(美国马萨诸塞州Woburn市CRi有限公司(CRi Inc.,Woburn,MA,USA))和激光激发FluobeamTM 800NIR成像系统(法国格勒诺布尔市Fluoptics公司(Fluoptics,Grenoble,France))对动物成像。通过将与该比较相关的所有组织放置在同一图像中以使曝光时间相等,可以进行组织之间的比较。
(4)MTC原位异种移植物:
(a)细胞制备和注射协议:
用0.25%胰蛋白酶EDTA处理细胞以从培养皿中移除。冲洗细胞并且将其以5×107细胞/mL的浓度重悬于1×PBS中,并且置于冰上。用异氟烷麻醉无胸腺裸鼠(~5-6周,TVSR),并且使用4%的氯己定(Henry Schein Animal Health,美国俄亥俄州哥伦布市(Columbus,OH))对皮肤进行灭菌。建立无菌区并且进行垂直宫颈切口。可视化是通过使用解剖显微镜来实现的。使用钝性解剖分别分离和反射带状肌肉和下颌下腺。一旦气管和甲状腺充分可视化,使用胰岛素注射器针头(27ga,美国新泽西州萨默塞特泰尔茂公司(Terumo,Somerset,NJ,USA))将十微升细胞悬液注射到目标甲状腺叶中。重新接近下颌下组织,并且使用6-0可吸收的外科缝合线缝合切口。允许小鼠从麻醉中恢复,回到笼中并且提供止痛药(布洛芬2mg/mL)七天。所有动物研究均根据美国俄亥俄州立大学实验动物资源批准的协议进行。
(5)统计分析:
使用Wilcoxon秩和检验法比较年龄匹配的未注射小鼠与携带异种移植物的小鼠之间的降钙素水平。计算降钙素浓度和尸检时的体积的Spearman相关性。
(6)原位异种移植物中的4Iph-HN18-IR800:
经由尾静脉注射将40nmol的4Iph-HN18-IR800导入动物。使用CRi Maestro白光激发成像仪(美国马萨诸塞州Woburn市CRi有限公司(CRi Inc.,Woburn,MA,USA))和激光激发FluobeamTM 800NIR成像系统(法国格勒诺布尔市Fluoptics公司(Fluoptics,Grenoble,France))对动物成像。切除肿瘤和等体积的肌肉组织,并且比较荧光。
b)结果
(1)在MTC皮下侧腹异种移植物模型中4Iph-HN18-IR800的特征
在两个MTC细胞的皮下侧腹异种移植物模型中检查了4Iph-HN18-IR800的定位。实验中使用的肿瘤至少为150mm3。直至24h,4Iph-HN18-IR800在体内的分布相对均等(图7)。从24h开始,直到实验结束,在异种移植物部位观察到背景增加的对比度,在36h和48h观察到附加的对比度(图7)。两种细胞系似乎都具有在对应的异种移植物中浓缩4Iph-HN18-IR800的能力(图7),这表明钙代谢与试剂的摄取和保留无关。
(2)甲状腺髓样癌原位异种移植物的特征
为了检查正常疾病部位4Iph-HN18-IR800的浓度,通过将每种细胞系注入五只(TT)或六只(MZ-CRC1)动物的甲状腺叶中,为TT和MZ-CRC1细胞系两者建立原位异种移植物。在所有注射了TT细胞系的动物中成功建立了异种移植物,在注射MZ-CRC1细胞系的六只动物中有五只成功建立了异种移植物。在注射后第二周开始之后每周监测异种移植物的生长情况,并且进行3D US监测。早在三周就可以检测到原位异种移植物,这是注射的甲状腺叶中的一个小的低密度结节。随着异种移植物的扩大,与周围组织相比,它们呈圆形轮廓并且保持低密度。观察到较大的肿瘤扩展到气管和食道后方的颈部对侧。在注射了TT细胞的动物中,每个原位异种移植物之间的生长几乎没有差异。在对衍生自MZ-CRC1细胞的异种移植物进行尸检后观察到,通过US软件计算的原位异种移植物的最终体积与通过卡尺测量确定的体积存在一定差异。
(3)在MTC原位模型中4Iph-HN18-IR800的成像
使用原位异种移植物检查4Iph-HN18-IR800在原位异种移植物部位积累的能力。4Iph-HN18-IR800主要存在于小鼠的原位异种移植物中,产生了易于可视化的荧光(图8)。重要的是,周围组织没有发荧光,表明4Iph-HN18-IR800特别是被内在化/与肿瘤细胞衍生的异种移植物结合。注射序列混杂对照的小鼠没有特异性的(或实际上没有任何可检测到的)荧光(图8)。在肿瘤体积和荧光强度之间不存在可观察到的相关性。
第二原位异种移植物用于使用MBA-MD-231三阴性人类乳腺癌细胞检查4Iph-HN18-IR800在乳腺癌原位异种移植物部位积累的能力。将MBA-MD-231细胞植入两只脂肪垫裸性雌性小鼠中。这些肿瘤随时间的生长速率示于图9A。在其中一只患有两种此类肿瘤的小鼠中,当肿瘤长到约1cm直径后,向小鼠注射40nmol的f-HN18-IR800,并且在24小时后使用FluOptics Fluobeam光学外科成像仪记录图像(图9B)。光学图像中的大白色椭圆形是肿瘤,表明f-HN18-IR800在肿瘤中的定位。
c)讨论
本文公开了甲状腺髓样癌中新型近红外成像分子的生物学评估。最初的实验表明,使用体外测定法,该分子可以结合和/或内在两个MTC细胞系中。使用相同的测定法进行的显微镜评估以及快速内在化所需的相对较高浓度表明该分子具有细胞渗透肽的作用。使用荧光显微镜检查了MTC细胞中4Iph-HN18-IR800的细胞定位,并且发现处理过的细胞中的荧光与线粒体的定位一致。该定位是由于该定位处的内在化或荧光代谢物在该定位处的定位。对照化合物(83a)在体外几乎没有荧光,表明特异性为17。4Iph-HN18-IR800结合并且进入细胞的机制目前尚不清楚。Hong和Clayman描述了一种称为HN1的肽,他们发现这种肽可能经由受体介导的内吞被鳞状细胞摄取,但是这种机制尚未得到明确证实。4Iph-HN18-IR800部分衍生自相同的氨基酸,并且具有类似的进入机制,但是摄取速度更快。
