CN111196715A - 利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法 - Google Patents

利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法 Download PDF

Info

Publication number
CN111196715A
CN111196715A CN202010023476.2A CN202010023476A CN111196715A CN 111196715 A CN111196715 A CN 111196715A CN 202010023476 A CN202010023476 A CN 202010023476A CN 111196715 A CN111196715 A CN 111196715A
Authority
CN
China
Prior art keywords
alumina
solid waste
waste
parts
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010023476.2A
Other languages
English (en)
Other versions
CN111196715B (zh
Inventor
王超
齐志利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Zhonghe Jinshi Technology Group Co ltd
Yugan Jinshi New Material Technology Co ltd
Original Assignee
Yugan Jinshi New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yugan Jinshi New Material Technology Co Ltd filed Critical Yugan Jinshi New Material Technology Co Ltd
Priority to CN202010023476.2A priority Critical patent/CN111196715B/zh
Publication of CN111196715A publication Critical patent/CN111196715A/zh
Application granted granted Critical
Publication of CN111196715B publication Critical patent/CN111196715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明涉及一种利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,属于陶瓷填料技术领域。本发明包括以下步骤:(1)将原料分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;(2)将纳米陶瓷泥浆和水及石墨混合,搅拌,再置于水蒸汽环境中保温,加酸控制pH值,形成铝溶胶;(3)向铝溶胶中加入锆溶胶,然后干燥,得到干凝胶;(4)将干凝胶进行造粒,然后压制成坯体;(5)将坯体进行干燥,再加入矿化剂进行烧成,得到所述的惰性氧化铝化工填料。本发明充分利用工业固废危废活性氧化铝球,原料来源广,成本低,烧结温度低,制备的产品的纯度高,提高了产品的性能,该方法具有广泛的适用性。

Description

利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的 方法
技术领域
本发明涉及一种利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,属于陶瓷填料技术领域。
背景技术
化工填料是填料塔中气液接触的基本构件,在很多行业都运用广泛,具有优异的耐酸耐热性能,能耐除氢氟酸以外的各种无机酸、有机酸及有机溶剂的腐蚀,其应用范围十分广泛,可在各种高低场合使用,其性能的优劣是决定填料塔操作性能的主要因素。
化工填料按材料分可分为三类:陶瓷填料,塑料填料,金属填料。陶瓷填料具有优异的耐酸耐热性能、能耐除氟氧酸以外的各种酸、碱的腐蚀。陶瓷填料可用于化工、冶金、制酸、煤气、制氧、钢铁、制药、精细化工等行业的洗涤塔、冷却塔、回收再生塔、脱硫塔、干燥塔、吸收塔及反应器的内衬。
陶瓷填料中,氧化铝惰性填料球作为一种常用的化工填料,广泛用于石油化工厂、化纤厂、烷基苯厂、芳烃厂、乙烯厂等厂加氢裂解装置、精制装置、催化重整装置、异构化装置、脱甲基装置等垫底填充材料。更为常用的是作为反应器内催化剂、分子筛、干燥剂等的支撑覆盖材料和塔填料,其主要作用是增加气体或液体分布点,支撑和保护强度不高的活性催化剂。其特点是纯度高、强度大、耐高温、耐高压、耐强酸碱腐蚀、热震稳定性好、化学性能稳定的特点。
现有技术中,制备惰性氧化铝化工填料的方法有很多,但是原料来源单一,原料价格成本高,若采用一些固废危废氧化铝粉来制备填料,烧结温度高,成本高且制得的产品的纯度低,影响了产品的性能。
发明内容
本发明的目的在于提供一种利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其充分利用工业固废危废活性氧化铝球,原料来源广,成本低,烧结温度低,制备的产品的纯度高,提高了产品的性能,该方法具有广泛的适用性。
本发明所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,包括以下步骤:
(1)将活性氧化铝球工业固废危废原料和其他原料分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和水及石墨混合,搅拌,再置于100-110℃的水蒸汽环境中保温1-2小时,保温的同时向其中持续通入二氧化碳气体并同时搅拌,加酸控制pH值为3-5,形成铝溶胶;
(3)向步骤(2)得到的铝溶胶中加入锆溶胶,然后在氮气气氛下干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体进行干燥,再加入矿化剂进行烧成,得到所述的惰性氧化铝化工填料,其α-氧化铝的纯度>95%,吸水率为1-5%,α相转化率接近93%。
步骤(1)中,包括以下质量份数的原料:高岭土3-10份,碳酸钡1-3份,白云石1-3份,碳酸氢钙3-10份,煅烧滑石1-3份,α-氧化铝粉10-40份,粘土3-20份。
所述α-氧化铝粉来源于炼油工业、造纸工业、过氧化氢处理行业或者吸附行业中产生的一种或者多种固废危废活性α-氧化铝球。
步骤(2)中,加入的石墨的质量为纳米陶瓷泥浆质量的5-10%;加入的水的质量为纳米陶瓷泥浆质量的300-500%。
步骤(3)中,加入的锆溶胶的质量为铝溶胶的5-10%。
步骤(3)中,在氮气气氛下干燥,便于减少溶胶中的杂质含量。
步骤(5)中,加入的矿化剂为氯化铵和硼酸的混合物,混合质量比优选为2:3;加入的矿化剂的量为坯体质量的0.5-2%。
步骤(5)中,在50-120℃温度下干燥30-42h后,以5-20℃/min的加热速度自室温升温至1180-1320℃烧成,保温3-5h,再以20-40℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
本发明与现有技术相比,具有以下有益效果:
(1)本发明通过调节溶胶中氧化铝的浓度及pH值,添加了适量的锆溶胶,并控制烧成制度,使氧化铝在低温转相,高温晶粒长大时受到细小晶界相抑制,制备的惰性氧化铝化工填料α-氧化铝的纯度>95%,吸水率为1-5%,α相转化率接近93%,机械性能良好;
(2)本发明在制备铝溶胶之前加入了石墨,提高了产品的导热性和抗热震性,降低了烧成温度;
(3)本发明充分利用工业固废危废活性氧化铝球,原料来源广,成本低;
(4)本发明显著提高了产品的性能,具有广泛的适用性,利于工业化生产。
具体实施方式
下面结合实施例对本发明作进一步的说明,但其并不限制本发明的实施。
实施例1
所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,包括以下步骤:
(1)将活性氧化铝球工业固废危废原料α-氧化铝粉10份,高岭土10份,碳酸钡3份,白云石3份,碳酸氢钙10份,煅烧滑石3份,粘土8份分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和纳米陶瓷泥浆质量300%的水及纳米陶瓷泥浆质量10%的石墨混合,搅拌,再置于100℃的水蒸汽环境中保温1小时,保温的同时向其中持续通入二氧化碳气体并同时搅拌,加酸控制pH值为3,形成铝溶胶;
(3)向步骤(2)得到的铝溶胶中加入占铝溶胶质量5%的锆溶胶,然后在氮气气氛下干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体在50℃温度下干燥42h后,再加入占坯体质量2%的矿化剂,氯化铵和硼酸的混合物(混合质量比为2:3),以5℃/min的加热速度自室温升温至1180℃烧成,保温3h,再以20℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
所述的惰性氧化铝化工填料,α-氧化铝的纯度为96%,α相转化率为92%。
实施例2
所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,包括以下步骤:
(1)将活性氧化铝球工业固废危废原料α-氧化铝粉40份,高岭土3份,碳酸钡1份,白云石1份,碳酸氢钙6份,煅烧滑石1份,粘土20份分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和纳米陶瓷泥浆质量500%的水及纳米陶瓷泥浆质量5%的石墨混合,搅拌,再置于110℃的水蒸汽环境中保温2小时,保温的同时向其中持续通入二氧化碳气体并同时搅拌,加酸控制pH值为5,形成铝溶胶;
(3)向步骤(2)得到的铝溶胶中加入占铝溶胶质量10%的锆溶胶,然后在氮气气氛下干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体在120℃温度下干燥30h后,再加入占坯体质量0.5%的矿化剂,氯化铵和硼酸的混合物(混合质量比为1:2),以20℃/min的加热速度自室温升温至1320℃烧成,保温5h,再以40℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
所述的惰性氧化铝化工填料,α-氧化铝的纯度为97%,α相转化率为91%。
实施例3
所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,包括以下步骤:
(1)将活性氧化铝球工业固废危废原料α-氧化铝粉25份,高岭土8份,碳酸钡2份,白云石2份,碳酸氢钙7份,煅烧滑石2份,粘土15份分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和纳米陶瓷泥浆质量400%的水及纳米陶瓷泥浆质量8%的石墨混合,搅拌,再置于100℃的水蒸汽环境中保温2小时,保温的同时向其中持续通入二氧化碳气体并同时搅拌,加酸控制pH值为4,形成铝溶胶;
(3)向步骤(2)得到的铝溶胶中加入占铝溶胶质量7%的锆溶胶,然后在氮气气氛下干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体在100℃温度下干燥37h后,再加入占坯体质量1.2%的矿化剂,氯化铵和硼酸的混合物(混合质量比为2:5),以15℃/min的加热速度自室温升温至1250℃烧成,保温4h,再以35℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
所述的惰性氧化铝化工填料,α-氧化铝的纯度为98%,α相转化率为92%。
实施例4
所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,包括以下步骤:
(1)将活性氧化铝球工业固废危废原料α-氧化铝粉30份,高岭土8份,碳酸钡2份,白云石1份,碳酸氢钙9份,煅烧滑石1份,粘土18份分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和纳米陶瓷泥浆质量350%的水及纳米陶瓷泥浆质量9%的石墨混合,搅拌,再置于105℃的水蒸汽环境中保温1小时,保温的同时向其中持续通入二氧化碳气体并同时搅拌,加酸控制pH值为3,形成铝溶胶;
(3)向步骤(2)得到的铝溶胶中加入占铝溶胶质量6%的锆溶胶,然后在氮气气氛下干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体在95℃温度下干燥38h后,再加入占坯体质量1.2%的矿化剂,氯化铵和硼酸的混合物(混合质量比为2:3),以15℃/min的加热速度自室温升温至1280℃烧成,保温5h,再以30℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
所述的惰性氧化铝化工填料,α-氧化铝的纯度为97%,α相转化率为91.5%。
实施例5
所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,包括以下步骤:
(1)将活性氧化铝球工业固废危废原料α-氧化铝粉28份,高岭土4份,碳酸钡3份,白云石1份,碳酸氢钙7份,煅烧滑石2份,粘土20份分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和纳米陶瓷泥浆质量420%的水及纳米陶瓷泥浆质量7%的石墨混合,搅拌,再置于110℃的水蒸汽环境中保温1小时,保温的同时向其中持续通入二氧化碳气体并同时搅拌,加酸控制pH值为3,形成铝溶胶;
(3)向步骤(2)得到的铝溶胶中加入占铝溶胶质量8%的锆溶胶,然后在氮气气氛下干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体在50-120℃温度下干燥35h后,再加入占坯体质量1.8%的矿化剂,氯化铵和硼酸的混合物(混合质量比为5:3),以20℃/min的加热速度自室温升温至1320℃烧成,保温3h,再以28℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
所述的惰性氧化铝化工填料,α-氧化铝的纯度为96%,α相转化率为92%。
对比例1
所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,包括以下步骤:
(1)将活性氧化铝球工业固废危废原料α-氧化铝粉10份,高岭土10份,碳酸钡3份,白云石3份,碳酸氢钙10份,煅烧滑石3份,粘土8份分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和纳米陶瓷泥浆质量300%的水混合,搅拌,再置于100℃的水蒸汽环境中保温1小时,保温的同时向其中持续通入二氧化碳气体并同时搅拌,加酸控制pH值为3,形成铝溶胶;
(3)向步骤(2)得到的铝溶胶中加入占铝溶胶质量5%的锆溶胶,然后在氮气气氛下干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体在50℃温度下干燥42h后,再加入占坯体质量2%的矿化剂,氯化铵和硼酸的混合物(混合质量比为2:3),以5℃/min的加热速度自室温升温至1380℃烧成,保温3h,再以20℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
所述的惰性氧化铝化工填料,α-氧化铝的纯度为95%,α相转化率为89%。
对比例2
所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,包括以下步骤:
(1)将活性氧化铝球工业固废危废原料α-氧化铝粉10份,高岭土10份,碳酸钡3份,白云石3份,碳酸氢钙10份,煅烧滑石3份,粘土8份分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和纳米陶瓷泥浆质量300%的水及纳米陶瓷泥浆质量10%的石墨混合,搅拌,再置于100℃的水蒸汽环境中保温1小时,保温的同时向其中持续通入二氧化碳气体并同时搅拌,形成铝溶胶;
(3)将步骤(2)得到的铝溶胶进行干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体在50℃温度下干燥42h后,再加入占坯体质量2%的矿化剂,氯化铵和硼酸的混合物(混合质量比为2:3),以5℃/min的加热速度自室温升温至1180℃烧成,保温3h,再以20℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
所述的惰性氧化铝化工填料,α-氧化铝的纯度为92%,α相转化率为87%。
表1
Figure BDA0002361629230000061
以上实施例和对比例中对α-氧化铝含量、α相转化率、抗压强度等的测量均按照相关国家标准进行;
对吸水率按照以下方法进行测量:将产品禁入到水中2h进行吸水,然后烘干1h,测量前后的重量损失,经计算得到吸水率。

Claims (10)

1.一种利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:包括以下步骤:
(1)将活性氧化铝球工业固废危废原料和其他原料分别放入球磨机中,进行湿法超细研磨,然后过筛除铁,得到纳米陶瓷泥浆;
(2)将步骤(1)得到的纳米陶瓷泥浆和水及石墨混合,搅拌,再置于水蒸汽环境中保温,保温的同时向其中持续通入二氧化碳气体并同时搅拌,加酸控制pH值,形成铝溶胶;
(3)向步骤(2)得到的铝溶胶中加入锆溶胶,然后干燥,得到干凝胶;
(4)将干凝胶进行造粒,然后压制成坯体;
(5)将坯体进行干燥,再加入矿化剂进行烧成,得到所述的惰性氧化铝化工填料。
2.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:步骤(1)中,包括以下质量份数的原料:高岭土3-10份,碳酸钡1-3份,白云石1-3份,碳酸氢钙3-10份,煅烧滑石1-3份,α-氧化铝粉10-40份,粘土3-20份。
3.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:α-氧化铝粉来源于炼油工业、造纸工业、过氧化氢处理行业或者吸附行业中产生的一种或者多种固废危废活性α-氧化铝球。
4.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:步骤(2)中,加入的石墨的质量为纳米陶瓷泥浆质量的5-10%;加入的水的质量为纳米陶瓷泥浆质量的300-500%。
5.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:步骤(2)中,再置于100-110℃的水蒸汽环境中保温1-2小时。
6.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:步骤(2)中,加酸控制pH值为3-5。
7.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:步骤(3)中,加入的锆溶胶的质量为铝溶胶的5-10%。
8.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:步骤(3)中,在氮气气氛下进行干燥。
9.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:步骤(5)中,加入的矿化剂为氯化铵和硼酸的混合物,加入的矿化剂的量为坯体质量的0.5-2%。
10.根据权利要求1所述的利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法,其特征在于:步骤(5)中,在50-120℃温度下干燥30-42h后,以5-20℃/min的加热速度自室温升温至1180-1320℃烧成,保温3-5h,再以20-40℃/min的冷却速度降温,得到所述的惰性氧化铝化工填料。
CN202010023476.2A 2020-01-09 2020-01-09 利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法 Active CN111196715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010023476.2A CN111196715B (zh) 2020-01-09 2020-01-09 利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010023476.2A CN111196715B (zh) 2020-01-09 2020-01-09 利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法

Publications (2)

Publication Number Publication Date
CN111196715A true CN111196715A (zh) 2020-05-26
CN111196715B CN111196715B (zh) 2022-06-10

Family

ID=70742045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010023476.2A Active CN111196715B (zh) 2020-01-09 2020-01-09 利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法

Country Status (1)

Country Link
CN (1) CN111196715B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763078A (zh) * 2020-07-15 2020-10-13 朱建良 一种用废弃的氧化铝材料进行再生氧化铝瓷球的制作方法
CN113173779A (zh) * 2021-04-29 2021-07-27 江西工陶院精细陶瓷有限公司 氧化铝填料颗粒及其制备方法、氧化铝填料球的制备方法
CN114133270A (zh) * 2021-12-28 2022-03-04 攀枝花学院 中空平板陶瓷过滤膜及其制备方法
CN115010470A (zh) * 2022-06-30 2022-09-06 江西全兴化工填料有限公司 一种利用陶瓷废料生产化工填料的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094993A (zh) * 1993-12-04 1994-11-16 江西省萍乡市化工填料公司 一种活性瓷球填料
US5439851A (en) * 1991-12-11 1995-08-08 Korea Institute Of Science And Technology Process for coating ceramic powder with alumina by sol-gel process and improved densification
CN101037337A (zh) * 2007-04-27 2007-09-19 淄博启明星新材料有限公司 一种微晶耐磨陶瓷球的制法
CN102363577A (zh) * 2011-08-04 2012-02-29 中国铝业股份有限公司 导热用高温氧化铝填料的生产方法及其产品
CN103304221A (zh) * 2013-04-23 2013-09-18 金刚新材料股份有限公司 一种利用氧化铝收尘粉制备惰性瓷球的方法
KR20150070726A (ko) * 2013-12-17 2015-06-25 주식회사 전진엔텍 알루미늄 폐드로스를 이용한 고순도 알루미나 세라믹볼의 제조방법
CN106431364A (zh) * 2016-09-09 2017-02-22 苏州创元新材料科技有限公司 高温烧结陶瓷氧化铝磨料的制备方法
CN107226684A (zh) * 2016-07-18 2017-10-03 淄博金石节能新材料科技有限公司 耐磨锆铝复合球及其制备方法
CN108975933A (zh) * 2018-09-18 2018-12-11 广东蓝狮医疗科技有限公司 一种石墨增强耐磨损氧化铝-氧化锆复合陶瓷及其制备方法
CN109279869A (zh) * 2018-08-31 2019-01-29 萍乡市金刚科技工业园有限公司 一种氧化铝耐磨陶瓷球的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439851A (en) * 1991-12-11 1995-08-08 Korea Institute Of Science And Technology Process for coating ceramic powder with alumina by sol-gel process and improved densification
CN1094993A (zh) * 1993-12-04 1994-11-16 江西省萍乡市化工填料公司 一种活性瓷球填料
CN101037337A (zh) * 2007-04-27 2007-09-19 淄博启明星新材料有限公司 一种微晶耐磨陶瓷球的制法
CN102363577A (zh) * 2011-08-04 2012-02-29 中国铝业股份有限公司 导热用高温氧化铝填料的生产方法及其产品
CN103304221A (zh) * 2013-04-23 2013-09-18 金刚新材料股份有限公司 一种利用氧化铝收尘粉制备惰性瓷球的方法
KR20150070726A (ko) * 2013-12-17 2015-06-25 주식회사 전진엔텍 알루미늄 폐드로스를 이용한 고순도 알루미나 세라믹볼의 제조방법
CN107226684A (zh) * 2016-07-18 2017-10-03 淄博金石节能新材料科技有限公司 耐磨锆铝复合球及其制备方法
CN106431364A (zh) * 2016-09-09 2017-02-22 苏州创元新材料科技有限公司 高温烧结陶瓷氧化铝磨料的制备方法
CN109279869A (zh) * 2018-08-31 2019-01-29 萍乡市金刚科技工业园有限公司 一种氧化铝耐磨陶瓷球的制备方法
CN108975933A (zh) * 2018-09-18 2018-12-11 广东蓝狮医疗科技有限公司 一种石墨增强耐磨损氧化铝-氧化锆复合陶瓷及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763078A (zh) * 2020-07-15 2020-10-13 朱建良 一种用废弃的氧化铝材料进行再生氧化铝瓷球的制作方法
CN113173779A (zh) * 2021-04-29 2021-07-27 江西工陶院精细陶瓷有限公司 氧化铝填料颗粒及其制备方法、氧化铝填料球的制备方法
CN113173779B (zh) * 2021-04-29 2023-07-21 江西工陶院精细陶瓷有限公司 氧化铝填料颗粒及其制备方法、氧化铝填料球的制备方法
CN114133270A (zh) * 2021-12-28 2022-03-04 攀枝花学院 中空平板陶瓷过滤膜及其制备方法
CN115010470A (zh) * 2022-06-30 2022-09-06 江西全兴化工填料有限公司 一种利用陶瓷废料生产化工填料的方法

Also Published As

Publication number Publication date
CN111196715B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN111196715B (zh) 利用活性氧化铝球工业固废危废制备惰性氧化铝化工填料的方法
US5064805A (en) Production of high quality activated carbon
CA1164432A (en) Process for the production of a low density activated alumina formed product
US3222129A (en) Method for producing active alumina nodules
US3557025A (en) Method of producing alkalized alumina and products produced thereby
CN100525898C (zh) 一种高吸湿率的干燥剂
KR20090007474A (ko) 열수 안정성 알루미나
US3264069A (en) Agglomerating alumina
CN107961759B (zh) 一种5a分子筛吸附剂及其制备方法和应用
CN103818939B (zh) 双氧水流化床专用氧化铝及生产工艺
CN109772261B (zh) 5a分子筛吸附剂及其制备方法和应用
Aldcroft et al. Surface chemistry of the calcination of gelatinous and crystalline aluminium hydroxides
TWI589351B (zh) 碳吸收劑及其製造方法與使用方法
AU2013230406B2 (en) Surface modification method of aluminum oxide carrier
Yang et al. Kinetic and thermodynamic investigations on the cyclic CO2 adsorption-desorption processes of lithium orthosilicate
WO2000044466A2 (en) Hc1 adsorbent, method of making same and process for removing hc1 from fluids
CN114082409A (zh) 一种用于空分富氧的疏水lsx型分子筛、其制备方法及应用
US3594982A (en) Process for drying unsaturated organic gaseous compounds
US3743709A (en) Preparation of highly porous alumina
KR100393663B1 (ko) 흡습속도값이높은산화칼슘,산화스트론튬및산화바륨,및이들의제조방법
RU2711605C1 (ru) Способ получения алюмооксидных катализаторов процесса Клауса и применение их на установках получения серы
CN102649627A (zh) 煅烧石灰石制备活性石灰的方法
CN113663491A (zh) 脱硫剂组合物及其制备方法
US1783396A (en) Mineral adsorbent and process of manufacturing same
Mnasri-Ghnimi et al. Catalytic wet peroxide oxidation of phenol over Ce-Zr-modified clays: Effect of the pillaring method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220507

Address after: 255000 south of No. 32, Huguang Road, Shanghu village, Hutian Town, Zhangdian District, Zibo City, Shandong Province

Applicant after: Shandong Zhonghe Jinshi new material technology Co.,Ltd.

Applicant after: Yugan Jinshi new material technology Co.,Ltd.

Address before: 334000 Huangjinbu electric power characteristic base, Yugan County, Shangrao City, Jiangxi Province

Applicant before: Yugan Jinshi new material technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 5 Minda Road, High tech Zone, Zibo City, Shandong Province, 255086

Patentee after: Shandong Zhonghe Jinshi Technology Group Co.,Ltd.

Patentee after: Yugan Jinshi new material technology Co.,Ltd.

Address before: 255000 south of No. 32, Huguang Road, Shanghu village, Hutian Town, Zhangdian District, Zibo City, Shandong Province

Patentee before: Shandong Zhonghe Jinshi new material technology Co.,Ltd.

Patentee before: Yugan Jinshi new material technology Co.,Ltd.

CP03 Change of name, title or address