CN111180554A - 一种混合结构太阳能电池的制备方法 - Google Patents

一种混合结构太阳能电池的制备方法 Download PDF

Info

Publication number
CN111180554A
CN111180554A CN202010018528.7A CN202010018528A CN111180554A CN 111180554 A CN111180554 A CN 111180554A CN 202010018528 A CN202010018528 A CN 202010018528A CN 111180554 A CN111180554 A CN 111180554A
Authority
CN
China
Prior art keywords
doped
film
reaction system
nanowire
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010018528.7A
Other languages
English (en)
Other versions
CN111180554B (zh
Inventor
郭经纬
刘妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202010018528.7A priority Critical patent/CN111180554B/zh
Publication of CN111180554A publication Critical patent/CN111180554A/zh
Application granted granted Critical
Publication of CN111180554B publication Critical patent/CN111180554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种混合结构太阳能电池的制备方法,属于半导体太阳能电池技术领域,包括如下步骤:a、在反应系统中,以底层掺杂薄膜的制备温度,在衬底表面制备底层掺杂薄膜;b、在反应系统中,以上层掺杂薄膜的制备温度,在底层掺杂薄膜表面制备上层掺杂薄膜;c、在上层掺杂薄膜表面旋涂金属催化剂颗粒或利用金属薄膜退火技术在上层掺杂薄膜表面制备催化剂颗粒;d、在反应系统中,以底部掺杂纳米线的制备温度,利用催化剂颗粒制备底部掺杂纳米线;e、在反应系统中,以顶部掺杂纳米线的制备温度,利用催化剂颗粒制备顶部掺杂纳米线;f、待反应系统降至室温后,完成混合结构太阳能电池的制备。本发明所制备的太阳能电池光电转换效率高。

Description

一种混合结构太阳能电池的制备方法
技术领域
本发明涉及半导体太阳能电池技术领域,尤其是一种混合结构太阳能电池的制备方法。
背景技术
随着人类文明的不断进步,人们对能源的需求与日俱增,能源紧缺问题日益严重。而太阳能是一种取之不尽、用之不竭的可再生能源。利用太阳能辐射制备的太阳能电池可以很好的应用到人们生活的各个领域。然而传统的单结薄膜太阳能电池的光电转换效率较低,较难在商业领域进行大面积推广。有鉴于此,探索新结构太阳能电池制备方案,解决传统太阳能电池所面临的问题,是本发明的创研动机所在。
发明内容
本发明需要解决的技术问题是提供一种混合结构太阳能电池的制备方法,选用纯度高、性能好并稳定、带宽合适、掺杂调控容易的III-V族半导体材料或IV族半导体材料作为衬底、底层掺杂薄膜、上层掺杂薄膜、底部掺杂纳米线以及顶部掺杂纳米线的材料,制备得到的混合结构纳米线太阳能电池纯度高,结构缺陷少,使得整块薄膜性质非常均匀,光电转换效率高的优点,容易在商业领域进行大面积推广。
为解决上述技术问题,本发明所采用的技术方案是:一种混合结构太阳能电池的制备方法,包括如下步骤:
a、在反应系统中,以底层掺杂薄膜的制备温度,在衬底表面制备底层掺杂薄膜;
b、在反应系统中,以上层掺杂薄膜的制备温度,在底层掺杂薄膜表面制备上层掺杂薄膜;
c、在上层掺杂薄膜表面旋涂金属催化剂颗粒或利用金属薄膜退火技术在上层掺杂薄膜表面制备催化剂颗粒;
d、在反应系统中,以底部掺杂纳米线的制备温度,利用催化剂颗粒制备底部掺杂纳米线;
e、在反应系统中,以顶部掺杂纳米线的制备温度,利用催化剂颗粒制备顶部掺杂纳米线;
f、待反应系统降至室温后,完成混合结构太阳能电池的制备;
所述衬底、底层掺杂薄膜、上层掺杂薄膜、底部掺杂纳米线以及顶部掺杂纳米线的材料为III-V族半导体材料或IV族半导体材料;
所述底层掺杂薄膜、上层掺杂薄膜、底部掺杂纳米线、顶部掺杂纳米线是n型掺杂或p型掺杂半导体。
本发明技术方案的进一步改进在于:所述衬底材料为Si、Ge、C、SiC、GaAs、GaP、GaN、InAs或InP中的一种或几种。
本发明技术方案的进一步改进在于:所述底层掺杂薄膜(2)材料为为Ge、GaAs、GaP、GaN、InAs、InP、AlxGa1-xAs、InxGa1-xAs、InxGa1-xP或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
本发明技术方案的进一步改进在于:所述上层掺杂薄膜(3)材料为Ge、GaAs、GaP、GaN、InAs、InP、AlxGa1-xAs、InxGa1-xAs、InxGa1-xP或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
本发明技术方案的进一步改进在于:所述催化剂颗粒(4)材料为Au、Fe或Ag中的一种或几种。
本发明技术方案的进一步改进在于:所述底部掺杂纳米线(5)材料为Ge、GaAs、GaP、GaN、InAs、InP、AlxGa1-xAs、InxGa1-xAs、InxGa1-xP或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
本发明技术方案的进一步改进在于:所述顶部掺杂纳米线(6)材料为Ge、GaAs、GaP、GaN、InAs、InP、AlxGa1-xAs、InxGa1-xAs、InxGa1-xP或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
本发明技术方案的进一步改进在于:所述反应系统是MOCVD或MBE。
本发明技术方案的进一步改进在于:步骤a~e中的制备温度根据所选材料的制备温度设定。
由于采用了上述技术方案,本发明取得的技术进步是:
1、本发明选用纯度高、性能好并稳定、带宽合适、掺杂调控容易的III-V族半导体材料或IV族半导体材料作为衬底、底层掺杂薄膜、上层掺杂薄膜、底部掺杂纳米线以及顶部掺杂纳米线的材料,制备得到的混合结构纳米线太阳能电池纯度高,结构缺陷少,使得整块薄膜性质非常均匀,光电转换效率高的优点,容易在商业领域进行大面积推广。
2、本发明采用在衬底材料上依次制备底层掺杂薄膜、上层掺杂薄膜、底部掺杂纳米线以及顶部掺杂纳米线,简化了制备过程,降低了制备成本,提高了劳动生产率。
附图说明
图1是本发明衬底示意图;
图2是本发明制备底层掺杂薄膜示意图;
图3是本发明制备上层掺杂薄膜示意图;
图4是本发明制备催化剂颗粒示意图;
图5是本发明制备底部掺杂纳米线示意图;
图6是本发明制备顶部掺杂纳米线示意图。
其中,1、衬底,2、底层掺杂薄膜,3、上层掺杂薄膜,4、催化剂颗粒,5、底部掺杂纳米线,6、顶部掺杂纳米线。
具体实施方式
本发明的目的是提供一种混合结构太阳能电池的制备方法,通过在衬底上顺序制备底层掺杂薄膜、上层掺杂薄膜、催化剂颗粒、底部掺杂纳米线和顶部掺杂纳米线制得混合结构纳米线太阳能电池,有效解决了传统太阳能电池光电转换效率低的问题。
下面结合实施例对本发明做进一步详细说明:
如图1-6所示,一种混合结构太阳能电池的制备方法,包括如下步骤:
a、在MOCVD或MBE反应系统中,以底层掺杂薄膜2的制备温度,在衬底1表面制备底层掺杂薄膜2;
b、在MOCVD或MBE反应系统中,以上层掺杂薄膜3的制备温度,在底层掺杂薄膜2表面制备上层掺杂薄膜3;
c、在上层掺杂薄膜3表面旋涂金属催化剂颗粒或利用金属薄膜退火技术在上层掺杂薄膜3表面制备催化剂颗粒4;
此步骤中共有两种制备催化剂颗粒4的方法:
一是,待MOCVD反应系统降至室温后,将制备有底层及上层薄膜的衬底从MOCVD反应系统中取出,在上层薄膜表面旋涂一层金属催化剂颗粒;
二是,待MOCVD反应系统降至室温后,将制备有底层及上层薄膜的衬底从MOCVD反应系统中取出,利用热蒸发技术在衬底上层薄膜表面制备一层可作为催化剂的金属薄膜;将覆有金属薄膜的衬底放回MOCVD反应系统中,在一定的温度下将金属薄膜退火为催化剂颗粒;
d、在MOCVD或MBE反应系统中,以底部掺杂纳米线5的制备温度,利用催化剂颗粒4制备底部掺杂纳米线5;
e、在MOCVD或MBE反应系统中,以顶部掺杂纳米线6的制备温度,利用催化剂颗粒4制备顶部掺杂纳米线6;
f、待MOCVD或MBE反应系统降至室温后,完成混合结构太阳能电池的制备;
所述衬底1、底层掺杂薄膜2、上层掺杂薄膜3、底部掺杂纳米线5以及顶部掺杂纳米线6的材料为III-V族半导体材料或IV族半导体材料;