在侧腹异种移植物中也观察到了特异性的荧光,这在皮肤上很明显。4Iph-HN18-IR800也似乎在肾脏中积累,表明通过这些器官排泄。它还表明对肾单位有些亲和力。与异种移植物相比,来自同一只动物的肌肉组织(大腿)的检查显示出非常少的荧光,从而提供了极好的信噪比。有趣的是,该试剂似乎在整个肿瘤中均等地广泛扩散。该试剂似乎没有保留在血管或淋巴管中或附近。这导致所有肿瘤组织的更完整可视化,而不仅仅是肿瘤血管良好的区域。
为了更好地评估4Iph-HN18-IR800在术中环境的实用性,开发了小鼠MTC的原位模型。通过在生存外科期间直接注射入甲状腺床来建立异种移植物。这允许异种移植物在包括周围的甲状腺滤泡细胞、脉管系统和旁分泌信号传导的微环境中生长和发育。MTC尚未对此进行描述。鼠颈US证实了异种移植物的原位定位,这提供了一种与人类似的非侵入性方法。另选的监测系统通常使用生物发光,这需要基因改变的细胞。MTC细胞系生长缓慢,导入萤光素酶基因的过程可能具有有害作用,包括选择亚克隆。由于肿瘤的异质性和使用US的细微差别,可能有一些动物对其肿瘤的US成像不完整,结果,在3D US上的肿瘤总体积低估了实际的疾病负担。虽然在使用US进行本专利申请存在学习曲线,但是它是一种有价值的工具,允许使用未标记的细胞系,并且是非侵入性的。总的来说,发现动物之间的生长曲线是平滑且一致的,并且在最终US记录的肿瘤体积非常接近尸检时测得的体积。虽然PTC和ATC原位异种移植物的报告表明在四到五周内有大异种移植物(100-200mm3),但是MTC原位肿瘤在9-10周之间达到了大体积,与其在体外的缓慢生长有关。在MTC原位模型中评估肿瘤生长的另一个有用辅助方法是经由ELISA测定血清降钙素。降钙素是MTC人中有用的生物标志物。与年龄和性别相匹配的对照动物相比,MTC异种移植物的动物的降钙素浓度增加。虽然这不适用于这些动物中4Iph-HN18-IR800的评估,但是这可以作为降钙素是由肿瘤产生的概念证明,并且可以用作异种移植物生长和/或对治疗反应的生物标志物通过进一步的研究,降钙素可能可以消除经由其他方法追踪异种移植物生长的需要。
在MTC原位模型中使用4Iph-HN18-IR800证明了其在外科切除中的潜在应用。与周围组织相比,肿瘤表现出强烈的荧光。在周围的肌肉、气管和食道中存在少量的背景荧光。荧光的分辨率肯定为亚厘米,并且可能约为1毫米。在局部区域性疾病患者以及术后环境复发区域性患者中,这种分辨率水平对于区分疤痕组织与活动性疾病非常有价值。这种分化程度在侧颈解剖期间的敏感区域(诸如喉返神经和其他颅神经周围)更有价值。能够将恶性组织与非恶性组织实时区分开而无需进行活检的能力是最终目标,以便将患者的风险降至最低并且获得更完整的切除术。虽然4Iph-HN18-IR800是出色的候选者,但是仍需进一步研究以使其在人中使用,以及使其在其他应用中的潜力最大化。这包括评估其敏感性和特异性、作用机理、药效学和药代动力学以及耐受性的广度。为了最大化信噪比,需要在成像之前确定化合物的最佳给药时机。虽然有大量工作要做,但是4Iph-HN18-IR800似乎有可能对MTC患者产生重大影响。
3。实施例3:通过细胞渗透肽直接渗透细胞膜
使用共聚焦显微镜制作了最佳肽的CY5标记类似物(4Iphf-HN18-CY5),以验证活HNSCC细胞中的内在化。由此得出结论,HN18确实被内在化了,而主要的亚细胞部分在细胞质中。肌动蛋白对膜的位置进行了染色、Hoechst对细胞核进行了染色。共聚焦图像清楚地显示了位于胞质溶胶中的内在化的4Iphf-HN18-CY5。为了进行染色,将细胞在5-10μM4Iphf-HN18-CY5中温育1小时,并且用含有FBS(与杂合肽结合)的细胞生长培养基洗涤5次,以便移除尽可能多的杂合肽而不损坏细胞。
为了确定HN17和HN18如何进入细胞的细胞质,应当理解内在化可以经由直接渗透或内吞发生。为了阐明所使用的机理,再次获得了共焦图像,但是现在存在各种抑制剂。
通过减少可利用的热能,细胞膜的粘附和内在化被阻止了,但不是完全停止,而是几乎停止了(图10)。这与这两种机制是一致的;然而,它也表明内在化不是某种与生命细胞及其生命状态无关的物理吸附。此外,这意味着观察到的细胞膜粘附是整个机制的一部分。稍后的动力学表明,第一步仅需几秒钟到几分钟即可完成。
为了辨别发生哪种内在化,在各种抑制剂存在下,将4Iphf-HN18-CY5与Cal-27细胞温育(图11)。叠氮化钠的使用表明内在化机制不需要大量的细胞供应能量,因为叠氮化钠耗尽了细胞的ATP池。这与直接渗透机制是一致的。内吞是能量依赖性的。尽管对细胞施加了高效的内吞抑制剂以阻止各种类型的内吞,但是接下来的四张玻片均显示出内在化。具体而言,诺考达唑、甲基-β-环糊精(MβCD)、氯吡嗪和阿米洛利抑制均显示了该结果。诺考达唑会抑制clartherin涂层的小窝的形成,因此可以测试钙黄蛋白依赖性内吞。MβCD抑制脂筏介导的穴样内陷途径,这是网格蛋白独立的主要内吞途径之一。类似地,氯丙嗪可抑制网格蛋白的内吞不依赖途径。最后,阿米洛利抑制微胞饮作用(即非受体介导的内吞)。如上所述,每种抑制均未停止内在化。FACS在FITC标记的杂合肽上。它们表明,所有细胞都在整体中参与细胞结合,而不仅仅是在显微镜下观察到的少数细胞。因此,经由HN17的细胞渗透是经由直接机制发生的。
除非有新的作用机制,否则碘化丙锭不能进入细胞并且使细胞核染成蓝色,否则细胞将死或死亡。最右边的图表表明,杂合肽在使用的浓度和条件下不会破坏细胞(图12)。左边的玻片显示,尽管如此,在HN18存在下,碘化丙啶仍进入细胞并且使细胞核染成蓝色。这与任何一种机制都一致,但是由于现在已知该机制必须是直接机制,因此杂合肽必须产生小的、无害的和暂时的细胞膜缺陷,从而允许碘化丙啶暂时进入胞质溶胶,并且从胞质溶胶中迁移到细胞核。它不能牢固地与杂合肽结合,因为它靶向细胞核,而杂合肽则停留在胞质溶胶中。这种现象允许简单地通过将治疗剂与杂合肽一起混合和施用而甚至不缀合至杂合肽的靶向治疗剂。
为了进一步研究HN18肽(更具体地说4Iphf-HN18)对细胞的渗透,Cal 27活4Iphf-HN18-Cy5在几秒钟内从本体溶液渗入细胞膜,然后在5分钟内明显渗入胞质溶胶中,在接下来的25分钟内继续移入细胞中。未固定的细胞与4Iphf-HN18-Cy5接触(图13)。
F。参考文献
Antonello ZA&Nucera C 2014Orthotopic mouse models for the preclinicaland translational study of targeted therapies against metastatic humanthyroid carcinoma with BRAF(V600E)or wild-type BRAF.Oncogene 33 5397-5404.
Bao L,Gorin MA,Zhang M等人(2009)Preclinical development of abifunctional cancer cell homing,PKCepsilon inhibitory peptide for thetreatment of head and neck cancer.Cancer Res 69:5829-5834.
Bihan H,Becker KL,Snider RH,Nylen E,Vittaz L,Lauret C,Modigliani E,Moretti JL&Cohen R 2003Calcitonin precursor levels in human medullary thyroidcarcinoma.Thyroid 13 819-822.
Cabanillas ME,Hu MI,Durand JB&Busaidy NL 2011Challenges associatedwith tyrosine kinase inhibitor therapy for metastatic thyroid cancer.JThyroid Res 2011 985780.
Carson FL&Cappellano CH 2009Histotechnology:a self-instructionaltext.[Chicago]:ASCP Press.
Chau NG&Haddad RI 2013Vandetanib for the treatment of medullarythyroid cancer.Clin Cancer Res 19 524-529.
Cheung K,Wang TS,Farrokhyar F,Roman SA&Sosa JA 2012A meta-analysis ofpreoperative localization techniques for patients with primaryhyperparathyroidism.Ann Surg Oncol 19 577-583.
Fagin JA&Wells SAJ 2016Biologic and Clinical Perspectives on ThyroidCancer.New England Journal of Medicine 375 1054-1067.
Faustino-Rocha A,Oliveira PA,Pinho-Oliveira J,Teixeira-Guedes C,Soares-Maia R,da Costa RG,Colaco B,Pires MJ,Colaco J,Ferreira R等人2013Estimation of rat mammary tumor volume using caliper and ultrasonographymeasurements.Lab Anim(NY)42 217-224.
Fischer AH,Jacobson KA,Rose J&Zeller R 2008Hematoxylin and eosinstaining of tissue and cell sections.CSH Protoc 2008pdb prot4986.
Fogal V,Richardson AD,Karmali PP,Scheffler IE,Smith JW&Ruoslahti E2010Mitochondrial p32 protein is a critical regulator of tumor metabolism viamaintenance of oxidative phosphorylation.Mol Cell Biol 30 1303-1318.
Fogal V,Zhang L,Krajewski S&Ruoslahti E 2008Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumorstroma.Cancer Res 68 7210-7218.
Gotthardt M,Lohmann B,Behr TM,Bauhofer A,Franzius C,Schipper ML,Wagner M,Hoffken H,Sitter H,Rothmund M等人2004Clinical value of parathyroidscintigraphy with technetium-99m methoxyisobutylisonitrile:discrepancies inclinical data and a systematic metaanalysis of the literature.World J Surg 28100-107.
Hong FD&Clayman GL 2000Isolation of a peptide for targeted drugdelivery into human head and neck solid tumors.Cancer Res 60 6551-6556.
Marshall MV,Draney D,Sevick-Muraca EM&Olive DM 2010Single-doseintravenous toxicity study of IRDye 800CW in Sprague-Dawley rats.Mol ImagingBiol 12 583-594.
Morrison JA,Pike LA,Lund G,Zhou Q,Kessler BE,Bauerle KT,Sams SB,Haugen BR&Schweppe RE 2015Characterization of thyroid cancer cell lines inmurine orthotopic and intracardiac metastasis models.Horm Cancer 6 87-99.
Nguyen QT,Olson ES,Aguilera TA,Jiang T,Scadeng M,Ellies LG&Tsien RY2010Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival.ProcNatl Acad Sci U S A 107 4317-4322.
Nucera C,Nehs MA,Mekel M,Zhang X,Hodin R,Lawler J,Nose V&Parangi S2009A novel orthotopic mouse model of human anaplastic thyroidcarcinoma.Thyroid 19 1077-1084.
Ruoslahti E 2016Tumor penetrating peptides for improved drugdelivery.Adv Drug Deliv Rev.
Schweppe RE,Klopper JP,Korch C,Pugazhenthi U,Benezra M,Knauf JA,FaginJA,Marlow LA,Copland JA,Smallridge RC等人2008Deoxyribonucleic acid profilinganalysis of 40human thyroid cancer cell lines reveals cross-contaminationresulting in cell line redundancy and misidentification.J Clin EndocrinolMetab 93 4331-4341.
Stummer W,Novotny A,Stepp H,Goetz C,Bise K&Reulen HJ2000Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins:a prospective study in 52consecutivepatients.J Neurosurg 93 1003-1013.
Stummer W,Pichlmeier U,Meinel T,Wiestler OD,Zanella F&ReulenHJ2006Fluorescence-guided surgery with 5-aminolevulinic acid for resection ofmalignant glioma:a randomised controlled multicentre phase III trial.LancetOncol 7 392-401.
Tweedle MF 2009Peptide-targeted diagnostics and radiotherapeutics.AccChem Res 42 958-968.
Un F,Zhou B&Yen Y 2012The utility of tumor-specifically internalizingpeptides for targeted siRNA delivery into human solid tumors.Anticancer Res324685-4690.
Vanden Borre P,Gunda V,McFadden DG,Sadow PM,Varmeh S,Bernasconi M&Parangi S 2014Combined BRAF(V600E)-and SRC-inhibition induces apoptosis,evokes an immune response and reduces tumor growth in an immunocompetentorthotopic mouse model of anaplastic thyroid cancer.Oncotarget 5 3996-4010.
Verbeek HHG,Plukker JTM,Koopmans KP,de Groot JWB,Hofstra RMW,MullerKobold AC,van der Horst-Schrivers ANA,Brouwers AH&Links TP 2012ClinicalRelevance of 18F-FDG PET and 18F-DOPA PET in Recurrent Medullary ThyroidCarcinoma.Journal of Nuclear Medicine 53 1863-1871.
Wells SA,Jr.,Asa SL,Dralle H,Elisei R,Evans DB,Gagel RF,Lee N,MachensA,Moley JF,Pacini F等人2015Revised American Thyroid Association guidelinesfor the management of medullary thyroid carcinoma.Thyroid 25 567-610.
Yagi M,Uchiumi T,Takazaki S,Okuno B,Nomura M,Yoshida S,Kanki T&Kang D2012p32/gC1qR is indispensable for fetal development and mitochondrialtranslation:importance of its RNA-binding ability.Nucleic Acids Res 40 9717-9737.
序列表
<110> 俄亥俄州创新基金会
<120> 新型基于肽的癌症显像剂
<130> 10336-309WO1
<160> 9
<170> PatentIn 3.5版本
<210> 1
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 1
Thr Leu Pro Asn Ser Asn His Ile Lys Gln Gly Leu
1 5 10
<210> 2
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 2
Thr Ser Pro Leu Asn Ile His Asn Gly Gln Lys Leu
1 5 10
<210> 3
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 3
Leu Asn Lys Gln Thr His Gly Leu Ile Pro Asn Ser
1 5 10
<210> 4
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 4
Asn Gln His Ser Lys Asn Thr Leu Leu Ile Gly Pro
1 5 10
<210> 5
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 5
Leu Lys Gln Gly Asn His Ile Asn Leu Pro Ser
1 5 10
<210> 6
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 6
Tyr Ser Pro Leu Asn Ile His Asn Gly Gln Lys Leu
1 5 10
<210> 7
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 7
Leu Pro Asn Ser Asn His Ile Lys Gln Gly Leu
1 5 10
<210> 8
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 8
Tyr Leu Pro Asn Ser Asn His Ile Lys Gln Gly Leu
1 5 10
<210> 9
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成构建体
<400> 9
Phe Leu Pro Asn Ser Asn His Ile Lys Gln Gly Leu
1 5 10

Claims (41)

1.靶向肿瘤细胞的分离的肽,其中所述肽的氨基酸序列由TLPNSNHIKQGL (SEQ ID NO:1)、LPNSNHIKQGL (SEQ ID NO: 7)、YLPNSNHIKQGL (SEQ ID NO: 8)或FLPNSNHIKQGL (SEQID NO: 9)组成,其中所述肽还包含附接到氨基末端氨基酸的亲脂体,并且其中所述亲脂体包含芴基甲氧羰基(f)、4-对-碘-苄基(4Iph)、4-对-碘-苯甲酰基和/或3-碘酪氨酸。
2.根据权利要求1所述的肽,其中所述肽的氨基酸序列由SEQ ID NO: 1组成。
3.根据权利要求1所述的肽,其中所述肽的氨基酸序列由SEQ ID NO: 7组成。
4.根据权利要求1所述的肽,其中所述亲脂体包含芴基甲氧羰基和4-对-碘-苄基。
5.根据权利要求1所述的肽,其中所述肽通过所述肿瘤细胞内在化。
6.一种组合物,包含:a)抗癌药物;以及b)靶向肿瘤细胞的肽,其中所述肽的氨基酸序列由TLPNSNHIKQGL (SEQ ID NO: 1)、LPNSNHIKQGL (SEQ ID NO: 7)、YLPNSNHIKQGL (SEQID NO: 8)或FLPNSNHIKQGL (SEQ ID NO: 9)组成,并且其中所述肽还包含附接到氨基末端氨基酸的亲脂体,并且所述亲脂体包含芴基甲氧羰基、4-对-碘-苄基、4-对-碘-苯甲酰基和/或3-碘酪氨酸。
7.根据权利要求6所述的组合物,其中所述肽的氨基酸序列由SEQ ID NO: 1组成。
8.根据权利要求6所述的组合物,其中所述肽的氨基酸序列由SEQ ID NO: 7组成。
9.根据权利要求6所述的组合物,其中所述药物为化学治疗剂。
10.根据权利要求6所述的组合物,其中所述药物为细胞毒性剂。
11.根据权利要求6所述的组合物,其中所述药物为凋亡剂。
12.根据权利要求6所述的组合物,其中所述药物为DNA损伤剂。
13.根据权利要求6所述的组合物,其中所述药物为植物生物碱。
14.根据权利要求6所述的组合物,其中所述药物为放射敏化剂。
15.根据权利要求6所述的组合物,其中所述抗癌药物包括顺铂(CDDP)、卡铂、丙卡巴肼、双氯乙基甲胺、环磷酰胺、异环磷酰胺、美法仑、苯丁酸氮芥、白消安(bisulfan)、亚硝基脲(nitrosurea)、更生霉素、柔红霉素、阿霉素、博莱霉素、普卡霉素(plicomycin)、丝裂霉素、依托泊苷(VP16)、多西他赛、西妥昔单抗、他莫昔芬、跨铂、5-氟尿嘧啶、长春新碱、长春碱或甲氨蝶呤。
16.根据权利要求15所述的组合物,其中所述抗癌药物共价附接至所述肽。
17.根据权利要求16所述的组合物,其中所述抗癌药物在赖氨酸残基处共价附接至所述肽。
18.根据权利要求6所述的组合物,其中所述亲脂体包含芴基甲氧羰基和4-对-碘-苄基。
19.根据权利要求6所述的组合物,其中所述肽通过所述肿瘤细胞内在化。
20.根据权利要求6所述的组合物,其中所述组合物还包含可检测到的标记物。
21.根据权利要求20所述的组合物,其中所述肽的氨基酸序列是SEQ ID NO: 1或SEQID NO: 7,所述亲脂体是4Iph和f,并且所述可检测到的标记物是NIRF染料。
22.根据权利要求20所述的组合物,其中所述肽的氨基酸序列是SEQ ID NO: 1或SEQID NO: 7,所述亲脂体是4Iph和f,并且所述可检测到的标记物是IR800。
23.根据权利要求1至5中任一项所述的肽或根据权利要求6至22中任一项所述的组合物在制备用于治疗受试者的癌症的制剂中的用途,其中所述癌症为头颈癌、乳腺癌和/或甲状腺癌。
24.根据权利要求23所述的用途,其中所述癌症选自头颈部鳞状细胞癌、甲状腺髓样癌和三阴性人类乳腺癌。
25.包含肽的组合物在制备用于治疗受试者的癌症的制剂中的用途,其中所述肽的氨基酸序列由TLPNSNHIKQGL (SEQ ID NO: 1)、LPNSNHIKQGL (SEQ ID NO: 7)、YLPNSNHIKQGL(SEQ ID NO: 8)或FLPNSNHIKQGL (SEQ ID NO: 9)组成,并且其中所述肽还包含附接到氨基末端氨基酸的亲脂体,并且所述亲脂体包含芴基甲氧羰基、4-对-碘-苄基、4-对-碘-苯甲酰基和/或3-碘酪氨酸,其中所述癌症为头颈癌、乳腺癌和/或甲状腺癌。
26.根据权利要求25所述的用途,其中所述癌症选自头颈部鳞状细胞癌、甲状腺髓样癌和三阴性人类乳腺癌。
27.根据权利要求25所述的用途,其中所述肽的氨基酸序列由SEQ ID NO: 1组成。
28.根据权利要求25所述的用途,其中所述肽的氨基酸序列由SEQ ID NO: 7组成。
29.根据权利要求25所述的用途,其中所述亲脂体包含芴基甲氧羰基和4-对-碘-苄基。
30.根据权利要求25所述的用途,其中所述组合物还包含抗癌药物。
31.根据权利要求30所述的用途,其中所述抗癌药物包括顺铂(CDDP)、卡铂、丙卡巴肼、双氯乙基甲胺、环磷酰胺、异环磷酰胺、美法仑、苯丁酸氮芥、白消安(bisulfan)、亚硝基脲(nitrosurea)、更生霉素、柔红霉素、阿霉素、博莱霉素、普卡霉素(plicomycin)、丝裂霉素、依托泊苷(VP16)、多西他赛、西妥昔单抗、他莫昔芬、跨铂、5-氟尿嘧啶、长春新碱、长春碱或甲氨蝶呤。
32.根据权利要求30所述的用途,其中所述抗癌药物共价附接至所述肽。
33.根据权利要求32所述的用途,其中所述抗癌药物在赖氨酸残基处共价附接至所述肽。
34.根据权利要求25所述的用途,其中所述肽通过肿瘤细胞内在化。
35.根据权利要求25所述的用途,其中所述组合物还包含可检测到的标记物。
36.包含肽的组合物在制备用于检测受试者的癌症细胞的制剂中的用途,其中所述肽的氨基酸序列由TLPNSNHIKQGL (SEQ ID NO: 1)、LPNSNHIKQGL (SEQ ID NO: 7)、YLPNSNHIKQGL (SEQ ID NO: 8)或FLPNSNHIKQGL (SEQ ID NO: 9)组成,其中所述肽缀合至可检测到的标记物,并且其中所述肽还包含附接到氨基末端氨基酸的亲脂体,并且所述亲脂体包含芴基甲氧羰基、4-对-碘-苄基、4-对-碘-苯甲酰基和/或3-碘酪氨酸,其中所述癌症为头颈癌、乳腺癌和/或甲状腺癌。
37.根据权利要求36所述的用途,其中所述癌症选自头颈部鳞状细胞癌、甲状腺髓样癌和三阴性人类乳腺癌。
38.根据权利要求36所述的用途,其中所述可检测到的标记物包含Cy5、IR800或NIRF染料。
39.根据权利要求36所述的用途,其中所述亲脂体包含芴基甲氧羰基和4-对-碘-苄基。
40.根据权利要求36至39中任一项所述的用途,其中所述肽的氨基酸序列是SEQ IDNO: 1或SEQ ID NO: 7,所述亲脂体是4Iph和f,并且所述可检测到的标记物是NIRF染料。
41.根据权利要求36至39中任一项所述的用途,其中所述肽的氨基酸序列是SEQ IDNO: 1或SEQ ID NO: 7,所述亲脂体是4Iph和f,并且所述可检测到的标记物是IR800。
CN201880067686.2A 2017-08-19 2018-08-20 新型基于肽的癌症显像剂 Active CN111225679B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762547821P 2017-08-19 2017-08-19
US62/547,821 2017-08-19
PCT/US2018/047085 WO2019040367A1 (en) 2017-08-19 2018-08-20 NEW CANCER IMAGING AGENTS BASED ON PEPTIDES

Publications (2)

Publication Number Publication Date
CN111225679A CN111225679A (zh) 2020-06-02
CN111225679B true CN111225679B (zh) 2024-03-29

Family

ID=65439912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880067686.2A Active CN111225679B (zh) 2017-08-19 2018-08-20 新型基于肽的癌症显像剂

Country Status (7)

Country Link
US (2) US11419951B2 (zh)
EP (1) EP3668532A4 (zh)
JP (1) JP7267998B2 (zh)
CN (1) CN111225679B (zh)
AU (1) AU2018321825A1 (zh)
CA (1) CA3073379A1 (zh)
WO (1) WO2019040367A1 (zh)

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700930B1 (en) * 1994-06-07 1999-11-03 NIHON MEDI-PHYSICS Co., Ltd. Tumor affinity peptide, and radioactive diagnostic agent and radioactive therapeutic agent containing the peptide
AU2001250683A1 (en) * 2000-04-12 2002-01-10 Ge Healthcare As Peptide-based compounds
WO2002002147A2 (en) * 2000-06-30 2002-01-10 Board Of Regents, The University Of Texas System Isolation of a cell-specific internalizing peptide that infiltrates tumor tissue for targeted drug delivery
KR20020085606A (ko) * 2001-05-09 2002-11-16 주식회사 필켐 먹장어 피부로부터 분리한 새로운 항균활성 펩타이드들 및그것들의 유사체들
WO2004067779A2 (en) * 2003-01-30 2004-08-12 Applera Corporation Genetic polymorphisms associated with rheumatoid arthritis, methods of detection and uses thereof
WO2006076423A2 (en) * 2005-01-12 2006-07-20 Monsanto Technology, Llc Genes and uses for plant improvement
CN1852974A (zh) * 2003-06-09 2006-10-25 密歇根大学董事会 用于治疗和诊断癌症的组合物和方法
CN1896105A (zh) * 2005-01-07 2007-01-17 胡耀雄 修饰重组的人乳头瘤病毒多肽、衣原体热休克多肽、肿瘤多肽及肿瘤阻抑蛋白多肽
WO2007107326A1 (en) * 2006-03-21 2007-09-27 Bayer Bioscience N.V. Stress resistant plants
CN101448959A (zh) * 2006-03-23 2009-06-03 天空遗传学公司 癌症检测试剂以及在病理学和诊断学及癌细胞死亡中的用途
CN101500591A (zh) * 2005-09-08 2009-08-05 Mnd诊断有限公司 用于检测病毒的组合物及使用该组合物检测病毒的方法
CN102133407A (zh) * 2002-03-01 2011-07-27 图兰恩教育基金管理人 治疗剂或细胞毒性剂与生物活性肽的偶联物
CN102596222A (zh) * 2009-07-01 2012-07-18 国家科研中心 作为肿瘤生长的抑制剂的皮抑菌肽b2
CN102655882A (zh) * 2009-09-11 2012-09-05 美国政府健康及人类服务部 具有降低的免疫原性的改进的假单胞菌外毒素a
EP2754450A1 (en) * 2013-01-11 2014-07-16 Österreichische Akademie der Wissenschaften Lactoferricin derived peptides
CN104689298A (zh) * 2008-01-22 2015-06-10 阿拉伊姆药品公司 用于预防和治疗组织损伤相关疾病和病症的组织保护肽和肽类似物
WO2015104292A2 (en) * 2014-01-07 2015-07-16 Biomedical Research Foundation Of The Academy Of Athens Compounds for use in treating or preventing cancerous diseases
CN104884472A (zh) * 2012-11-01 2015-09-02 艾伯维公司 抗-vegf/dll4双重可变结构域免疫球蛋白及其用途
EP2957299A1 (en) * 2014-06-18 2015-12-23 Klinikum rechts der Isar der Technischen Universität München Peptide-based compounds and their uses for tumor imaging and targeting
CN105330725A (zh) * 2015-11-06 2016-02-17 国家纳米科学中心 一种pH响应且靶向人肿瘤血管标记物VEGFR2的多肽及其应用
WO2016061286A2 (en) * 2014-10-14 2016-04-21 Halozyme, Inc. Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
KR20160064726A (ko) * 2014-11-28 2016-06-08 서울대학교산학협력단 세포 투과 펩타이드-항암제 접합체 및 이를 포함하는 암 치료용 조성물
CN106132970A (zh) * 2014-02-03 2016-11-16 俄亥俄州创新基金会 硼酸酯和其药物制剂
WO2016186445A1 (ko) * 2015-05-18 2016-11-24 경북대학교 산학협력단 암 세포 표적용 펩타이드 및 이의 용도

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ521735A (en) * 2000-04-12 2004-12-24 Amersham Health As Peptide-based compounds, their use as targeting vectors that bind to receptors associated with antiogenesis such as integrin receptors
WO2002036771A2 (en) * 2000-11-06 2002-05-10 Cancer Research Technology Limited Imaging, diagnosis and treatment of disease
EP2833892A4 (en) 2012-04-02 2016-07-20 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF PROTEINS AND PEPTIDES ASSOCIATED WITH ONCOLOGY

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700930B1 (en) * 1994-06-07 1999-11-03 NIHON MEDI-PHYSICS Co., Ltd. Tumor affinity peptide, and radioactive diagnostic agent and radioactive therapeutic agent containing the peptide
AU2001250683A1 (en) * 2000-04-12 2002-01-10 Ge Healthcare As Peptide-based compounds
WO2002002147A2 (en) * 2000-06-30 2002-01-10 Board Of Regents, The University Of Texas System Isolation of a cell-specific internalizing peptide that infiltrates tumor tissue for targeted drug delivery
AU2002223784A1 (en) * 2000-11-06 2002-07-18 Cancer ResearchTechnology Limited Imaging, diagnosis and treatment of disease
KR20020085606A (ko) * 2001-05-09 2002-11-16 주식회사 필켐 먹장어 피부로부터 분리한 새로운 항균활성 펩타이드들 및그것들의 유사체들
CN102133407A (zh) * 2002-03-01 2011-07-27 图兰恩教育基金管理人 治疗剂或细胞毒性剂与生物活性肽的偶联物
WO2004067779A2 (en) * 2003-01-30 2004-08-12 Applera Corporation Genetic polymorphisms associated with rheumatoid arthritis, methods of detection and uses thereof
CN1852974A (zh) * 2003-06-09 2006-10-25 密歇根大学董事会 用于治疗和诊断癌症的组合物和方法
CN1896105A (zh) * 2005-01-07 2007-01-17 胡耀雄 修饰重组的人乳头瘤病毒多肽、衣原体热休克多肽、肿瘤多肽及肿瘤阻抑蛋白多肽
WO2006076423A2 (en) * 2005-01-12 2006-07-20 Monsanto Technology, Llc Genes and uses for plant improvement
CN101500591A (zh) * 2005-09-08 2009-08-05 Mnd诊断有限公司 用于检测病毒的组合物及使用该组合物检测病毒的方法
WO2007107326A1 (en) * 2006-03-21 2007-09-27 Bayer Bioscience N.V. Stress resistant plants
CN101448959A (zh) * 2006-03-23 2009-06-03 天空遗传学公司 癌症检测试剂以及在病理学和诊断学及癌细胞死亡中的用途
CN104689298A (zh) * 2008-01-22 2015-06-10 阿拉伊姆药品公司 用于预防和治疗组织损伤相关疾病和病症的组织保护肽和肽类似物
CN102596222A (zh) * 2009-07-01 2012-07-18 国家科研中心 作为肿瘤生长的抑制剂的皮抑菌肽b2
CN102655882A (zh) * 2009-09-11 2012-09-05 美国政府健康及人类服务部 具有降低的免疫原性的改进的假单胞菌外毒素a
CN104884472A (zh) * 2012-11-01 2015-09-02 艾伯维公司 抗-vegf/dll4双重可变结构域免疫球蛋白及其用途
EP2754450A1 (en) * 2013-01-11 2014-07-16 Österreichische Akademie der Wissenschaften Lactoferricin derived peptides
WO2015104292A2 (en) * 2014-01-07 2015-07-16 Biomedical Research Foundation Of The Academy Of Athens Compounds for use in treating or preventing cancerous diseases
CN106132970A (zh) * 2014-02-03 2016-11-16 俄亥俄州创新基金会 硼酸酯和其药物制剂
EP2957299A1 (en) * 2014-06-18 2015-12-23 Klinikum rechts der Isar der Technischen Universität München Peptide-based compounds and their uses for tumor imaging and targeting
WO2016061286A2 (en) * 2014-10-14 2016-04-21 Halozyme, Inc. Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
KR20160064726A (ko) * 2014-11-28 2016-06-08 서울대학교산학협력단 세포 투과 펩타이드-항암제 접합체 및 이를 포함하는 암 치료용 조성물
WO2016186445A1 (ko) * 2015-05-18 2016-11-24 경북대학교 산학협력단 암 세포 표적용 펩타이드 및 이의 용도
CN105330725A (zh) * 2015-11-06 2016-02-17 国家纳米科学中心 一种pH响应且靶向人肿瘤血管标记物VEGFR2的多肽及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CASTELLETTO V等.Self-assembly of Fmoc-tetrapeptides based on the RGDS cel1 adhesion motif.《SOFT MATTER》.2011,第7卷(第7期),全文. *
DING HAIMING等.Novel Peptide NIRF Optical Surgical Navigation Agents for HNSCC.《MOLECULES》.2019,第24卷(第24期),全文. *
DUDAS JOZSEF等.Identification of HN-1-Peptide Target in Head and Neck Squamous Cell Carcinoma Cells.《ISRN ONCOLOGY》.2011,全文. *
HABIBI NEDA等.Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.《NANO TODAY,ELSEVIER,AMSTERDAM》.2016,第11卷(第11期),全文. *
HONG F D等.ISOLATION OF A PEPTIDE FOR TARGETED DRUG DELIVERY INTO HUMAN HEAD AND NECK SOLID TUMORS.《CANCER RESEARCH,AMERICAN ASSOCIATION FOR CANCER RESEARCH》.2000,第60卷(第60期),全文. *
ROSENTHAL EBEN L等.Safety and Tumor Specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer.《CLINICAL CANCER RESEARCH》.2015,第21卷(第21期),全文. *

Also Published As

Publication number Publication date
CN111225679A (zh) 2020-06-02
US20230338584A1 (en) 2023-10-26
JP2020531478A (ja) 2020-11-05
WO2019040367A1 (en) 2019-02-28
EP3668532A1 (en) 2020-06-24
CA3073379A1 (en) 2019-02-28
JP7267998B2 (ja) 2023-05-02
EP3668532A4 (en) 2021-09-01
US11419951B2 (en) 2022-08-23
AU2018321825A1 (en) 2020-03-05
US20200254116A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US11723990B2 (en) Library of pH responsive polymers and nanoprobes thereof
CN106573031A (zh) 双末端聚乙二醇化整合素‑结合肽及其使用方法
JP2017137316A (ja) クロロトキシン変異体、コンジュゲート、およびそれらを使用する方法
JP2020505326A (ja) Tead相互作用を妨害するためのペプチド組成物およびその使用方法
ES2705041T3 (es) Péptidos de unión a CD44
CA3035542A1 (en) Psma-targeted nir dyes and their uses
US20210330819A1 (en) Design and development of neurokinin-1 receptor-binding agent delivery conjugates
JP2011529079A (ja) 癌のペプチド治療剤
CN110312517A (zh) 促黄体激素释放激素受体(lhrh-r)缀合物及其用途
US20220162284A1 (en) Synthetic somatostatin receptor ligands
WO2020260309A1 (en) Novel diagnostic marker for pancreatic cancer
CN111225679B (zh) 新型基于肽的癌症显像剂
JP2017519740A (ja) ドラプロイン‐ドライソロイインペプチド誘導体
R Sivashankari et al. Peptides to target tumor vasculature and lymphatics for improved anti-angiogenesis therapy
TW202340226A (zh) 碳酸酐酶ix配位體
AU2022410422A1 (en) Carbonic anhydrase ix ligands
Cupka Development of an αᵥβ₆-Binding Peptide for In Vivo Applications: Modulation of Serum Stability and Biodistribution
KR101471475B1 (ko) 융합 펩타이드형 종양 억제제, 종양 진단제 및 그 제조방법
Aguilera Activatable cell penetrating peptides and their use in clinical contrast agent and therapeutic development

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant