CN111205655A - 一种基于改性聚碳酸酯的模型材料及其制备方法 - Google Patents

一种基于改性聚碳酸酯的模型材料及其制备方法 Download PDF

Info

Publication number
CN111205655A
CN111205655A CN202010021262.1A CN202010021262A CN111205655A CN 111205655 A CN111205655 A CN 111205655A CN 202010021262 A CN202010021262 A CN 202010021262A CN 111205655 A CN111205655 A CN 111205655A
Authority
CN
China
Prior art keywords
modified polycarbonate
model material
polycarbonate
wax
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010021262.1A
Other languages
English (en)
Inventor
蔡卓弟
谭世芝
周燕雪
徐勇军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN202010021262.1A priority Critical patent/CN111205655A/zh
Publication of CN111205655A publication Critical patent/CN111205655A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种基于改性聚碳酸酯的模型材料及其制备方法。这种模型材料包括如下组分:硅烷化碳纳米管改性聚碳酸酯、石蜡、微晶蜡、增粘树脂、增韧剂、光亮剂。这种模型材料的制备方法,包括以下步骤:1)制备硅烷化碳纳米管改性聚碳酸酯;2)制备基础蜡料;3)制备填料模型材料。本发明的模型材料加入改性的聚碳酸酯填料后,使得模型材料硬度大,强度高,收缩率小,表面光洁度优良。这种基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料综合性能优异,应用前景广阔。

Description

一种基于改性聚碳酸酯的模型材料及其制备方法
技术领域
本发明涉及填料模型材料技术领域,特别是涉及一种基于改性聚碳酸酯的模型材料及其制备方法。
背景技术
熔模铸造是一种近净形的先进成形工艺,其铸件精密、复杂、接近于零件,最后的形状可不经加工或很少加工就能直接使用。
目前我国的熔模铸造市场使用的大多是非填料的模型材料,其表面质量和尺寸精度不高,普遍使用于高精密的普通铸件上。随着科技的发展进步,更大和更复杂的铸件市场需求越来越大,非填料模料的性能限制使之已不能满足现实的需求。
多年来,许多的研究人员已经确认,模型材料中加入填料可以提高模型材料的性能,并且可以解决非填料的模型材料带来的问题。填料不受模型材料原料和操作温度的影响,填料的使用可以有效减少线性收缩率和表面的质量。
发明内容
为了克服现有技术存在的问题,本发明的目的之一在于提供一种基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料,本发明的目的之二在于提供这种填料模型材料的制备方法。
本发明的发明构思如下:使用硅烷化碳纳米管改性聚碳酸酯作为填料,制备一种模型材料。
为了实现上述目的,本发明所采取的技术方案是:
本发明提供了一种基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料。
一种基于改性聚碳酸酯的模型材料,包括如下组分:硅烷化碳纳米管改性聚碳酸酯、石蜡、微晶蜡、增粘树脂、增韧剂、光亮剂。
优选的,这种模型材料各组分的质量百分比如下:硅烷化碳纳米管改性聚碳酸酯10%~40%;石蜡30%~40%;微晶蜡4%~10%;增粘树脂10%~30%;增韧剂5%~10%;光亮剂5%~10%。各组分之和为100%。
优选的,这种模型材料中,硅烷化碳纳米管改性聚碳酸酯是由聚碳酸酯与硅烷偶联剂改性的碳纳米管按质量比(40~60):1制成;进一步优选的,硅烷化碳纳米管改性聚碳酸酯是由聚碳酸酯与硅烷偶联剂改性的碳纳米管按质量比(45~55):1制成。
优选的,这种模型材料中,硅烷化碳纳米管改性聚碳酸酯的粒径小于100μm。
优选的,这种模型材料中,石蜡选自56#、58#、60#、62#、64#、66#石蜡中的至少一种;进一步优选的,石蜡选自60#石蜡、62#石蜡、64#石蜡中的至少一种。石蜡可以选用全精炼或半精炼的板蜡和/或粒蜡。
优选的,这种模型材料中,微晶蜡选自70#、75#、80#、85#微晶蜡中的至少一种;进一步优选的,微晶蜡选自70#微晶蜡、75#微晶蜡中的至少一种。
优选的,这种模型材料中,增粘树脂选自松香甘油酯、松香树脂、氢化松香树脂、C5石油树脂、C9石油树脂、C5加氢石油树脂、C9加氢石油树脂中的至少一种;进一步优选的,增粘树脂选自氢化松香树脂、C5石油树脂、C5加氢石油树脂中的至少一种。
优选的,这种模型材料中,增粘树脂的软化点为90℃~100℃。
优选的,这种模型材料中,增韧剂选自氯化聚乙烯、聚苯乙烯、苯乙烯-丁二烯聚合物、乙烯-醋酸乙烯酯共聚物(EVA)、乙烯-丙烯酸乙酯共聚物、丙烯腈-丁二烯-苯乙烯、聚烯烃共聚物中的至少一种;进一步优选的,增韧剂选自乙烯-醋酸乙烯酯共聚物、聚烯烃共聚物中的至少一种。聚烯烃共聚物即聚烯烃弹性体(POE)。
这种模型材料中,通过加入光亮剂,可以增加模型材料表面的光洁度。光亮剂可以为脂肪酸或其衍生物。优选的,光亮剂选自棕榈酸、乙二醇硬脂酸酯、芥酸酰胺中的至少一种;最优选的,光亮剂为棕榈酸。在本发明一些优选的具体实施方式中,棕榈酸的熔点为60℃~65℃。
本发明还提供了上述模型材料的制备方法。
一种上述基于改性聚碳酸酯的模型材料的制备方法,包括以下步骤:
1)制备硅烷化碳纳米管改性聚碳酸酯
将硅烷偶联剂改性的碳纳米管与聚碳酸酯混合,经双螺杆挤出机挤出,制得硅烷化碳纳米管改性聚碳酸酯;
2)制备基础蜡料
在反应器中加入石蜡和微晶蜡,加热熔化,再依次加入光亮剂、增粘树脂和增塑剂,混合搅拌,得到基础蜡料;
3)制备填料模型材料
将硅烷化碳纳米管改性聚碳酸酯加入熔融的基础蜡料中,混合搅拌,得到基于改性聚碳酸酯的模型材料。
优选的,这种制备方法步骤1)具体包括如下步骤:
S1:将硅烷偶联剂和水混合,然后加入碳纳米管,得到分散液;
S2:将分散液与醇水溶液混合,进行水热反应,得到硅烷偶联剂改性碳纳米管;
S3:将硅烷偶联剂改性碳纳米管与聚碳酸酯混合,所得的混合物经双螺杆挤出机挤出,造粒,研磨,过筛,得到硅烷化碳纳米管改性聚碳酸酯。
优选的,这种制备方法步骤1)的S1中,将硅烷偶联剂和水混合水解1h~2h。
优选的,这种制备方法步骤1)的S1中,加入碳纳米管后超声分散,得到分散液。
优选的,这种制备方法步骤1)的S1中,分散液中,硅烷偶联剂、碳纳米管、水的质量比为1:(8~12):(6~12);进一步优选的,分散液中,硅烷偶联剂、碳纳米管、水的质量比为1:(9~11):(8~10)。
优选的,这种制备方法步骤1)的S2中,分散液与醇水溶液的体积比为1:(8~12);进一步优选的,分散液与醇水溶液的体积比为1:(9~11)。
优选的,这种制备方法步骤1)的S2中,醇水溶液为含有体积百分比70%~80%乙醇的水溶液。
优选的,这种制备方法步骤1)的S2中,水热反应的温度为70℃~90℃,水热反应的时间为6h~10h;进一步优选的,水热反应的温度为75℃~85℃,水热反应的时间为7h~9h。
优选的,这种制备方法步骤1)的S2中,水热反应后还包括将产物过滤、洗涤、干燥的步骤。
优选的,这种制备方法步骤1)的S3中,将硅烷偶联剂改性碳纳米管和聚碳酸酯混合加热至250℃~270℃混合均匀。
优选的,这种制备方法步骤1)的S3中,研磨过筛至硅烷化碳纳米管改性聚碳酸酯的粒径小于100μm,进一步的,其中有90wt%的粒径小于80μm。
优选的,这种制备方法步骤2)中,混合搅拌的温度为120℃~150℃,混合搅拌的时间为2h~3h。
优选的,这种制备方法步骤3)中,混合搅拌的温度为100℃~120℃,混合搅拌的时间为0.5h~1.5h。
本发明的有益效果是:
本发明的模型材料加入改性的聚碳酸酯填料后,使得模型材料硬度大,强度高,收缩率小,表面光洁度优良。这种基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料综合性能优异,应用前景广阔。
具体来说,聚碳酸酯是一种强韧的热塑性树脂,具高强度及弹性系数、高冲击强度、使用温度范围广,成形收缩率低、尺寸安定性良好的特点。而碳纳米管是一种力学性能和导热性能十分优良的材料。石墨烯平面中的sp2杂化的C=C是最强的化学键之一,由于碳纳米管可以看作是由石墨烯片层卷曲而形成,碳纳米管具有优异的力学性能。碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会得到很大的改善。碳纳米管经硅烷偶联剂改性后,将一些活性的基团接枝到碳纳米管上,使得碳纳米管可以很好的分散在聚碳酸酯填料中,从而使得改性后的聚碳酸酯填料兼具高导热性能以及高强度的同时,又保留了聚碳酸酯聚合物填料的高韧性,低收缩的性能。
具体实施方式
以下通过具体的实施例对本发明的内容作进一步详细的说明。实施例和对比例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到。除非特别说明,试验或测试方法均为本领域的常规方法。
以下采用的聚烯烃共聚物为POE;棕榈酸熔点为63℃,密度为0.8527g/mL。
实施例1
本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料组成如表1所示。
表1实施例1填料模型材料组成
原料 质量百分比(%)
60#石蜡 30
70#微晶蜡 10
C5石油树脂 10
C5加氢石油树脂 20
EVA聚合物 8
聚烯烃共聚物 2
棕榈酸 10
改性聚碳酸酯 10
本例填料模型材料的制备方法包括以下步骤:
1)硅烷偶联剂和去离子水按质量比为1:9的比例混合水解1.5小时,按碳纳米管和硅烷偶联剂质量比为10:1的比例加入碳纳米管,超声分散得到碳纳米管的分散液。将碳纳米管的分散液转移到三口瓶中,将75%(v/v)乙醇水溶液和分散液按体积比10:1的比例混合,80℃恒温水浴搅拌反应8h,反应结束后过滤洗涤,80℃恒温干燥24h,得到硅烷偶联剂改性碳纳米管。将聚碳酸酯和硅烷偶联剂改性碳纳米管按质量比50:1的比例混合均匀,加热至260℃,在双螺杆挤出机中挤出造粒,并用球磨机研磨成粉末,过筛,得到硅烷化碳纳米管改性的聚碳酸酯填料粉末。过筛后改性聚碳酸酯粉末的粒径小于100μm,其中有90wt%的粒径小于80μm。
2)在1L反应釜中,加入60#石蜡,70#微晶蜡,升温至150℃,加热熔化,再依次加入棕榈酸,C5石油树脂,C5加氢石油树脂,EVA聚合物,聚烯烃聚合物,加热搅拌3小时至完全熔融得到基础蜡料。
3)向熔融的基础蜡料内加入硅烷化碳纳米管改性聚碳酸酯填料,降至120℃,加热混合搅拌0.5小时,冷却后制成颗粒,即得到本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料。
实施例2
本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料组成如表2所示。
表2实施例2填料模型材料组成
原料 质量百分比(%)
60#石蜡 20
64#石蜡 16
70#微晶蜡 5
C5加氢石油树脂 25
EVA聚合物 10
棕榈酸 9
改性聚碳酸酯 15
本例填料模型材料的制备方法包括以下步骤:
1)改性聚碳酸酯的制备方法实施例1相同。
2)在1L反应釜中,加入60#石蜡,64#石蜡,70#微晶蜡,升温至140℃,加热熔化,再依次加入棕榈酸,C5加氢石油树脂,EVA聚合物,加热搅拌3小时至完全熔融得到基础蜡料。
3)向熔融的基础蜡料内加入硅烷化碳纳米管改性聚碳酸酯填料,降至120℃,加热混合搅拌0.5小时,冷却后制成颗粒,即得到本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料。
实施例3
本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料组成如表3所示。
表3实施例3填料模型材料组成
原料 质量百分比(%)
64#石蜡 34
70#微晶蜡 10
氢化松香树脂 20
EVA聚合物 6.5
聚烯烃聚合物 1.5
棕榈酸 8
改性聚碳酸酯 20
本例填料模型材料的制备方法包括以下步骤:
1)改性聚碳酸酯的制备方法实施例1相同。
2)在1L反应釜中,加入64#石蜡,70#微晶蜡,升温至120℃,加热熔化,再依次加入棕榈酸,氢化松香树脂,EVA聚合物,聚烯烃聚合物,加热搅拌2.5小时至完全熔融得到基础蜡料。
3)向熔融的基础蜡料内加入硅烷化碳纳米管改性聚碳酸酯填料,降至110℃,加热混合搅拌1小时,冷却后制成颗粒,即得到本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料。
实施例4
本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料组成如表4所示。
表4实施例4填料模型材料组成
原料 质量百分比(%)
64#石蜡 40
70#微晶蜡 6
C5加氢石油树脂 15
EVA聚合物 6
聚烯烃聚合物 1
棕榈酸 7
改性聚碳酸酯 25
本例填料模型材料的制备方法包括以下步骤:
1)改性聚碳酸酯的制备方法实施例1相同。
2)在1L反应釜中,加入64#石蜡,70#微晶蜡,升温至140℃,加热熔化,再依次加入棕榈酸,C5加氢石油树脂,EVA聚合物,聚烯烃聚合物,加热搅拌2.5小时至完全熔融得到基础蜡料。
3)向熔融的基础蜡料内加入硅烷化碳纳米管改性聚碳酸酯填料,降至110℃,加热混合搅拌1小时,冷却后制成颗粒,即得到本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料。
实施例5
本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料组成如表5所示。
表5实施例5填料模型材料组成
原料 质量百分比(%)
64#石蜡 30
70#微晶蜡 8
C5加氢石油树脂 20
EVA聚合物 5
聚烯烃聚合物 1
棕榈酸 6
改性聚碳酸酯 30
本例填料模型材料的制备方法包括以下步骤:
1)改性聚碳酸酯的制备方法实施例1相同。
2)在1L反应釜中,加入64#石蜡,70#微晶蜡,升温至130℃,加热熔化,再依次加入棕榈酸,C5加氢石油树脂,EVA聚合物,聚烯烃聚合物,加热搅拌2小时至完全熔融得到基础蜡料。
3)向熔融的基础蜡料内加入硅烷化碳纳米管改性聚碳酸酯填料,降至105℃,加热混合搅拌1.5小时,冷却后制成颗粒,即得到本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料。
实施例6
本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料组成如表6所示。
表6实施例6填料模型材料组成
Figure BDA0002360820510000071
Figure BDA0002360820510000081
本例填料模型材料的制备方法包括以下步骤:
1)改性聚碳酸酯的制备方法实施例1相同。
2)在1L反应釜中,加入62#石蜡,64#石蜡,75#微晶蜡,升温至130℃,加热熔化,再依次加入棕榈酸,C5加氢石油树脂,EVA聚合物,聚烯烃聚合物,加热搅拌2小时至完全熔融得到基础蜡料。
3)向熔融的基础蜡料内加入硅烷化碳纳米管改性聚碳酸酯填料,降至100℃,加热混合搅拌1.5小时,冷却后制成颗粒,即得到本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料。
实施例7
本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料组成如表7所示。
表7实施例7填料模型材料组成
原料 质量百分比(%)
62#石蜡 10
64#石蜡 20
75#微晶蜡 4
氢化松香树脂 15
EVA聚合物 5
棕榈酸 6
改性聚碳酸酯 40
本例填料模型材料的制备方法包括以下步骤:
1)改性聚碳酸酯的制备方法实施例1相同。
2)在1L反应釜中,加入62#石蜡,64#石蜡,75#微晶蜡,升温至120℃,加热熔化,再依次加入棕榈酸,氢化松香树脂,EVA聚合物,聚烯烃聚合物,加热搅拌2小时至完全熔融得到基础蜡料。
3)向熔融的基础蜡料内加入硅烷化碳纳米管改性聚碳酸酯填料,降至100℃,加热混合搅拌1.5小时,冷却后制成颗粒,即得到本例基于硅烷化碳纳米管改性聚碳酸酯的填料模型材料。
对比例1
本例非填料模型材料组成如表8所示。
表8对比例1填料模型材料组成
原料 质量百分比(%)
60#石蜡 40
70#微晶蜡 10
C5石油树脂 10
C5加氢石油树脂 20
EVA聚合物 8
聚烯烃聚合物 2
棕榈酸 10
本例非填料模型材料的制备方法包括以下步骤:
在1L反应釜中加入60#石蜡,70#微晶蜡,升温至150℃,加热熔化,再依次加入棕榈酸,C5石油树脂,C5加氢石油树脂,EVA聚合物,聚烯烃聚合物,加热搅拌3小时至完全熔融,冷却后制成颗粒,即得到本例非填料模型材料。
对比例2
本例填料模型材料组成如表9所示。
表9对比例2填料模型材料组成
原料 质量百分比(%)
64#石蜡 30
70#微晶蜡 8
C5加氢石油树脂 20
EVA聚合物 5
聚烯烃聚合物 1
棕榈酸 6
交联聚苯乙烯填料 30
本例填料模型材料的制备方法包括以下步骤:
1)于1L反应釜中加入64#石蜡,70#微晶蜡,升温至130℃,加热熔化,再依次加入棕榈酸,C5加氢石油树脂,EVA聚合物,聚烯烃聚合物,加热搅拌2小时至完全熔融得到基础蜡料。
2)向熔融的基础蜡料内加入市面上购买的交联聚苯乙烯填料,降至105℃,加热混合搅拌1.5小时,冷却后制成颗粒,即得到本例填料模型材料。
对实施例1~7和对比例1~2的模型材料进行性能测试,测试结果如表10所示。
表10中各测试项目的测试标准说明如下:
软化点测试标准:GB/T 14235.1-2018;
针入度测试标准:GB/T 14235.2-2018;
线收缩率测试标准:GB/T 14235.1-2018;
抗弯强度测试标准:GB/T 14235.2-2018;
表面光洁度测试标准:JB/T 7976-2010;
热导率测试标准:ASTM C 518-2010;
灰分测试标准:GB/T 14235.1-2018。
表10模型材料的性能测试结果
Figure BDA0002360820510000101
从表10的测试结果可以看出,本发明的填料模型材料加入改性的聚碳酸酯填料后,使得模型材料硬度大,强度高,收缩率小,表面光洁度优良,导热性能增强,是一种综合性能优异的填料模型材料。这种模型材料能很好地满足当今更大和更复杂的大型精密铸件的尺寸精度要求和表面质量要求,满足实际生产的需要。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种基于改性聚碳酸酯的模型材料,其特征在于:所述模型材料包括如下组分:硅烷化碳纳米管改性聚碳酸酯、石蜡、微晶蜡、增粘树脂、增韧剂、光亮剂。
2.根据权利要求1所述的模型材料,其特征在于:所述模型材料各组分的质量百分比如下:硅烷化碳纳米管改性聚碳酸酯10%~40%;石蜡30%~40%;微晶蜡4%~10%;增粘树脂10%~30%;增韧剂5%~10%;光亮剂5%~10%。
3.根据权利要求1或2所述的模型材料,其特征在于:所述硅烷化碳纳米管改性聚碳酸酯是由聚碳酸酯与硅烷偶联剂改性的碳纳米管按质量比(40~60):1制成。
4.根据权利要求1或2所述的一种填料模型材料,其特征在于:所述石蜡选自56#、58#、60#、62#、64#、66#石蜡中的至少一种。
5.根据权利要求1或2所述的模型材料,其特征在于:所述微晶蜡选自70#、75#、80#、85#微晶蜡中的至少一种。
6.根据权利要求1或2所述的模型材料,其特征在于:所述增粘树脂选自松香甘油酯、松香树脂、氢化松香树脂、C5石油树脂、C9石油树脂、C5加氢石油树脂、C9加氢石油树脂中的至少一种。
7.根据权利要求1或2所述的模型材料,其特征在于:所述增韧剂选自氯化聚乙烯、聚苯乙烯、苯乙烯-丁二烯聚合物、乙烯-醋酸乙烯酯共聚物、乙烯-丙烯酸乙酯共聚物、丙烯腈-丁二烯-苯乙烯、聚烯烃共聚物中的至少一种。
8.根据权利要求1或2所述的模型材料,其特征在于:所述光亮剂选自棕榈酸、乙二醇硬脂酸酯、芥酸酰胺中的至少一种。
9.一种权利要求1~8任一项所述基于改性聚碳酸酯的模型材料的制备方法,其特征在于:包括以下步骤:
1)制备硅烷化碳纳米管改性聚碳酸酯
将硅烷偶联剂改性的碳纳米管与聚碳酸酯混合,经双螺杆挤出机挤出,制得硅烷化碳纳米管改性聚碳酸酯;
2)制备基础蜡料
在反应器中加入石蜡和微晶蜡,加热熔化,再依次加入光亮剂、增粘树脂和增塑剂,混合搅拌,得到基础蜡料;
3)制备填料模型材料
将硅烷化碳纳米管改性聚碳酸酯加入熔融的基础蜡料中,混合搅拌,得到基于改性聚碳酸酯的模型材料。
10.根据权利要求9所述的制备方法,其特征在于:所述步骤1)具体包括如下步骤:
S1:将硅烷偶联剂和水混合,然后加入碳纳米管,得到分散液;
S2:将分散液与醇水溶液混合,进行水热反应,得到硅烷偶联剂改性碳纳米管;
S3:将硅烷偶联剂改性碳纳米管与聚碳酸酯混合,所得的混合物经双螺杆挤出机挤出,造粒,研磨,过筛,得到硅烷化碳纳米管改性聚碳酸酯。
CN202010021262.1A 2020-01-09 2020-01-09 一种基于改性聚碳酸酯的模型材料及其制备方法 Pending CN111205655A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010021262.1A CN111205655A (zh) 2020-01-09 2020-01-09 一种基于改性聚碳酸酯的模型材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010021262.1A CN111205655A (zh) 2020-01-09 2020-01-09 一种基于改性聚碳酸酯的模型材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111205655A true CN111205655A (zh) 2020-05-29

Family

ID=70787218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010021262.1A Pending CN111205655A (zh) 2020-01-09 2020-01-09 一种基于改性聚碳酸酯的模型材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111205655A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113857427A (zh) * 2021-10-13 2021-12-31 东莞市化工学会 一种精密铸造模料及其制备方法
CN114213969A (zh) * 2022-01-04 2022-03-22 东莞理工学院 一种基于镀蜡工艺的球茎植物蜡模材料、其制备方法及其应用
CN115975387A (zh) * 2023-02-10 2023-04-18 科米诺新材料科技(浙江)有限公司 一种用于精密铸造的调制蜡的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105504836A (zh) * 2015-12-31 2016-04-20 佛山市晗宇科技有限公司 一种用于3d打印的低针入度石蜡支撑材料及其制备方法
CN105542377A (zh) * 2015-12-19 2016-05-04 桂林理工大学 一种利用双螺杆挤出机制备导电3d打印耗材的方法
CN107163589A (zh) * 2017-06-07 2017-09-15 赵�卓 3d打印用石蜡类型成型材料及其制备方法
CN107913979A (zh) * 2017-10-30 2018-04-17 东莞理工学院 一种基于亲油性微米石墨的填料型熔模铸造蜡及其制备方法
CN108676370A (zh) * 2018-05-08 2018-10-19 东莞恒天新材料有限公司 基于石墨烯的3d打印非光固化模型蜡及其合成方法
CN109880697A (zh) * 2019-03-13 2019-06-14 东莞理工学院 一种特型蜡烛蜡料及特型蜡烛

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105542377A (zh) * 2015-12-19 2016-05-04 桂林理工大学 一种利用双螺杆挤出机制备导电3d打印耗材的方法
CN105504836A (zh) * 2015-12-31 2016-04-20 佛山市晗宇科技有限公司 一种用于3d打印的低针入度石蜡支撑材料及其制备方法
CN107163589A (zh) * 2017-06-07 2017-09-15 赵�卓 3d打印用石蜡类型成型材料及其制备方法
CN107913979A (zh) * 2017-10-30 2018-04-17 东莞理工学院 一种基于亲油性微米石墨的填料型熔模铸造蜡及其制备方法
CN108676370A (zh) * 2018-05-08 2018-10-19 东莞恒天新材料有限公司 基于石墨烯的3d打印非光固化模型蜡及其合成方法
CN109880697A (zh) * 2019-03-13 2019-06-14 东莞理工学院 一种特型蜡烛蜡料及特型蜡烛

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨颖等: "《碳纳米管的结构、性能、合成及其应用》", 31 August 2013, 黑龙江大学出版社 *
黄如林等: "《金工实习》", 31 August 2016, 东南大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113857427A (zh) * 2021-10-13 2021-12-31 东莞市化工学会 一种精密铸造模料及其制备方法
CN114213969A (zh) * 2022-01-04 2022-03-22 东莞理工学院 一种基于镀蜡工艺的球茎植物蜡模材料、其制备方法及其应用
CN115975387A (zh) * 2023-02-10 2023-04-18 科米诺新材料科技(浙江)有限公司 一种用于精密铸造的调制蜡的制备方法
CN115975387B (zh) * 2023-02-10 2023-07-11 科米诺新材料科技(浙江)有限公司 一种用于精密铸造的调制蜡的制备方法

Similar Documents

Publication Publication Date Title
CN111205655A (zh) 一种基于改性聚碳酸酯的模型材料及其制备方法
CN108080564A (zh) 一种精密铸造蜡颗粒模料及其制备方法与应用
CN106220996B (zh) 硅炭黑/聚烯烃复合材料的制备方法
CN110684314B (zh) 一种精密铸造蜡及其制备方法
CN102140246A (zh) 一种制备选择性激光烧结用尼龙粉末的方法
CN108264749A (zh) 一种高流动良表面碳纤维增强聚碳酸酯复合材料及其制备方法
CN113182488A (zh) 用于饰品铸造的熔模精密铸造模料及其制备方法
CN105602241B (zh) 一种纳米导电导热复合材料
CN101914250B (zh) 环保型高流动性高热稳定性改性聚氯乙烯母粒的制备方法
CN113150564A (zh) 用于饰品铸造的熔模铸造模料及其制备方法
CN106147220B (zh) 用于sls的长链尼龙与尼龙66合金粉末材料制备方法
CN108192360A (zh) 一种牙科用选择性激光烧结3d打印蜡粉及其制备方法
CN109679301B (zh) 基于石墨烯/聚对苯二甲酸乙二醇酯改性树脂的填料模型材料及其制备方法
CN110229562B (zh) 一种高强度易擦除树脂铅笔芯及其制备方法
CN110698801A (zh) 高流动性石墨烯改性聚苯乙烯复合材料及其制备方法
CN113020538B (zh) 一种水溶性芯模材料及其制备方法
WO2019100964A1 (zh) 稻壳粉母料及其制备方法
CN111205656B (zh) 一种填料模型材料及其制备方法
CN101735509A (zh) 微-纳米碳化硅/聚丙烯复合材料及其制备方法
CN111040407B (zh) 一种高流高刚性耐老化玻纤增强pc材料及其制备方法
CN115466459A (zh) 一种改性聚丙烯熔融沉积成型粒料及其制备方法
CN101845165A (zh) 一种阻燃木粉复合高分子热塑性树脂材料的制备方法
CN114196177A (zh) 增强型稻壳粉-聚乳酸3d打印线材的配方以及3d打印线材的制备方法
CN113857427B (zh) 一种精密铸造模料及其制备方法
CN113444305A (zh) 一种uhmwpe基复合挤出管材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200529

RJ01 Rejection of invention patent application after publication