所述底层掺杂薄膜2、上层掺杂薄膜3、底部掺杂纳米线5、顶部掺杂纳米线6是n型掺杂或p型掺杂半导体。
所述衬底1材料为硅(Si)、锗(Ge)、碳(C)、碳化硅(SiC)、砷化镓(GaAs)、磷化镓(GaP)、氮化镓(GaN)、砷化铟(InAs)或磷化铟(InP)中的一种或几种。
所述底层掺杂薄膜2、上层掺杂薄膜3、底部掺杂纳米线5、顶部掺杂纳米线6的材料均为锗(Ge)、砷化镓(GaAs)、磷化镓(GaP)、氮化镓(GaN)、砷化铟(InAs)、磷化铟(InP)、铝镓砷(AlxGa1-xAs)、铟镓砷(InxGa1-xAs)、铟镓磷(InxGa1-xP)或铟镓砷磷(InxGa1-xAsyP1-y)中的一种或几种,其中0<x<1,0<y<1。
所述催化剂颗粒(4)材料为金(Au)、铁(Fe)或银(Ag)中的一种或几种。
步骤a~e中的制备温度根据所选材料的制备温度设定。
MOCVD为Metal-organic Chemical Vapor Deposition的缩写,即金属有机化合物化学气相沉淀技术;MBE为Molecular Beam Epitaxy的缩写,即分子束外延技术,也是一种新的晶体生长技术。
具体的使用方法:
实施例1:
基于InP衬底的InP同质混合结构太阳能电池制备,具体步骤如下:
a、在MOCVD反应系统中,将反应系统温度调至底层掺杂薄膜所需的制备温度,开始供应p型掺杂锌(Zn)源及铟(In)源、磷(P)源等反应物进行底层p型掺杂InP薄膜的制备。
b、500秒后,停止供应各种反应物。将反应系统温度调至上层掺杂薄膜所需的制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、磷(P)源等反应物进行上层n型掺杂InP薄膜的制备。
c、300秒后,停止供应各种反应物。待MOCVD反应系统降至室温后,将制备有底层及上层薄膜的InP衬底从MOCVD反应系统中取出,在上层n型掺杂InP薄膜表面旋涂一层金(Au)催化剂颗粒。
d、将覆有底层p型掺杂InP薄膜、上层n型掺杂InP薄膜和金(Au)催化剂颗粒的InP衬底放入MOCVD反应系统中,将反应系统温度调至底部掺杂纳米线所需的制备温度,开始供应p型掺杂锌(Zn)源及铟(In)源、磷(P)源等反应物进行底部p型掺杂InP纳米线的制备。
e、100秒后,停止供应各种反应物。将反应系统温度调至顶部掺杂纳米线所需的制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、磷(P)源等反应物进行顶部n型掺杂InP纳米线的制备。
f、200秒后,停止供应各种反应物,待MOCVD反应系统降至室温后完成基于InP衬底的InP同质混合结构太阳能电池的制备。
实施例2:
基于锗(Ge)衬底的异质混合结构太阳能电池制备,具体步骤如下:
a、在MOCVD反应系统中,将反应系统温度调至底层掺杂薄膜所需的制备温度,开始供应p型掺杂锌(Zn)源及铟(In)源、磷(P)源等反应物进行底层p型掺杂InP薄膜的制备。
b、300秒后,停止供应各种反应物。将反应系统温度调至上层掺杂薄膜所需的制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、镓(Ga)源、磷(P)源等反应物进行上层n型掺杂InxGa1-xP薄膜的制备。
c、400秒后,停止供应各种反应物。待MOCVD反应系统降至室温后,将制备有底层及上层薄膜的Ge衬底从MOCVD反应系统中取出,在上层n型掺杂InxGa1-xP薄膜表面旋涂一层金(Au)催化剂颗粒。
d、将覆有底层及上层薄膜和金(Au)催化剂颗粒的Ge衬底放入MOCVD反应系统中,将反应系统温度调至底部掺杂纳米线所需的制备温度,开始供应p型掺杂镁(Mg)源及铟(In)源、砷(As)源等反应物进行底部p型掺杂InAs纳米线的制备。
e、200秒后,停止供应各种反应物。将反应系统温度调至顶部掺杂纳米线所需的制备温度,开始供应n型掺杂碳(C)源及镓(Ga)源、砷(As)源等反应物进行顶部n型掺杂GaAs纳米线的制备。
f、300秒后,停止供应各种反应物,待MOCVD反应系统降至室温后完成基于锗(Ge)衬底的异质混合结构太阳能电池的制备。
实施例3:
基于GaAs衬底的异质混合结构太阳能电池制备,具体步骤如下:
a、在MOCVD反应系统中,将反应系统温度调至底层掺杂薄膜所需的制备温度,开始供应n型掺杂碳(C)源及铟(In)源、镓(Ga)源、磷(P)源等反应物进行底层n型掺杂InxGa1-xP薄膜的制备。
b、400秒后,停止供应各种反应物。将反应系统温度调至上层掺杂薄膜所需的制备温度,开始供应p型掺杂镁(Mg)源及铟(In)源、镓(Ga)源、砷(As)源、磷(P)源等反应物进行上层p型掺杂InxGa1-xAsyP1-y薄膜的制备。
c、200秒后,停止供应各种反应物。待MOCVD反应系统降至室温后,将制备有底层及上层薄膜的GaAs衬底从MOCVD反应系统中取出,在上层p型掺杂InxGa1-xAsyP1-y薄膜表面旋涂一层铁(Fe)催化剂颗粒。
d、将覆有底层n型掺杂InxGa1-xP薄膜、上层p型掺杂InxGa1-xAsyP1-y薄膜和铁(Fe)催化剂颗粒的GaAs衬底放入MOCVD反应系统中,将反应系统温度调至底部掺杂纳米线所需的制备温度,开始供应n型掺杂硅(Si)源及镓(Ga)源、磷(P)源等反应物进行底部n型掺杂GaP纳米线的制备。
e、300秒后,停止供应各种反应物。将反应系统温度调至顶部掺杂纳米线所需的制备温度,开始供应p型掺杂锌(Zn)源及铟(In)源、砷(As)源等反应物进行顶部p型掺杂InAs纳米线的制备。
f、400秒后,停止供应各种反应物,待MOCVD反应系统降至室温后完成基于GaAs衬底的异质混合结构太阳能电池的制备。
实施例4:
基于硅(Si)衬底的异质混合结构太阳能电池制备,具体步骤如下:
a、在MOCVD反应系统中,将反应系统温度调至底层掺杂薄膜所需的制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、镓(Ga)源、砷(As)源、磷(P)源等反应物进行底层n型掺杂InxGa1-xAsyP1-y薄膜的制备。
b、200秒后,停止供应各种反应物。将反应系统温度调至上层掺杂薄膜所需的制备温度,开始供应p型掺杂锌(Zn)源及铟(In)源、镓(Ga)源、砷(As)源等反应物进行上层p型掺杂InxGa1-xAs薄膜的制备。
c、300秒后,停止供应各种反应物。将制备有底层及上层薄膜的Si衬底移出MOCVD反应系统,在上层p型掺杂InxGa1-xAs薄膜表面旋涂一层银(Ag)催化剂颗粒。
d、将覆有底层n型掺杂InxGa1-xAsyP1-y薄膜、上层p型掺杂InxGa1-xAs薄膜和银(Ag)催化剂颗粒的Si衬底放入MOCVD反应系统中,将反应系统温度调至底部掺杂纳米线所需的制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、磷(P)源等反应物进行底部n型掺杂InP纳米线的制备。
e、100秒后,停止供应各种反应物。将反应系统温度调至顶部掺杂纳米线所需的制备温度,开始供应p型掺杂锌(Zn)源及镓(Ga)源、砷(As)源等反应物进行顶部p型掺杂GaAs纳米线的制备。
f、400秒后,停止供应各种反应物,待MOCVD反应系统降至室温后完成基于Si衬底的异质混合结构太阳能电池的制备。
实施例5:
基于GaAs衬底的异质混合结构太阳能电池制备,具体步骤如下:
a、在MOCVD反应系统中,将反应系统温度升至630℃,开始供应n型掺杂源硅烷(SiH4)及三甲基铟(TMIn)、三甲基镓(TMGa)、磷烷(PH3)等反应物进行底层n型掺杂InxGa1- xP薄膜的制备。
b、300秒后,停止供应各种反应物。将MOCVD反应系统温度升至670°C,开始供应p型掺杂源二乙基锌(TEZn)及三甲基铟(TMIn)、三甲基镓(TMGa)、砷烷(AsH3)、磷烷(PH3)等反应物进行上层p型掺杂InxGa1-xAsyP1-y薄膜的制备。
c、400秒后,停止供应各种反应物,待MOCVD反应系统降至室温后将制备有底层及上层薄膜的GaAs衬底从MOCVD反应系统中取出;利用热蒸发技术在GaAs衬底上层薄膜表面制备一层8纳米厚的金(Au)薄膜。
d、将覆有底层n型掺杂InxGa1-xP薄膜、上层p型掺杂InxGa1-xAsyP1-y薄膜和金(Au)薄膜的GaAs衬底放回MOCVD反应系统中,在650℃下将金(Au)薄膜退火为催化剂颗粒。
e、将MOCVD反应系统温度降至450℃,开始供应n型掺杂源硅烷(SiH4)及三甲基镓(TMGa)、磷烷(PH3)等反应物进行底部n型掺杂GaP纳米线的制备。
f、400秒后,停止供应各种反应物。将MOCVD反应系统温度降至420℃,开始供应p型掺杂源二乙基锌(TEZn)及三甲基镓(TMGa)、砷烷(AsH3)等反应物进行顶部p型掺杂GaAs纳米线的制备。
g、400秒后,停止供应各种反应物,待MOCVD反应系统降至室温后完成基于GaAs衬底的异质混合结构太阳能电池的制备。
综上所述,本发明通过在衬底上顺序制备底层掺杂薄膜、上层掺杂薄膜、催化剂颗粒、底部掺杂纳米线和顶部掺杂纳米线,制得混合结构纳米线太阳能电池具有光电转换效率高的特点,有效的解决了传统太阳能电池光电转换效率低的问题,本发明制作方法简单,可以商业领域进行大面积推广。

Claims (9)

1.一种混合结构太阳能电池的制备方法,其特征在于:包括如下步骤:
a、在反应系统中,以底层掺杂薄膜(2)的制备温度,在衬底(1)表面制备底层掺杂薄膜(2);
b、在反应系统中,以上层掺杂薄膜(3)的制备温度,在底层掺杂薄膜(2)表面制备上层掺杂薄膜(3);
c、在上层掺杂薄膜(3)表面旋涂金属催化剂颗粒或利用金属薄膜退火技术在上层掺杂薄膜(3)表面制备催化剂颗粒(4);
d、在反应系统中,以底部掺杂纳米线(5)的制备温度,利用催化剂颗粒(4)制备底部掺杂纳米线(5);
e、在反应系统中,以顶部掺杂纳米线(6)的制备温度,利用催化剂颗粒(4)制备顶部掺杂纳米线(6);
f、待反应系统降至室温后,完成混合结构太阳能电池的制备;
所述衬底(1)、底层掺杂薄膜(2)、上层掺杂薄膜(3)、底部掺杂纳米线(5)以及顶部掺杂纳米线(6)的材料为III-V族半导体材料或IV族半导体材料;
所述底层掺杂薄膜(2)、上层掺杂薄膜(3)、底部掺杂纳米线(5)、顶部掺杂纳米线(6)是n型掺杂或p型掺杂半导体。
2.根据权利要求1所述的一种混合结构太阳能电池的制备方法,其特征在于:所述衬底(1)材料为Si、Ge、C、SiC、GaAs、GaP、GaN、InAs或InP中的一种或几种。
3.根据权利要求1所述的一种混合结构太阳能电池的制备方法,其特征在于:所述底层掺杂薄膜(2)材料为为Ge、GaAs、GaP、GaN、InAs、InP、AlxGa1-xAs、InxGa1-xAs、InxGa1-xP或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
4.根据权利要求1所述的一种混合结构太阳能电池的制备方法,其特征在于:所述上层掺杂薄膜(3)材料为Ge、GaAs、GaP、GaN、InAs、InP、AlxGa1-xAs、InxGa1-xAs、InxGa1-xP或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
5.根据权利要求1所述的一种混合结构太阳能电池的制备方法,其特征在于:所述催化剂颗粒(4)材料为Au、Fe或Ag中的一种或几种。
6.根据权利要求1所述的一种混合结构太阳能电池的制备方法,其特征在于:所述底部掺杂纳米线(5)材料为Ge、GaAs、GaP、GaN、InAs、InP、AlxGa1-xAs、InxGa1-xAs、InxGa1-xP或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
7.根据权利要求1所述的一种混合结构太阳能电池的制备方法,其特征在于:所述顶部掺杂纳米线(6)材料为Ge、GaAs、GaP、GaN、InAs、InP、AlxGa1-xAs、InxGa1-xAs、InxGa1-xP或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
8.根据权利要求1所述的一种混合结构太阳能电池的制备方法,其特征在于:所述反应系统是MOCVD或MBE。
9.根据权利要求1所述的一种混合结构太阳能电池的制备方法,其特征在于:步骤a~e中的制备温度根据所选材料的制备温度设定。
CN202010018528.7A 2020-01-08 2020-01-08 一种混合结构太阳能电池的制备方法 Active CN111180554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010018528.7A CN111180554B (zh) 2020-01-08 2020-01-08 一种混合结构太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010018528.7A CN111180554B (zh) 2020-01-08 2020-01-08 一种混合结构太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN111180554A true CN111180554A (zh) 2020-05-19
CN111180554B CN111180554B (zh) 2023-01-03

Family

ID=70650976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010018528.7A Active CN111180554B (zh) 2020-01-08 2020-01-08 一种混合结构太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN111180554B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080149171A1 (en) * 2006-12-21 2008-06-26 Rutgers, The State University Of New Jersey Zinc Oxide Photoelectrodes and Methods of Fabrication
CN101587916A (zh) * 2008-05-21 2009-11-25 上海市纳米科技与产业发展促进中心 基于Si纳米线阵列太阳能电池及其制造方法
CN102050426A (zh) * 2009-11-10 2011-05-11 北京邮电大学 异质纳米线制备方法
US20110253982A1 (en) * 2008-10-28 2011-10-20 The Regents Of The University Of California Vertical group iii-v nanowires on si, heterostructures, flexible arrays and fabrication
US20120070938A1 (en) * 2010-09-17 2012-03-22 Atomic Energy Council-Institute Of Nuclear Energy Research Method of Fabricating Silicon Nanowire Solar Cell Device Having Upgraded Metallurgical Grade Silicon Substrate
CN102484147A (zh) * 2009-04-15 2012-05-30 索尔伏打电流公司 具有纳米线的多结光生伏打电池
CN103050564A (zh) * 2012-12-21 2013-04-17 北京邮电大学 一种基于多节纳米线径向pn结的太阳能电池及制备方法
CN103050498A (zh) * 2012-12-28 2013-04-17 中山大学 一种微纳米线阵列结构紫外雪崩光电探测器及其制备方法
CN104685637A (zh) * 2012-06-21 2015-06-03 挪威科技大学(Ntnu) 太阳能电池
CN104995741A (zh) * 2012-12-21 2015-10-21 索尔伏打电流公司 半导体纳米线的凹槽式接触
CN106206780A (zh) * 2007-06-19 2016-12-07 昆南诺股份有限公司 基于纳米线的太阳能电池结构

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080149171A1 (en) * 2006-12-21 2008-06-26 Rutgers, The State University Of New Jersey Zinc Oxide Photoelectrodes and Methods of Fabrication
CN106206780A (zh) * 2007-06-19 2016-12-07 昆南诺股份有限公司 基于纳米线的太阳能电池结构
CN101587916A (zh) * 2008-05-21 2009-11-25 上海市纳米科技与产业发展促进中心 基于Si纳米线阵列太阳能电池及其制造方法
US20110253982A1 (en) * 2008-10-28 2011-10-20 The Regents Of The University Of California Vertical group iii-v nanowires on si, heterostructures, flexible arrays and fabrication
CN102484147A (zh) * 2009-04-15 2012-05-30 索尔伏打电流公司 具有纳米线的多结光生伏打电池
CN102050426A (zh) * 2009-11-10 2011-05-11 北京邮电大学 异质纳米线制备方法
US20120070938A1 (en) * 2010-09-17 2012-03-22 Atomic Energy Council-Institute Of Nuclear Energy Research Method of Fabricating Silicon Nanowire Solar Cell Device Having Upgraded Metallurgical Grade Silicon Substrate
CN104685637A (zh) * 2012-06-21 2015-06-03 挪威科技大学(Ntnu) 太阳能电池
CN103050564A (zh) * 2012-12-21 2013-04-17 北京邮电大学 一种基于多节纳米线径向pn结的太阳能电池及制备方法
CN104995741A (zh) * 2012-12-21 2015-10-21 索尔伏打电流公司 半导体纳米线的凹槽式接触
CN103050498A (zh) * 2012-12-28 2013-04-17 中山大学 一种微纳米线阵列结构紫外雪崩光电探测器及其制备方法

Also Published As

Publication number Publication date
CN111180554B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
JP4064592B2 (ja) 光電変換装置
CN106935675B (zh) 包含异质结的光电子器件
Andre et al. Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates
JP5364782B2 (ja) 太陽電池の製造方法
US10903389B2 (en) Hydride enhanced growth rates in hydride vapor phase epitaxy
CN101548032A (zh) 硅片器件的低温掺杂方法
CN101183689A (zh) 分级混合式非晶硅纳米线太阳能电池
CN115714155A (zh) 深紫外发光二极管外延片及其制备方法、深紫外发光二极管
CN105609402B (zh) 一种在Si衬底上采用碳纳米管作为周期性介质掩膜制备低位错密度GaN薄膜的方法
CN103928539A (zh) 多结iii-v太阳能电池及其制造方法
TWI377690B (en) Method for forming a gexsi1-x buffer layer of solar-energy battery on a silicon wafer
Zhao et al. Boron-doped III–V semiconductors for Si-based optoelectronic devices
CN102255020A (zh) 一种垂直结构氮化镓发光二极管的外延片及其制造方法
CN111180554B (zh) 一种混合结构太阳能电池的制备方法
CN102339890A (zh) 新型三结砷化镓太阳电池
Freundlich et al. Development of GaAs space solar cells by high growth rate MOMBE/CBE
CN101764054B (zh) 化合物半导体外延芯片及其制造方法
Mauk et al. Selectively-grown InGaP/GaAs on silicon heterostructures for application to photovoltaic–photoelectrolysis cells
CN107546287B (zh) 一种太阳能电池及其制作方法
CN111162141A (zh) 一种多结纳米线太阳能电池的制备方法
CN105986321B (zh) 在Ge衬底上生长GaAs外延薄膜的方法
US11482635B2 (en) InGaN solar photovoltaic device with flexible multi-layer structure and method for manufacturing the same
CN117613158B (zh) 一种GaN基LD外延结构及其制备方法
CN221239616U (zh) 一种基于硅衬底的氮化镓材料外延结构
JP2001044456A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant